HERIOT-WATT UNIVERSITY

M.SC. IN ACTUARIAL SCIENCE

Life Insurance Mathematics I

Tutorial 7

Please prepare the following questions for discussion in the week beginning Monday 26 February 2007.

- 1. Explain briefly what is meant by the terms 'off-period', 'waiting period' and 'deferred period', as applied to an insurance policy providing benefits during sickness.
- 2. An insurance company uses the multiple state model shown below to calculate premiums for long-term care contracts:

- (a) Derive Kolmogorov's differential equation for the occupancy probability $_t p_x^{\overline{11}}$
- (b) Hence, show that the following solution satisfies the differential equation derived in part (a) as well as the boundary condition $_0p_x^{\overline{11}} = 1$:

$${}_{t}p_{x}^{\overline{11}} = \exp\left\{-\int_{0}^{t}\mu_{x+r}^{12} + \mu_{x+r}^{13} + \mu_{x+r}^{14}dr\right\}$$

- (c) Hence, or otherwise, write down an expression for $_t p_x^{11}$
- 3. An insurance company uses the multiple state model shown below to calculate premiums for the following long-term care contract:

Premiums:	Payable continuously while in state 1
Benefits:	50% SA per annum payable continuously while in state 2
	100% SA per annum payable continuously while in state 3
Waiver:	Premiums are waived while benefits are payable
Death	
Benefit:	There are no death benefits

The company has estimated the transition probabilities for the above model as:

$${}_{t}p_{x}^{11} = \begin{cases} \left[\frac{100-x-t}{100-x}\right]^{3} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{21} = \begin{cases} \frac{t(100-x-t)}{6000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{21} = \begin{cases} \frac{t(100-x-t)}{4000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{22} = \begin{cases} \left[\frac{100-x-t}{100-x}\right]^{4} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{22} = \begin{cases} \left[\frac{100-x-t}{100-x}\right]^{4} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{2000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{1000} & x+t \leq 100 \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t(100-x-t)}{100} & \frac{t}{100} \\ 0 & \text{otherwise} \end{cases} {}_{t}p_{x}^{23} = \begin{cases} \frac{t}{10} & \frac{t}{10} & \frac{t}{10} \\ 0 & \frac{t}{10} & \frac{t}{10} & \frac{t}{10} \\ 0 & \frac{t}{10} & \frac{t}{10} &$$

where ${}_{t}p_{x}^{ij}$ is the probability that a life aged x in state i will be in state j at age x + t.

(a) Show that the equation of value for the above long-term care policy for a life aged x and with an initial sum assured of rate \overline{B} per annum is:

$$0.92\,\bar{P}\,\int_{0}^{100-x} {}_{t}p_{x}^{11}\,dt = \frac{\bar{B}}{2}\,\int_{0}^{100-x} {}_{t}p_{x}^{12}\,dt + \bar{B}\,\int_{0}^{100-x} {}_{t}p_{x}^{13}\,dt$$

Where \bar{P} is the initial annual premium rate and the company uses the following basis for calculating premiums:

Basis:

Transition probabilities:	as given
Force of interest:	5% per annum continuously
Expenses:	8% of all premiums paid
Indexation:	Premiums and benefits indexed
	at 5% per annum continuously

(b) Hence, calculate the annual premium rate at outset for a life aged 60 for a contract with an initial sum assured of $\pounds 10,000$ per annum on the above basis.

4. An insurance company uses the multiple state model shown below to calculate premiums for long-term care contracts:

The insurance company uses the following values for the transition intensities, which are independent of age:

$$\mu_x^{14} = 0.01$$
 $\mu_x^{24} = 0.02$ $\mu_x^{34} = 0.04$
 $\mu_x^{12} = 0.025$ $\mu_x^{23} = 0.05$

(a) Derive Kolmogorov's differential equation for the occupancy probability ${}_t p_x^{12}$ is:

$$\frac{d}{dt}{}_{t}p_{x}^{12} = {}_{t}p_{x}^{11}\mu_{x+t}^{12} - {}_{t}p_{x}^{12}\left(\mu_{x+t}^{23} + \mu_{x+t}^{24}\right)$$

(b) Show, using Euler's method and the formula above, for a small period of time s:

$$_{s}p_{x}^{12} \approx s \, \mu_{x}^{12}$$

Hence, in one Euler step, calculate an approximate value of $_1p_x^{12}$.

Reminder: Euler's method states that if $\frac{d}{dt}f(t) = g(f(t))$ then for small h:

$$f(t+h) \approx f(t) + h g(f(t))$$

(c) By taking one more Euler step derive an expression for ${}_{2s}p_x^{12}$, in terms of the transition intensities and the time step s only, and hence calculate another approximate value of ${}_{1}p_x^{12}$. You are given:

$$_{t}p_{x}^{11} = \exp\left\{-\int_{0}^{t}\mu_{x+r}^{12} + \mu_{x+r}^{14}dr\right\}$$

(d) Calculate $_1p_x^{12}$ exactly given that, if the transition intensities are constant, then:

$${}_{t}p_{x}^{12} = \frac{\mu_{x}^{12}}{\mu_{x}^{12} + \mu_{x}^{14} - \mu_{x}^{23} - \mu_{x}^{24}} \left[e^{-(\mu_{x}^{23} + \mu_{x}^{24})t} - e^{-(\mu_{x}^{12} + \mu_{x}^{14})t} \right]$$

and compare it to your answers for (b) and (c) and comment. How could you improve the accuracy of Euler's method to get a more accurate solution? (No further calculations are required.)

Numerical Solutions: Qu3.(b) 7,246.38 Qu4.(b) 0.025 (c) 0.024346 (d) 0.023723