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Heriot-Watt University

M.Sc. in Actuarial Science

Life Insurance Mathematics I

Tutorial 5 Solutions

1. (a) Consider t+dtp
00
x , and condition on the state occupied at time t:

t+dtp
00
x = tp

00
x dtp

00
x+t + tp

01
x dtp

10
x+t

= tp
00
x (1− tp

01
x − tp

02
x ) + tp

01
x dtp

10
x+t

= tp
00
x (1− µ01

x+t − µ02
x+t + o(dt)) + tp

01
x (µ10

x+t + o(dt)).

Therefore:

t+dtp
00
x − tp

00
x

dt
= tp

01
x µ10

x+t − tp
00
x (µ01

x+t + µ02
x+t) +

o(dt)

dt
and on letting t→ 0 we have:

d

dt
tp

00
x = tp

01
x µ10

x+t − tp
00
x (µ01

x+t + µ02
x+t).

Similarly, we can show that:

d

dt
tp

01
x = tp

00
x µ01

x+t − tp
01
x (µ10

x+t + µ12
x+t).

(b) Thiele’s equations are:

d

dt
V 0(t) = V 0(t) · δ + P̄ − µ01

x+t(V
1(t)− V 0(t))− µ02

x+t(100− V 0(t))

d

dt
V 1(t) = V 1(t) · δ − 1− µ10

x+t(V
0(t)− V 1(t))− µ12

x+t(100− V 1(t))

d

dt
V 2(t) = 0.

(c) In this case you cannot solve Thiele’s equations forwards, because V 1(0) is not
known, even if you assumed that V 0(0) = 0.. However you know that V i(n) = 0
for all three states, so you would solve the equations backwards from there.

2. (a) The Kolmogorov equations assuming presence in state 0 at age x are:

∂

∂t
tp

00
x = tp

01
x µ10

x+t − tp
00
x µ01

x+t

∂

∂t
tp

01
x = tp

00
x µ01

x+t − tp
01
x µ10

x+t



2

but one of these is redundant since tp
01
x = 1 − tp

00
x . There is a similar pair of

equations assuming presence in state 1 at age x:

∂

∂t
tp

11
x = tp

10
x µ01

x+t − tp
11
x µ10

x+t

∂

∂t
tp

10
x = tp

11
x µ10

x+t − tp
10
x µ01

x+t.

(b) An example of an Excel worksheet (tut5 q2.xls) for solving this problem can
be downloaded from the course web page at:

www/ma.hw.ac.uk/~andrea/f79af.

(c) Thiele’s equations with annual rate of premium P are:

d

dt
V 0(t) = V 0(t) δ + P − µ01

x+t(V
1(t)− V 0(t))

d

dt
V 1(t) = V 1(t) δ − 1− µ10

x+t(V
0(t)− V 1(t)).

(d) See tut5 q2.xls. The premium rate 0.124379 per annum gives V 0(0) =
0.000001.

(e) With the rate of premium in (d), the policy value V 0(t) is negative for about the
last four years of the term. Negative policy values are generally to be avoided.
They mean that the life office is treating the policy as an asset instead of as
a liability. This may turn out to be correct if the policy runs for its full term,
but if (for example) the policyholder decides to cancel the policy sometime in
the last four years, the negative policy value would lead the life office to make
a loss.

3. (a) We can list the life histories in the form of a table:

No. of (Ti, Si)
Transitions (T1, S1) (T2, S2) (T3, S3) for i ≥ 4

0 (∞,−1) (∞,−1) (∞,−1) (∞,−1)
1 (T1, 1) (∞,−1) (∞,−1) (∞,−1)
2 (T1, 1) (T2, 0) (∞,−1) (∞,−1)
3 (T1, 1) (T2, 0) (T3, 1) (∞,−1).

(b) Likewise given the annual rate of premium P we can tabulate the required
present values.
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No. of Present Value Present Value
Transitions in Integral Form in Annuity Form

0 P

∫ 10

0

e−δtdt P ā10

1 P

∫ T1

0

e−δtdt P āT1

2 P

(∫ T1

0

e−δtdt+

∫ 10

T2

e−δtdt

)
P (āT1

+ T2|ā10−T2
)

3 P

(∫ T1

0

e−δtdt+

∫ T3

T2

e−δtdt

)
P (āT1

+ T2 |āT3−T2
).

(c) Each term in the above table contibutes a terms to an infinite series which is
the expression for the EPV of the premiums, if we formulate the model using
random event times. Note that the probability that the life history has exactly
n transitions (n ≥ 0), denoted H(n), is:

H(n) = P[T1 < T2 . . . < Tn < 10, Tn+1 = Tn+2 = . . . =∞].

Hence the EPV of premium payments is:

EPV = P
(
H(0) ā10 +H(1) E[āT1

]

+H(2) E[āT1
+ T2|ā10−T2

] +H(3) E[āT1
+ T2|āT3−T2

] + . . .
)
.

