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Risk Management
10: Interest Rate Risk Management

Hull (Risk Management): Chapter 8

Crouhy: Chapter 6

Sweeting: Chapter 16.3

Hull (Options Futures and Other Derivatives, 9th edition)
Chapters 4, 6, 7 (revision of key market concepts)
Chapter 31: Short-rate models (31.1-31.3)
Chapter 32: The HJM model (32.1)

plus other topics in these slides
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Outline

Unit 10.1: Introduction and Redington
Immunization

Unit 10.2: Arbitrage-free stochastic models –
short-rate models

Unit 10.3: More general multi-factor models

Unit 10.4: Stochastic liabilities and instruments
for hedging interest-rate risk
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Unit 10.1: Introduction and Redington Immunization
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Basic Notation and Terminology

Assume all cashflows at t = 1, . . . , n

Zero-coupon bonds: P(t,T ) = price at t for £1
at T

Spot rate: R(t,T ) = −(T − t)−1 logP(t,T )

History ⇒ rising yield curves are more common
[Long bonds ⇒ more risky in short term ⇒ risk
premium over cash]
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Typical Yield Curves
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Coupon bonds

Bond i pays ci(s) at s = 1, . . . , n

No arbitrage ⇒ current price

Bi(t) =
n∑

s=t+1

ci(s)P(t, s)

Yield to maturity ⇒ unique solution, yi(t) to

Bi(t) =
n∑

s=t+1

ci(s)e−yi (t)(s−t)
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Liabilities

Fixed liabilities: L(s) payable at time s = 1, . . . , n

Market consistent value: VL(t) =
∑n

s=t+1 L(s)P(t, s)

Portfolio of assets: ui units of bond Bi(t)

⇒ VA(t) =
∑
i

ui

n∑
s=t+1

ci(s)P(t, s) =
n∑

s=t+1

P(t, s)
∑
i

uici(s)

Hence just use zero coupon bonds for convenience.

Interest rate risk: uncertainty in VA(t), VL(t) associated
with uncertainty in the term structure of interest rates.
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Asset-Liability Matching

Hold ui = L(i) units of P(t, i)

Then any change in the term structure of
interest rates, R(t,T ), will still result in
VA(t) = VL(t)
⇒ perfectly hedged

BUT: investment in all n zero-coupon bonds
might not be possible/practical or expensive
⇒ mismatching
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Parallel shifts in the spot-rate curve

R(t,T ) −→ R̃(t,T ) = R(t,T ) + δ where δ is
unknown.
Hence P̃(t,T ) = P(t,T )e−δ(T−t)
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A1 ⇒ loss if R(t,T ) rises (δ > 0)

A2 ⇒ loss if R(t,T ) falls (δ < 0)
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A3 ⇒ small profits if R(t,T ) falls or rises (δ < 0)
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Redington’s Theory of Immunization

Notation: VL(δ) ≡ VL(t; δ)

Duration (“Macaulay Duration”):

τL = − 1

VL(δ)

∂VL

∂δ
(δ)

∣∣∣∣
δ=0

= − ∂

∂δ
logVL(δ)|δ=0

=

∑n

s=t+1(s − t)L(s)P(t, s)∑n

s=t+1 L(s)P(t, s)

= weighted average of payment dates
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Redington’s Theory of Immunization (cont.)

Convexity:

CL =
1

VL(δ)

∂2VL

∂δ2
(δ)

∣∣∣∣
δ=0

=

∑n

s=t+1(s − t)2L(s)P(t, s)∑n

s=t+1 L(s)P(t, s)

Conditions for immunization at time t = 0:

1 P.V. Matching VA(0, 0) = VL(0, 0)
2 Duration Matching τA = τL
3 Convexity Condition CA > CL

If conditions 1, 2 and 3 are satisfied then the portfolio is said
to be immunized against parallel shifts in the yield curve.
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BUT this looks like arbitrage. So what is happening?
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Why does arbitrage not arise?

1 We get more than just parallel shifts in the yield
curve

level; slope; curvature
2 Time dimension ⇒ change happens between t

and t + ∆t and not instantaneously at t.
⇒ for arbitrage free models, if VA = VL at t:
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e.g. small change in δ (+/−) ⇒ small loss
VA(δ)− VL(δ)
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Duration matching

Duration matching is a form of Delta Hedging
⇒ hedging against small changes in specific risk
factors
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Summary

Know the key alternative building blocks and
terminology underpinning the term structure of
interest rates

Understand how the market value of a set of
deterministic liabilities responds to changes in
the term structure of interest rates

Demonstrate how Redington’s theory of
immunization works

Understand how duration matching is a form of
delta hedging
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Unit 10.2: Arbitrage-free stochastic models
Short-rate models
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Arbitrage Free Stochastic Models

Key concept:

r(t) = instantaneous risk free rate of interest (short rate)

$1 at time t invested in a cash account

grows to
$1 + r(t)dt

between t and t + dt where dt is very small

Cash account C (t) at time t

dC (t) = r(t)C (t)dt

⇒ C (t) = C (0) exp

[∫ t

0

r(s)ds

]
(even if r(t) is stochastic)

Seen before in courses on compound interest where r(t) is
deterministic and sometimes referred to as the force of
interest
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Arbitrage Free Stochastic Models (cont.)

