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1. See notes.

2. (a)

()

The variance of the present value of the future loss is:
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where 2 A 5= is calculated at rate i? 4+ 2 = 10.25%. The answer is 0.008737.

The net premium, by definition, sets the EPV of the future loss at outset to
zero. Let L be the total loss on all the policies sold. If N policies are sold,
then by the Central Limit Theorem:
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where X is a random variable with a Normal(0,1) distribution. The 95 per-
centile of the Normal(0,1) distribution is 1.645 so approximately:
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So the answer is v/0.008737TN x 1.645. With N = 10,100 or 1,000 this is
0.48624, 1.53761 or 4.86236 respectively. Expressed as a percentage of one
year’s premium income, N X Pys55 = 0.02143N, they are 227%, 72% and 23%
respectively.

The 75" percentile of the Normal(0,1) distribution is 0.674 so approximately:
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So the answer is v/0.008737TN x 0.674. With N = 10,100 or 1,000 this is
0.19922, 0.63000 or 1.99224 respectively. Expressed as a percentage of one

year’s premium income, N X Py 55 = 0.02143N, they are 93%, 29% or 9%.

3. (a) From Thiele’s differential equations we get:
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Subtracting equation 1 from equation 2 gives us:
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where ¢, = (7' — 1) + V(t)(§' — 0) as required.
Now we note that, by the chain rule of differentiation:
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Substituting equations 6 and 3 into equation 5, then:
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as required.

Point 1: From ¢, = (7' — ) + V(t)(§' — §), since § > ¢, then we know that if
V(t) increases as t increases, then ¢; increases as ¢ increases.

Point 2: By its definition G(t) is non-negative.

Point 3: Integrating the L.H.S. of equation 7 we have

/{%BMNV@—V@H}ﬁ:mMOHM—VWD:O

since at the boundary V'(n) = V(n) = E. Equating this to the integral of the
R.H.S. of equation 7 gives

0

This cannot be true according to Points 1 and 2, unless ¢; changes sign from
negative to positive at some time ¢y such that 0 <ty < n.
We can now investigate the features of the function G(t) (V'(t) — V(t)).

Feature 1: Since V'(0) = V(0) =0, then at t =0 G(¢) (V'(t) = V(1)) = 0.
Feature 2: Since V'(n) =V (n) = E, thenat t =n  G(t) (V'(t) = V(1)) = 0.

Feature 3: Since ¢; is negative for ¢ <, then the gradient of G(t) (V' (t) — V (t))

cood / 1. :
which is 7 _G(t) (V (t) — V(t))_ is negative.

Feature 3: Since ¢, is positive for ¢ > o then the gradient of G(t) (V' (t) — V (t))
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which is pr _G(t) (V (t) — V(t))_ is positive.

We can then plot the function G(t) (V' (t) — V/(t)) as a function of time ¢ which



shows that it is always negative in 0 < ¢ < n. Therefore if & > §, then
V'(t) < V(t) (Lidstone’s theorem).



