Risk Management

10: Interest Rate Risk Management

o Hull (Risk Management): Chapter 8
o Crouhy: Chapter 6
o Sweeting: Chapter 16.3

o Hull (Options Futures and Other Derivatives, 9th edition)

o Chapters 4, 6, 7 (revision of key market concepts)
o Chapter 31: Short-rate models (31.1-31.3)
o Chapter 32: The HJM model (32.1)

e plus other topics in these slides
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o Unit 10.1: Introduction and Redington
Immunization

o Unit 10.2: Arbitrage-free stochastic models —
short-rate models

o Unit 10.3: More general multi-factor models

o Unit 10.4: Stochastic liabilities and instruments
for hedging interest-rate risk




Unit 10.1: Introduction and Redington Immunization
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Basic Notation and Terminology

o Assume all cashflows at t =1,....n
o Zero-coupon bonds: P(t, T) = price at t for £1
at T

o Spot rate: R(t, T) = —(T —t) tlog P(t, T)
o History = rising yield curves are more common

[Long bonds = more risky in short term = risk
premium over cash|




Typical Yield Curves
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o Bond i pays ¢ci(s)ats=1,...,n
o No arbitrage = current price

n

Bi(t)= ) ci(s)P(t,s)

s=t+1

o Yield to maturity = unique solution, y;(t) to

n

B,’(t) = Z C/(S)e_yi(t)(s_t)

s=t+1




o Fixed liabilities: L(s) payable at time s=1,...,n
o Market consistent value: V,(t) =>_" L(s)P(t,s)

s=t+1
o Portfolio of assets: u; units of bond B;(t)

n

= Va(t) =) u Y c(s)P(t,s)= > P(t, S)Zu,-c,-(s)

i s=t+1 s=t+1

Hence just use zero coupon bonds for convenience.

o Interest rate risk: uncertainty in Va(t), V.(t) associated
with uncertainty in the term structure of interest rates.
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Asset-Liability Matching

o Hold u; = L(i) units of P(t, 1)
o Then any change in the term structure of
interest rates, R(t, T), will still result in

VA(t) = VL(t)
= perfectly hedged

o BUT: investment in all n zero-coupon bonds
might not be possible/practical or expensive
= mismatching




Parallel shifts in the spot-rate curve

R(t, T) — R(t, T) = R(t, T) + § where § is
unknown.
Hence P(t, T) = P(t, T)e°(7T-1)




A1,A2: poorly mismatched portfolios
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A1 = loss if R(t, T) rises (6 > 0)
Ay = loss if R(t, T) falls (0 < 0)
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A3: “immunized"
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As = small profits if R(t, T) falls or rises (§ < 0)
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Redington’s Theory of Immunization

o Notation: V,(§) = V.(t;9)

o Duration (“Macaulay Duration”):

1 9oV,
v o V|,
— 2 log Vi) s
06 -
57 (s — OLS)P( )

TL —

2e—ti1 L(s)P(t,5)
= weighted average of payment dates




Redington’s Theory of Immunization (cont.)

e Convexity:

1 9V
G = m W( )6:0
>eria(s — t)?L(s)P(t,5)

21 L(S)P(t,9)

Conditions for immunization at time t = 0:

1 | P.V. Matching Va(0,0) = V,(0,0)
2 | Duration Matching | T4 =7,

3 | Convexity Condition | C4 > (;

If conditions 1, 2 and 3 are satisfied then the portfolio is said
to be immunized against parallel shifts in the yield curve.




A3: “immunized"
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BUT this looks like arbitrage. So what is happening?
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Why does arbitrage not arise?

© We get more than just parallel shifts in the yield
curve

o level; slope; curvature

@ Time dimension = change happens between t
and t + At and not instantaneously at t.
= for arbitrage free models, if V4, = V| at t:
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e.g. small change in § (+/—) = small loss
Va(9) — Vi(6)
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Duration matching

Duration matching is a form of Delta Hedging
= hedging against small changes in specific risk
factors




o Know the key alternative building blocks and
terminology underpinning the term structure of
interest rates

o Understand how the market value of a set of
deterministic liabilities responds to changes in
the term structure of interest rates

o Demonstrate how Redington’s theory of
immunization works

o Understand how duration matching is a form of
delta hedging




Unit 10.2: Arbitrage-free stochastic models

Short-rate models
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Arbitrage Free Stochastic Models