Example: Vasicek Model (1977) – 1 risk factor

r(t) = instantaneous risk free rate of interest (short rate)

Vasicek: dr(t) = α(µ− r(t))dt + σdW̃ (t)

where W̃ (t) = Brownian Motion under risk-neutral Q.

⇒ P(t,T ) = EQ

[
e−

∫
T

t
r(s)ds

∣∣∣ r(t)
]

= exp[A(T − t)− B(T − t)r(t)]

where B(s) =
(
1− e−αs

)
/α

A(s) = (B(s)− s)

(
µ− σ2

2α2

)
− σ2

4α
B(s)2
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General short rate models

X (t) = (X1(t), . . . ,Xm(t))′ = m-factor Markov
diffusion process:
dX (t) = a

(
t,X (t)

)
dt + b

(
t,X (t)

)
dW̃ (t)

r(t) = f (X (t)) = short rate

⇒ P(t,T ) = EQ

[
e−

∫
T

t
r(s)ds

∣∣∣ X (t)
]

where Q is the risk-neutral pricing measure

Well known models: Vasicek; Cox-Ingersoll-Ross;
Black-Karasinski; Hull-White (several); Ho-Lee

Andrew Cairns Risk Management 22 / 48



,

Vasicek again

R(t,T ) = − 1

T − t
logP(t,T )

= −A(T − t)

(T − t)
+
B(T − t)

(T − t)
r(t)

Now: r(t) is the uncertain component,
so unanticipated changes in r(t) result in
unanticipated shifts in R(t, t + u) proportional to
B(u)/u = (1− e−αu)/αu.
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Delta hedging under Vasicek

Redington immunization ⇒ Delta hedge against
parallel shifts in R(t, t + u) ⇒ match durations

Vasicek Delta hedging ⇒ Delta hedge against
“level” shifts in R(t, t + u) proportional to
B(u)/u = (1− e−αu)/αu.
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At t: VA

(
t, r(t)

)
= VL

(
t, r(t)

)
At t + dt:
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Summary

Understand how compounding works in a
continuous-time setting

Understand the ideas underpinning the Vasicek
and other short-rate models
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Unit 10.3: More general multi-factor models

Andrew Cairns Risk Management 27 / 48



,

More general approach

t → t + ∆t

R(t,T ) → R(t,T ) +
m∑
i=1

xigi(T − t)

xi uncertain, i = 1, . . . ,m: x = (x1, . . . , xm)′

gi(T − t) known

e.g. m = 3:

g1(s) = changes in level

g2(s) = changes in slope

g3(s) = changes in curvature
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term to maturity, s

PV matching ⇒ VA(x)|x=0 = VL(x)|x=0

Delta hedging ⇒ ∂VA(x)/∂xi |x=0 = ∂VL(x)/∂xi |x=0 for
i = 1, 2, 3

Convexity condition: exercise!
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Heath-Jarrow-Morton model

Work with instantaneous forward rates rather than
R(t,T ):

f (t,T ) = − ∂

∂T
logP(t,T )

⇒ P(t,T ) = exp

[
−
∫ T

t

f (t, u)du

]
and R(t,T ) =

1

T − t

∫ T

t

f (t, u)du
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Heath-Jarrow-Morton model

df (t,T ) = α(t,T )dt +
m∑
i=1

σi(t,T )dWi(t)

α(t,T ) is a drift term that ensures the model is
arbitrage free

the σi(t,T ) are volatilities

the Wi(t) are independent, standard Brownian
motions

α(t,T ) and the σi(t,T ) possibly depend on the
current curve, f (t,T ).
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Summary

Understand how a generalised Redington-type
model with multiple factors can be used to
manage interest-rate risk

Describe the Heath-Jarrow-Morton model for the
forward-rate curve
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Unit 7.4: Stochastic liabilities and
instruments for hedging interest rate risk
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Stochastic liabilities

Some liabilities are not fixed, but are sensitive to
interest rates and other factors at t.
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Case Study: Equitable Life and GAO’s

GAO= Guaranteed Annuity Option

a(t) = price at t for £1 per annum from age 65
= function of {R(t,T ) : T > t} and life

expectancy at t

X (s) = pension account at s

Pension, π(t) = max
{

X (t)
g

, X (t)
a(t)

}
per annum

Value at t of pension:

π(t)a(t) = X (t) +
X (t)

g
max{a(t)− g , 0}
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How do we manage this risk?

