Derivatives Pricing and Financial Modelling

Andrew Cairns: room M3.08

E-mail: A.Cairns@ma.hw.ac.uk

Tutorial 9

1. (*) The Vasicek model.

Derive the form of the forward rate curve, $f(t, T)$ for the Vasicek model in terms of α, μ, σ and $r(t)$, given the pricing formula in the lecture notes.
2. (*) Suppose that X and Y are normal random variables with mean zero, variance 1 and correlation ρ under a measure Q.
(a) For any real numbers ω and ν, write down:

$$
E_{Q}\left[e^{-\omega Y-\nu X}\right]
$$

(b) Let P be another measure equivalent to Q defined by the Radon-Nikodym derivative:

$$
\frac{d P}{d Q}=\frac{e^{-\omega Y}}{E_{Q}\left[e^{-\omega Y}\right]}
$$

Find an expression for $E_{Q}[\exp (-\omega Y-\nu X)]$ in terms of $E_{Q}[\exp (-\omega Y)]$ and $E_{P}[\exp (-\nu X)]$.
(c) Hence show that under P, X has a normal distribution with mean $-\omega \rho$ and variance 1.
(d) Use your answers to parts (b) and (c) to show that:

$$
E_{Q}\left[e^{-Y} I(X<x)\right]=e^{1 / 2} \Phi(x+\rho)
$$

where $I(X<x)=1$ if $X<x$ and 0 otherwise and $\Phi(z)$ is the cumulative distribution function of the standard normal distribution.
(e) Use the fact that $E_{Q}\left[e^{-Y} I(X<x)\right]=E_{Q}\left[I(X<x) E_{Q}\left[e^{-Y} \mid X\right]\right]$ to verify directly (that is, without using the change of measure) the result in part (d).
3. (*) More on the Vasicek model... *

Make use of the following facts to investigate the following problems relating to the Vasicek model:

A If $X=\int_{0}^{T} g(s) d W_{s}$ for some deterministic function $g(s)$ then X has a Normal distribution with mean 0 and variance $\int_{0}^{T} g(s)^{2} d s$.
B If $\sigma(t, u)$ is such that

$$
E\left[\int_{0}^{T}\left|\int_{0}^{u} \sigma(t, u) d W_{t}\right| d u\right]<\infty
$$

then

$$
\int_{0}^{t} \int_{0}^{u} \sigma(s, u) d W_{s} d u=\int_{0}^{t} \int_{s}^{t} \sigma(s, u) d u d W_{s}
$$

C If Y has a normal distribution with mean μ and variance σ^{2} then $E\left[e^{Y}\right]=\exp \left[\mu+\frac{1}{2} \sigma^{2}\right]$.
Under the Vasicek model $d r(t)=\alpha(\mu-r(t)) d t+\sigma d \tilde{W}_{t}$ where \tilde{W}_{t} is a Brownian motion under the equivalent martingale measure Q.
(a) Show that $r(t)=\mu+(r(0)-\mu) e^{-\alpha t}+\sigma \int_{0}^{t} e^{-\alpha(t-s)} d \tilde{W}_{s}$.
(b) Show that

$$
X(T)=\int_{0}^{T} r(t) d t=\mu T+(r(0)-\mu) \frac{1-e^{-\alpha T}}{\alpha}+\sigma \int_{0}^{T} \frac{1-e^{-\alpha(T-s)}}{\alpha} d \tilde{W}_{s}
$$

(c) Find the joint distribution for $(r(T), X(T))$.
(d) Using (b) and (c) find an expression for $P(t, T)=E_{Q}\left[\exp \{-(X(T)-X(t))\} \mid \mathcal{F}_{t}\right]$, expressing this in the form $\exp [A(t, T)-B(t, T) r(t)]$.
(e) Using part (b), find the joint distribution for $(r(T), X(S))$ where $T<S$.
(f) Consider a European call option with exercise date T and strike price K with the zero-coupon bond maturing at time S (where $T<S$) as the underlying. The price at time 0 of this bond is:

$$
C(0)=E_{Q}\left[e^{-X(T)} \max \{P(T, S)-K, 0\}\right]
$$

Let P_{1} and P_{2} be two measures equivalent to Q defined by the Radon-Nikodym derivatives:

$$
\begin{aligned}
\frac{d P_{1}}{d Q} & =\frac{e^{-X(S)}}{E_{Q}\left[e^{-X(S)}\right]} \\
\text { and } \frac{d P_{2}}{d Q} & =\frac{e^{-X(T)}}{E_{Q}\left[e^{-X(T)}\right]}
\end{aligned}
$$

i. Show that:

$$
C(0)=P(0, S) E_{P_{1}}\left[I\left(r(T)<r^{*}\right)\right]-K P(0, T) E_{P_{2}}\left[I\left(r(T)<r^{*}\right)\right]
$$

where $r^{*}=(A(T, S)-\log K) / B(T, S)$ and $I\left(r(T)<r^{*}\right)$ equals 1 if $r(T)<r^{*}$ and zero otherwise.
ii. Use your answers to question 2 to show that

$$
\begin{aligned}
C(0) & =P(0, S) \Phi\left(d_{1}\right)-K P(0, T) \Phi\left(d_{2}\right) \\
\text { where } d_{1} & =\frac{1}{\sigma_{p}} \log \frac{P(0, S)}{K . P(0, T)}+\frac{\sigma_{p}}{2} \\
d_{2} & =d_{1}-\sigma_{p} \\
\sigma_{p} & =\frac{\sigma}{\alpha}\left(1-e^{-\alpha(S-T)}\right) \sqrt{\frac{1-e^{-2 \alpha T}}{2 \alpha}}
\end{aligned}
$$