Key concept:
o r(t) = instantaneous risk free rate of interest (short rate)
o $1 at time t invested in a cash account
e grows to
$1+ r(t)dt
between t and t + dt where dt is very small
o Cash account C(t) at time t

dC(t) = r(t)C(t)dt
~ C(t) = C(0)exp [ /O r(s)ds}

(even if r(t) is stochastic)

o Seen before in courses on compound interest where r(t) is
deterministic and sometimes referred to as the force of
interest
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Arbitrage Free Stochastic Models (cont.)
Example: Vasicek Model (1977) — 1 risk factor

o r(t) = instantaneous risk free rate of interest (short rate)
o Vasicek: dr(t) = a(u — r(t))dt + od W(t)

where W(t) = Brownian Motion under risk-neutral Q.
= P(t,T) = Eq [e*ftT r(s)ds r(t)]
= exp[A(T —t) — B(T — t)r(t)]
where B(s) = (1—e ) /a

g

M) = (B5)-5) (- 15 )~ £ B(s)

202 4o




General short rate models

o X(t) = (Xi(t),..., Xn(t)) = m-factor Markov
diffusion process:
dX(t) :z(t,X(t))dt + b(t, X(t))dW(t)
o r(t) = f(X(t)) = short rate
)

where @ is the risk-neutral pricing measure

= P(t,T) = Eq [e )"

o Well known models: Vasicek; Cox-Ingersoll-Ross;
Black-Karasinski; Hull-White (several); Ho-Lee




1
R(t, T) = — I log P(t, T)

AT —t) B(T-—1)
BGED R GED R

Now: r(t) is the uncertain component,

so unanticipated changes in r(t) result in
unanticipated shifts in R(t, t + u) proportional to
B(u)/u=(1—e ) /au.




Delta hedging under Vasicek

o Redington immunization = Delta hedge against
parallel shifts in R(t,t + u) = match durations

o Vasicek Delta hedging = Delta hedge against
“level” shifts in R(t,t + u) proportional to
B(u)/u=(1—-e"*)/au.




At t: Va (t, r(t))

At t + dt:

Surplus at t+dt
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o Understand how compounding works in a
continuous-time setting

o Understand the ideas underpinning the Vasicek
and other short-rate models




Unit 10.3: More general multi-factor models
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More general approach

t — t+ At
R(t,T) — R(t, T)+ > xg(T —1)
i=1
X; uncertain, i=1,....m: x=(x1,...,Xn)
g(T —1t) known

/

eg. m=3:
o g1(s) = changes in level

o g>(s) = changes in slope
)

° g3(5

= changes in curvature
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term to maturity, s

o PV matching = Va(x)|x=0 = Vi(X)|x=0

o Delta hedging = 0Va(x)/0xi|x=0 = OV (x)/Ox;|x=0 for
=123
o Convexity condition: exercise!
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Heath-Jarrow-Morton model

Work with instantaneous forward rates rather than
R(t, T):

f(t, T) = (787' log P(¢t, T)

P(t.T) = exp [— /t " u)du]
1

.
and R(t, T) = - t/ f(t,u)du
- t




Heath-Jarrow-Morton model

df(t, T) = «ft, T)dt + zm:a,-(t, T)dW(t)

i=1

o a(t, T) is a drift term that ensures the model is
arbitrage free

o the o;(t, T) are volatilities

o the W;(t) are independent, standard Brownian
motions

o a(t, T) and the o;(t, T) possibly depend on the
current curve, f(t, T).




o Understand how a generalised Redington-type
model with multiple factors can be used to
manage interest-rate risk

o Describe the Heath-Jarrow-Morton model for the
forward-rate curve




Unit 7.4: Stochastic liabilities and

instruments for hedging interest rate risk




Stochastic liabilities

Some liabilities are not fixed, but are sensitive to
interest rates and other factors at t.
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Case Study: Equitable Life and GAO's

o GAO= Guaranteed Annuity Option

o a(t) = price at t for £1 per annum from age 65
= function of {R(t, T): T > t} and life
expectancy at t

o X(s) = pension account at s

: _ X(t)  X()
o Pension, m(t) = max{ g 0 a()

} per annum

o Value at t of pension:

m(t)a(t) = X(t) + % max{a(t) — g,0}




How do we manage this risk?

