HERIOT-WATT UNIVERSITY

M.SC. IN ACTUARIAL SCIENCE

Life Insurance Mathematics II

Tutorial 2

Please prepare the following questions for discussion in the week commencing Monday 22 January 2007.

- 1. Calculate the following assuming the mortality of the AM92 table, and describe each expression in words:
 - (a) ${}_{10}p_{30:40}$
 - (b) $q_{30:40}$
 - (c) $\mu_{40:50}$
 - (d) ${}_{10}p_{[30]:[40]}$
 - (e) $q_{[30]:[40]}$
 - (f) $\mu_{[40]:[50]}$
 - (g) $\mu_{[40]+1:[60]+1}$
 - (h) $_{3}|q_{[30]+1:[40]+1}$
- 2. Let T_x and T_y be the independent random future lifetimes of two lives age x and y, and define $T_{\min} = \min[T_x, T_y]$ and $T_{\max} = \max[T_x, T_y]$.
 - (a) Derive an expression for the density of T_{max} .
 - (b) Define $\overset{\circ}{e}_{xy} = \mathbf{E}[T_{\min}]$. Show that:

$$\overset{\circ}{e}_{xy} = \int_0^\infty {}_t p_{xy} dt.$$

- (c) Show that $\operatorname{Cov}(T_{\min}, T_{\max}) = \left(\overset{\circ}{e}_x \overset{\circ}{e}_{xy}\right) \left(\overset{\circ}{e}_y \overset{\circ}{e}_{xy}\right)$
- (d) Further let K_{min} be the integer part of T_{min} and define $e_{xy} = E[K_{min}]$. Show that

i.
$$e_{xy} = \sum_{t=1}^{\infty} {}_{t} p_{xy}$$
. and
ii. $\stackrel{\circ}{e}_{xy} \approx e_{xy} + \frac{1}{2}$.

(e) Derive an expression for the 'force of mortality' associated with $T_{max} = \max[T_x, T_y]$, denoted $\mu_{\overline{x+t:y+t}}$. What is its value at t = 0? Explain this result.

- 3. Given that $l_{xy} = 10,000$, $l_{x+10:y} = 9,600$, and $l_{x:y+10} = 9,200$ calculate the probability that, of the two independent lives aged x and y, exactly one will survive for 10 years.
- 4. Show that:

(a)
$$\ddot{a}_{xy} = \sum_{k=0}^{\infty} v^k{}_k p_{xy}.$$

(b)
$$\ddot{a}_{xy:\overline{n}|} = \ddot{a}_{x:\overline{n}|} + \ddot{a}_{y:\overline{n}|} - \ddot{a}_{\overline{xy}:\overline{n}|}$$

(c)
$$A_{\overline{xy}} = A_x + A_y - A_{xy}$$
.

- 5. Derive an expression for the variance of the random variable $v^{K_{max}+1}$.
- 6. For a male aged 70 exact and a female aged 67 exact, who are subject to the mortality of the PMA92 and PFA92 tables respectively, with interest of 4% per annum, find:
 - (a) $\ddot{a}_{70:67}$
 - (b) $\ddot{a}_{70:67}^{(12)}$
 - (c) $\ddot{a}_{70:67:\overline{10}}$
 - (d) $\ddot{a}_{70:67:\overline{10}}^{(12)}$
 - (e) $\ddot{a}_{\overline{70:67}}$
 - (f) $\ddot{a}_{\overline{70:67}}^{(12)}$
- 7. State in words the meanings of the symbols A_{xy} , $A_{\overline{xy}:\overline{n}|}$ and $\overline{A}_{xy:\overline{n}|}$. Prove that:
 - (a) $A_{\overline{xy}:\overline{n}} = 1 d\ddot{a}_{\overline{xy}:\overline{n}}$
 - (b) $\bar{A}_{xy:\overline{n}} = 1 \delta \bar{a}_{xy:\overline{n}}$