(d) The presence of the reversible transition means that the EPV of the premium
payment is an infinite series. Moreover, the nth term of the series involves
n random event times so the expected value that appears in the nth term
involves the distribution of this n-dimensional random variable, i.e. it will
require the evaluation of an n-dimensional integral. Compared with solving a
system of linear ODEs, this is very difficult and will quickly overpower even
quite a capable computer.

4. (a) Consider the probability of staying in state 1 for time t+ dt:

t+dtp
11
x = tp

11
x dtp

11
x (since here dtp

11
x = dtp

11
x )

= tp
11
x

{
1− (µ12

x+t + µ13
x+t + µ14

x+t) dt
}

+ o(dt)

Therefore:

t+dtp
11
x − tp

11
x

dt
= −(µ12

x+t + µ13
x+t + µ14

x+t) tp
11
x +

o(dt)

dt

and on letting dt→ 0 we get:

d

dt
tp

11
x = −(µ12

x+t + µ13
x+t + µ14

x+t) tp
11
x .
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(b) Since:

exp

{
−
∫ 0

0

µ12
x+r + µ13

x+r + µ14
x+rdr

}
= exp(0) = 1

and:

d

dt
exp

{
−
∫ t

0

µ12
x+r + µ13

x+r + µ14
x+rdr

}
= −(µ12

x+t + µ13
x+t + µ14

x+t)× exp

{
−
∫ t

0

µ12
x+r + µ13

x+r + µ14
x+rdr

}
= −(µ12

x+t + µ13
x+t + µ14

x+t) tp
11
x

we have found a solution as required.

5. The equation of value is:

0.92 P̄

∫ 40

0

e−δ t e0.05 t
tp

11
60 dt =

B̄

2

∫ 40

0

e−δ t e0.05 t
tp

12
60 dt

+ B̄

∫ 40

0

e−δ t e0.05 t
tp

13
60 dt

Putting δ = 0.05 gives the desired result.

Now: ∫ 40

0

e−δ t e0.05 t
tp

11
60 dt =

∫ 40

0

[
100− 60− t

100− 60

]3

dt =

[
−1

4

(40− t)4

403

]40

0

= (0)− (−10) = 10.

and: ∫ 40

0

e−δ t e0.05 t
tp

12
60 dt =

∫ 40

0

t (100− 60− t)
4000

dt

=

[
1

4000

(
20 t2 − t3

3

)]40

0

=
1

4000

[(
20(402)− 403

3

)
− (0)

]

=
8

3
(= 2.66667)

and: ∫ 40

0

e−δ t e0.05 t
tp

13
60 dt =

16

3
since tp

13
60 = 2× tp

12
60
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hence:

0.92 P̄ (10) = 5, 000

(
8

3

)
+ 10, 000

(
16

3

)

Which gives: P̄ =
66, 666.667

0.92× 10
= 7, 246.38 to 2 d.p..

6. (a) Consider the two possible routes of getting to state 2 in time t+ dt:

t+dtp
12
x = tp

11
x dtp

12
x + tp

12
x dtp

22
x

= tp
11
x µ12

x+t dt+ tp
12
x (1− (µ23

x+t + µ24
x+t) dt) + o(dt).

Rearranging gives:

t+dtp
12
x − tp

12
x

dt
= tp

11
x µ12

x+t − tp
12
x (µ23

x+t + µ24
x+t) +

o(dt)

dt

and on letting dt→ 0 we get:

d

dt
tp

12
x = tp

11
x µ12

x+t − tp
11
x (µ23

x+t + µ24
x+t).

(b) Using Euler’s method we get:

sp
12
x ≈ 0p

12
x + s

d

dt
tp

12
x

∣∣∣∣
t=0

= 0 + s (0p
11
x µ12

x − 0p
12
x (µ23

x + µ24
x )

= s (µ12
x − 0) = s µ12

x .

Hence, using stepsize s = 1, we get 1p
12
x ≈ 1× µ12

x = 0.025.

(c) We can take another Euler step by starting from the result of the first step:
Hence:

2sp
12
x ≈ sp

12
x + s

d

dt
tp

12
x

∣∣∣∣
t=s

= s µ12
x+s + s

[
sp

11
x µ

12
x+s − sp

12
x (µ23

x+s + µ24
x+s)

]
= s µ12

x+s

[
1 + e−(µ12

x+s+µ
14
x+s) t − s (µ23

x+s + µ24
x+s)

]
.

So, using a stepsize of s = 0.5, we get:

1p
12
x ≈ 0.5(0.025) (1 + e−0.5 (0.025+0.01) − 0.5(0.05 + 0.02))

= 0.024346 to 6 d.p..
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(d) Using the formula given we get:

1p
12
x =

0.025

0.025 + 0.01− 0.05− 0.02

(
e−1 (0.05+0.02) − e−1 (0.025+0.01)

)
= 0.023723 to 6 d.p..

Both answers from (b) and (c) are quite close to the actual value, but both
overstate it. Answer (c) is closer — as expected since it uses a smaller stepsize.

To get a more accurate answer using Euler’s method, use a smaller stepsize.