Need to hedge against:
o a(t) = interest rate risk; longevity risk
o X(t) = market risk
= need a mixture of traded/OTC
e Equity derivatives
o Interest rate derivatives
e Longevity derivatives
OR a well-designed OTC derivative (= complex + expensive)
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Instruments for hedging interest rate risk

o Zero-coupon bonds

o Coupon bonds

o Interest-rate futures

o Interest-rate swaps

o Forward LIBOR contracts

o Simple interest-rate or bond options

o Swaptions

o Exotic options




Exchange traded or OTC?

Exchange traded:
e standardised
e simple
e highly liquid
e margin requirements
e less well suited to your own requirements
OTC:
e better tailored to your own requirements
e sometimes with some standardised components
e or more complex or non-standard
e less liquid
counterparty credit risk (or collateral requirements)

more expensive
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Futures contracts

e.g. ICE Futures Europe — Long Gilt Future
e zero initial cost

e margin calls
(value reset to zero = daily profit/loss)

e cash settlement or physical delivery

e highly liquid, cheap = hedging is not too costly

e Complications: e.g. long bond futures have option
features

o delivery of one out of a choice of three gilts
o delivery at any time during the delivery month
(seller’s choice)

e price dynamics similar to underlying bond prices
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LIBOR and forward LIBOR

Example: The 3-month LIBOR rate is 4.4% =
o Borrow $ 1 now
o Repay $ (1 + 2%%x3) — §1.011 in 3 months

Forward LIBOR: L(t, T, T +7)
o Contract at t (zero cost)
e Borrow K at T
o Repay K(1+ L(t, T, T+7)r)at T+

o 7 = "Tenor”




Interest rate swaps

o Fixed for floating; tenor = 7

o A pays B: fixed TK at t =7,27,..., T

o B pays A: floating 7L(t —7,t — 7, t) at
t=71,27,..., T
[Floating rate at t is known at t — 7.]

o OTC but usually on standardised terms (ISDA)

o Choose K so that the initial value is zero.




Immunization and hedging with futures and swaps?7?

o Futures have their value reset to zero each day

o Swaps start with zero value

o Value = 0 = duration = oo
o Hence duration matching not possible

o Replace duration matching condition with

ova|  _ovi

(‘3x,- x=0 B 8X" x=0
in multifactor models for i = 1,... m (slides
28-29).




A corporation has issued a 10-year bond paying a
fixed coupon of 8% per annum.

It can “transform” this into “short-term debt” by
arranging an interest-rate swap with a bank.

t=1,...,10
t=1,...,10 fixed coupons of 8
K = 8 fixed plus capital at t =1
Bank > Corporation > Bondholders
t=1,...,10 t=0
+ x.LIBOR floating + Issue price

SWAP
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o “Caplet” = call option on LIBOR
Payoff = max{L(t,t,t+7)—c, O} at time t + 7.
C = cap rate
Premium = C(0,¢t,t + 7)

o “Interest rate cap”
= collection of caplets with regular payment dates

o Floorlet = max{c — L(t,t,t+71), 0} at t + 7
e Floor = collection of floorlets
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A corporation has borrowed £100 M from a bank
o Repay capital in 10 years
o Quarterly interest: 3-month LIBOR plus 270 b.p.'s
e 3-month LIBOR currently 2.5%

Problem:
If quarterly interest exceeds 7% p.a. then risk of default
Solutions:

A: Swap floating for fixed

B: Pay a premium NOW to buy a 10-year cap with quarterly
payments and ¢ = 4.3% [4.3 + (270/100) = 7.0]




Swaption (Swap Option)

e Underlying swap:
o Starts at T
o Paymentsatt=To+1,..., T
o Fixed K for floating L(t —1,t —1,t) at time t
o Kisfixedatt =0
o K(To, T1) = At-The-Money swap rate determined at Ty

e Option =
the right but not the obligation to enter into the swap at
To

o “Pay” fixed rate = "Payer Swaption”
Exercise a payer swaption at Ty if K < K( Ty, T1)

o “Receive” fixed rate = “Receiver Swaption”
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Hedging interest-rate-sensitive liabilities

e Frequent dynamic hedging using liquid traded derivatives
e Buy-and-hold hedges with occasional rebalancing using
standard OTC instruments (e.g. swaps or swaptions)
o E.g. Attempt to Delta and Gamma hedge by
identifying standard instruments that have a similar
sensitivity to interest-rate changes

e Full customised OTC hedge with no rebalancing
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o Be able to formulate accurately the payoff
function of an interest-rate-sensitive liability

o Understand the range of interest rate derivative
contracts that could be used for hedging
stochastic liabilities

o Discuss how to use these derivatives for a variety
of interest-rate sensitive liabilities