Need to hedge against:

a(t)⇒ interest rate risk; longevity risk

X (t)⇒ market risk

⇒ need a mixture of traded/OTC

Equity derivatives

Interest rate derivatives

Longevity derivatives

OR a well-designed OTC derivative (⇒ complex + expensive)
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Instruments for hedging interest rate risk

Zero-coupon bonds

Coupon bonds

Interest-rate futures

Interest-rate swaps

Forward LIBOR contracts

Simple interest-rate or bond options

Swaptions

Exotic options
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Exchange traded or OTC?

Exchange traded:

standardised

simple

highly liquid

margin requirements

less well suited to your own requirements

OTC:

better tailored to your own requirements

sometimes with some standardised components

or more complex or non-standard

less liquid

counterparty credit risk (or collateral requirements)

more expensive
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Futures contracts

e.g. ICE Futures Europe – Long Gilt Future

zero initial cost

margin calls
(value reset to zero ⇒ daily profit/loss)

cash settlement or physical delivery

highly liquid, cheap ⇒ hedging is not too costly
Complications: e.g. long bond futures have option
features

delivery of one out of a choice of three gilts
delivery at any time during the delivery month
(seller’s choice)

price dynamics similar to underlying bond prices
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LIBOR and forward LIBOR

Example: The 3-month LIBOR rate is 4.4% ⇒
Borrow $ 1 now

Repay $
(
1 + 0.044×3

12

)
= $1.011 in 3 months

Forward LIBOR: L(t,T ,T + τ)

Contract at t (zero cost)

Borrow K at T

Repay K (1 + L(t,T ,T + τ)τ) at T + τ

τ = “Tenor”
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Interest rate swaps

Fixed for floating; tenor = τ

A pays B: fixed τK at t = τ, 2τ, . . . ,T

B pays A: floating τL(t − τ, t − τ, t) at
t = τ, 2τ, . . . ,T
[Floating rate at t is known at t − τ .]

OTC but usually on standardised terms (ISDA)

Choose K so that the initial value is zero.
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Immunization and hedging with futures and swaps???

Futures have their value reset to zero each day

Swaps start with zero value

Value = 0⇒ duration =∞
Hence duration matching not possible

Replace duration matching condition with

∂VA

∂xi

∣∣∣∣
x=0

=
∂VL

∂xi

∣∣∣∣
x=0

in multifactor models for i = 1, . . . ,m (slides
28-29).
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Case Study

A corporation has issued a 10-year bond paying a
fixed coupon of 8% per annum.
It can “transform” this into “short-term debt” by
arranging an interest-rate swap with a bank.

Bank Corporation�
-

t = 1, . . . , 10
K = 8 fixed

t = 1, . . . , 10
x .LIBOR floating

Bondholders�
-

t = 1, . . . , 10
fixed coupons of 8

plus capital at t = 10

t = 0
Issue price

6 6

SWAP
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Options

“Caplet” ⇒ call option on LIBOR
Payoff = max{L(t, t, t + τ)− c , 0} at time t + τ .
c = cap rate
Premium = C (0, t, t + τ)

“Interest rate cap”
⇒ collection of caplets with regular payment dates

Floorlet ⇒ max{c − L(t, t, t + τ), 0} at t + τ

Floor = collection of floorlets
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Case Study

A corporation has borrowed £100 M from a bank

Repay capital in 10 years

Quarterly interest: 3-month LIBOR plus 270 b.p.’s

3-month LIBOR currently 2.5%

Problem:
If quarterly interest exceeds 7% p.a. then risk of default
Solutions:

A: Swap floating for fixed

B: Pay a premium NOW to buy a 10-year cap with quarterly
payments and c = 4.3% [4.3 + (270/100) = 7.0]
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Swaption (Swap Option)

Underlying swap:

Starts at T0

Payments at t = T0 + 1, . . . ,T1

Fixed K for floating L(t − 1, t − 1, t) at time t

K is fixed at t = 0

K (T0,T1) = At-The-Money swap rate determined at T0

Option ⇒
the right but not the obligation to enter into the swap at
T0

“Pay” fixed rate ⇒ “Payer Swaption”
Exercise a payer swaption at T0 if K < K (T0,T1)

“Receive” fixed rate ⇒ “Receiver Swaption”
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Hedging interest-rate-sensitive liabilities

Frequent dynamic hedging using liquid traded derivatives
Buy-and-hold hedges with occasional rebalancing using
standard OTC instruments (e.g. swaps or swaptions)

E.g. Attempt to Delta and Gamma hedge by
identifying standard instruments that have a similar
sensitivity to interest-rate changes

Full customised OTC hedge with no rebalancing
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Summary

Be able to formulate accurately the payoff
function of an interest-rate-sensitive liability

Understand the range of interest rate derivative
contracts that could be used for hedging
stochastic liabilities

Discuss how to use these derivatives for a variety
of interest-rate sensitive liabilities
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