4. (Cox-Ingersoll-Ross (CIR) etc.)
(a) Under the CIR model we have

$$
d r(t)=\alpha(\mu-r(t)) d t+\sigma \sqrt{r(t)} d \tilde{W}_{t}
$$

It is required that $\alpha \mu>\frac{1}{2} \sigma^{2}$ to keep the process strictly positive. By considering the process $X(t)=\log r(t)$ discuss why this requirement might be necessary (a rigorous proof is not required).
(b) Under CIR we have prices of the form

$$
\begin{aligned}
P(t, T) & =\exp [A(t, T)-B(t, T) r(t)] \\
\text { where } B(t, T) & =\frac{2\left(e^{\gamma(T-t)}-1\right)}{(\gamma+\alpha)\left(e^{\gamma(T-t)}-1\right)+2 \gamma} \\
A(t, T) & =\left[\frac{2 \gamma e^{(\alpha+\gamma)(T-t) / 2}}{(\gamma+\alpha)\left(e^{\gamma(T-t)}-1\right)+2 \gamma}\right]^{2 \alpha \mu / \sigma^{2}} \\
\gamma & =\sqrt{\alpha^{2}+2 \sigma^{2}}
\end{aligned}
$$

The Pearson-Sun model uses $d r(t)=\alpha(\mu-r(t)) d t+\sigma \sqrt{r(t)-\beta} d \tilde{W}_{t}$.
Make use of the CIR pricing formula to derive prices for the PS model.
(c) Under the Brennan-Schwartz model we have $d r(t)=\alpha(\mu-r(t)) d t+\sigma r(t) d \tilde{W}_{t}$. Other than $\alpha>0, \mu>0$ and $\sigma>0$ do we need any special conditions to ensure that $r(t)$ does not hit 0 ?
5. (*) (CIR)

Consider the model:

$$
d r(t)=\alpha(\mu-r(t)) d t+\sigma \sqrt{r(t)} d \tilde{W}(t)
$$

where $\tilde{W}(t)$ is standard Brownian motion under the equivalent martingale measure Q and the parameter values are:
$\alpha=0.0125, \mu=0.05, \sigma=0.05$
with $r(0)=0.1$.
Prices can be expressed in the form $P(0, T)=\exp [\bar{A}(T)-\bar{B}(T) r(0)]$. For the above parameters:

u	$\bar{A}(u)$	$\bar{B}(u)$
1	-0.0003111	0.993365
10	-0.0294161	9.048922
11	-0.0353140	9.819592

(a) Calculate the prices $P(0,1)$ and $P(0,11)$.
(b) Suppose $Z \sim N(0,1)$ and $Y=(Z+\sqrt{\lambda})^{2}$.

Show that $\operatorname{Pr}(Y<y)=\Phi(\sqrt{y}-\sqrt{\lambda})-\Phi(-\sqrt{y}-\sqrt{\lambda})$.
(c) A European call option has been written on $P(t, 11)$ has an exercise date of $T=1$ and a strike price of $K=\exp (-0.8)$.
Calculate the price of this call option at time 0 .
6. (Black-Karasinski)

Suppose that $X(t)$ is an Ito process such that $d X(t)=\alpha(\mu-X(t)) d t+\sigma d W_{t}$.
Let $r(t)=\exp X(t)$.
Use Ito's formula to derive the SDE for $r(t)$.
7. (*) (Futures prices)

Suppose $d r(t)=a(t) \cdot d t+b(t) \cdot d W_{t}$ for some suitable previsible functions $a(t)$ and $b(t)$ where W_{t} is a Brownian motion under the real-world measure P.

Consider a futures contract for delivery of the underlying $P(t, S)$ at time $T<S$. The futures price at time t for this contract is $F(t)$. The variation margin payable to the holder of the futures contract at the end of the time interval $[t, t+d t)$ is $d F(t)=F(t+d t)-F(t)$ for infinitesimally small $d t$. Immediately after the payment the price for the contract is always 0 .
Prove that for all $t<T: F(t)=E_{Q}\left[P(T, S) \mid \mathcal{F}_{t}\right]$.
You should try to prove this using two different methods.
Method A: Follow similar steps to those in Section 6 of the lecture notes on equity derivatives and equity futures contracts (see OHP slide 6.9: note that step 4 should state that the portfolio contains $B_{t} \phi_{t}$ rather than ϕ_{t} forward contracts). You should start by assuming that $P(T, S)=E_{Q}\left[B(T) / B(S) \mid \mathcal{F}_{T}\right.$ as usual. However, then assume that $P(t, S)$ is not tradeable between 0 and T. Then establish how you can replicate $P(T, S)$ using cash plus futures contracts.

Method B: (a) Let $\pi(t)$ be the accumulation in cash of the netcashflows $d F(t)$ to the holder of the long position: that is, $d \pi(t)=r(t) \pi(t) d t+d F(t)$. (b) Also note that $B(t) E_{Q}\left[\int_{t}^{T} B(s)^{-1} d F(s) \mid \mathcal{F}_{t}\right]=0$ (state why!). (c) Define $\tilde{\pi}(t)=\pi(t) / B(t)$. Show that $d \tilde{\pi}(t)=B(t)^{-1} d F(t)$. (d) Show that $\tilde{\pi}(t)$ is a martingale under Q. (e) Hence show that $F(t)$ is a martingale under Q and complete the result.

