Risk Management 11: Case Studies

- Unit 11.1: Risk management disasters
- Unit 11.2: Examples of good practice

11.1: Risk management disasters

Reading:

- Hull (Risk Management): Chapter 6 (2007/8 credit crunch)
+ business snapshots
- Hull (Derivatives, 6th edition): Chapter 32 (Derivatives mishaps)
- Crouhy: short sections on: Bankers Trust; Barings Bank; Merrill-Lynch; Nat West Bank; Niederhoffer; LTCM; Orange County.
- Sweeting: Chapter 20

Unit 11.2: Examples of good practice

Reading:

- Hull (Risk Management): business snapshots
- IAA Practice Note: Appendix 3; Appendix 4-6
- Lam: Chapter 14 (Operational Risk) pages 264-270
- Company financial reports: look for a description of their risk management frameworks and risk appetite

Case Study - Swiss Re

- ERM action to reduce the impact of extremes
- Swiss Re Mortality bond: Vita Capital first issued in 2004
- Objectives:
- To reduce regulatory and/or risk capital and enhance return on capital
- As part of an overall package of good ERM

Aim: to reduce exposure to extreme mortality events

- Pandemic
(e.g. 1 in 200 year event \Rightarrow CHF 4.0 Billion loss)
- Major terrorist attack
- Tsunami
- Earthquake

Risks (simplified description)

Swiss Re opted for a parametric-index security linked to national mortality in 5 countries
in preference to link to Swiss Re's own mortality experience
Parametric index \Rightarrow

- avoid moral hazard
- much better historical data
\Rightarrow investors have greater confidence in the risks being taken on
- avoid revealing commercial information about Swiss Re's customers

Risks (simplified description)

- $M(c, g, t, x)=$ national mortality rate by:
- country, c
- gender, g
- year, t
- age, x

$$
\begin{aligned}
& L(c, g, t, x)=\text { Swiss Re actual }(c, g, t, x) \text { net losses } \\
& \quad=\sum_{i=1}^{n(c, g, t, x)}\left\{D_{i}(c, g, t, x) C_{i}(c, g, t, x)-P_{i}(c, g, t, x)\right\}
\end{aligned}
$$

Risks (simplified description) (cont.)

- $n(c, g, t, x)=$ number of individuals from country c, gender g and age x in year t in Swiss Re's portfolio of liabilities
- $i=1, \ldots, n(c, g, t, x)$ represents individuals in the (c, g, t, x) group
- $D_{i}(c, g, t, x)=$ indicator random variable for individual i in group (c, g, t, x). Equals 1 if the individual dies or 0 otherwise.
- $C_{i}(c, g, t, x)=$ claim resulting from the death of individual i in group (c, g, x) in year t
- $P_{i}(c, g, t, x)=$ reinsurance premium payable to Swiss Re in respect of individual i in group (c, g, x) in year t

Mortality bond

Mortality index: $m(t)=\frac{\sum_{c, g, x} w(c, g, x) M(c, g, t, x)}{\sum_{c, g, x} w(c, g, x)}$

- $w(c, g, x)=$ weights specified in the contract
- $L(t)=\sum_{c, g, x} L(c, g, t, x)=$ Swiss Re's own aggregate net loss in year t
- Choose $w(c, g, x)$ to maximise $\operatorname{cor}(m(t), L(t))$

Mortality bond (cont.)

- Weights chosen to minimise basis risk between $L(t)$ and $m(t)$
- Basis risk
- wealthier subpopulation
- fewer lives
- concentration risk by: $C_{i}($.$) ;$ region/city/building

Details

- Coupon: LIBOR +135 basis points (2004), default free
- $m_{0}=$ base mortality index for year 0
- Repayment of principal:
- 100% if $m(t) \leq 1.3 \times m_{0}$ for $t=1,2,3$
- $100\left(m(t)-1.3 m_{0}\right) / 0.2 m_{0}$ if $1.3 m_{0}<m(t) \leq 1.5 m_{0}$
- 0 if $1.5 m_{0}<m(t)$

Details

- Reduction in principal paid to Swiss Re instead \Rightarrow payment to Swiss Re in an extremely bad year
- $1.3 \times, \quad 1.5 \times \Rightarrow$ Attachment, Detachment Points
- High threshold \Rightarrow low cost to Swiss Re
- Spanish Flu 1918-20
- Came close to $1.3 \times$
- Biggest impact at younger ages
- 2000's: equivalent risks: Bird flu, then swine flu
- Covid-19 pandemic 2020-2021
- UK around $1.1-1.2 \times$ in 2020
- Covid death rates proportional to all-cause mortality by age and socio-economic group
- Conversely: highly variable by region \Rightarrow basis risk

Details

- Investors
- specialist hedge funds (+135b.p.'s)
- pension funds (corr(mortality,longevity) <0)
- Catastrophe risk \Rightarrow
- significant correlation across (c, g, x) depending on type of event
\Rightarrow tail dependency is important
- Bond was successful: more mortality CAT bonds followed
See, www.artemis.bm/deal-directory/

Summary

There are many documented case studies:

- learn about past disasters: what went wrong and how to avoid similar things from happening again?
- but also don't focus on avoiding exactly the same mistake as the next disaster will almost certainly be different
- read examples of good practice: what has been done and why?
- Build on these case studies to propose or develop risk management solutions for a variety of scenarios

