
6 Insurances on Joint Lives

6.1 Introduction

It is common for life insurance policies and annuities to depend on the death or survival of

more than one life. For example:

(i) A policy which pays a monthly benefit to a wife or other dependents after the death of

the husband (widow’s or dependent’s pension).

(ii) A policy which pays a lump-sum on the second death of a couple (often to meet

inheritance tax liability).

We will confine attention to policies involving two livesbut the same approaches can be

extended to any number of lives. We assume that policies are sold to a life age x and a life

age y, denoted (x) and (y).

The basic contract types we will consider are:

• Assurances paying out on first death, and annuities payable until first death.
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• Assurances paying out on second death, and annuities payable until second death.

• Assurances and annuities whose payment depends on the order of deaths.

6.2 Multiple-state model for two lives

The following multiple-state model represents the joint mortality of two lives, (x) and (y).

State 3
(x) Alive
(y) Dead

State 4
(x) Dead
(y) Dead

-

State 1
(x) Alive
(y) Alive

State 2
(x) Dead
(y) Alive

µ
34

t

µ
12

t
-

µ
13

t

?

µ
24

t

?

132



Notes:

• We just index the transition intensities by time t. Other notations are possible.

• We implicitly assume that the simultaneous death of (x) and (y) is impossible: there

is no direct transition from state 1 to state 4.

Here we list the main EPVs met in practice, giving their symbols in the standard actuarial

notation. In the first place, we assume all insurance contracts (assurance- or annuity-type)

to be for all of lifeand to be of unit amount, i.e. $1 sum assured or $1 annuity per

annum.

Joint-life assurances

• Āxy is the EPV of $1 paid immediately on the first death of (x) or (y).

• Āxy is the EPV of $1 paid immediately on the second death of (x) and (y).
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Contingent assurances

• Ā1
xy is the EPV of $1 paid immediately on the death of (x)provided (y) is then alive,

i.e. provided (x) is the first to die.

• Ā 1
xy is the EPV of $1 paid immediately on the death of (y)provided (x) is then alive,

i.e. provided (y) is the first to die.

• Ā2
xy is the EPV of $1 paid immediately on the death of (x)provided (y) is then dead,

i.e. provided (x) is the second to die.

• Ā 2
xy is the EPV of $1 paid immediately on the death of (y)provided (x) is then dead,

i.e. provided (y) is the second to die.

Joint-life annuities

• āxy is the EPV of an annuity of $1 per annum, payable continuously, until the first of

(x) or (y) dies.

134



• āxy is the EPV of an annuity of $1 per annum, payable continuously, until the second

of (x) or (y) dies.

Reversionary annuities

• āx|y is the EPV of an annuity of $1 per annum, payable continuously, to (y) as long as

(y) is alive and (x) is dead.

• āy|x is the EPV of an annuity of $1 per annum, payable continuously, to (x) as long as

(x) is alive and (y) is dead.

The notation for reversionary annuities helpfully suggests (taking āx|y as an example) an

annuity payable to (y) deferred until (x) is dead. Think of m|ān from Financial

Mathematics.
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Limited terms

The above contracts may all be written for a limited term of n years, in which case the

usual n is appended to the subscript.

Evaluation of EPVs

In the multiple-state, continuous-time model, we can compute all the above EPVs simply by

appropriate choices of assurance benefits bij or annuity benefits biin Thiele’s

differential equations. The following table lists these choices for whole-life contracts.
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EPV b1 b2 b3 b12 b13 b24 b34

Āxy 0 0 0 1 1 0 0

Āxy 0 0 0 0 0 1 1

Ā1
xy 0 0 0 1 0 0 0

Ā 1
xy 0 0 0 0 1 0 0

Ā 2
xy 0 0 0 0 0 1 0

Ā2
xy 0 0 0 0 0 0 1

āxy 1 0 0 0 0 0 0

āx|y 0 1 0 0 0 0 0

āy|x 0 0 1 0 0 0 0

āxy 1 1 1 0 0 0 0

Example: Consider Āxy:n . Thiele’s equations are:
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d

dt
V 1(t) = V 1(t) δ − (µ12

t + µ13
t )(1− V 1(t))

d

dt
V 2(t) =

d

dt
V 3(t) =

d

dt
V 4(t) = 0

with boundary conditions V 1(n) = 1 and all other V i(n) = 0.

Composite benefits

Many joint life contracts can be built up out of the above EPVs and the EPVs of single life

benefits. This is generally the simplest way to compute them, especially if using tables

rather than a spreadsheet.

Example: Consider a pension of $10,000 per annum, payable continuously as long as (x)

and (y) are alive, reducing by half on the death of (x) if (x) dies before (y). (This would

be a typical retirement pension with a spouse’s benefit.)Its EPV, denoted ā say, is most

easily computed by noting that $10,000 p.a. is payable as long as (x) is alive, and in
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addition, $5,000 p.a. is payable if (y) is alive but (x) is dead, hence:

ā = 10, 000 āx + 5, 000 āx|y.

By similar reasoning, an annuity of $1 p.a. payable to (y) for life can be decomposed into

an annuity of $1 p.a. payable until the first death of (x) and (y), plus a reversionary

annuity of $1 p.a. payable to (y) after the prior death of (x); hence the useful:

āx|y = āy − āxy.

Computing contingent assurance EPVs

The one type of joint life benefit whose EPV is not easily written in terms of first-death,

second-death and single-life EPVs is the contingent assurance. We defer discussion until
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Section 6.4.

6.3 Random joint lifetimes

It is also possible to specify a joint lives model via random future lifetimes. We have the

random variables:

Tx = the future lifetime of (x)

Ty = the future lifetime of (y).

Now define the random variables:

Tmin = min(Tx, Ty) and

Tmax = max(Tx, Ty).

Tmin is the random time until the first death occurs, and Tmax is the random time until the
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second death occurs.

The distribution of Tmin

Define:

tqxy = P {Tmin ≤ t} (c.d.f.)

tpxy = P {Tmin > t}

So that: tqxy + tpxy = 1.

Now if Tx and Ty are independent:

tpxy = P {Tmin > t}

= P {Tx > t and Ty > t}

= P {Tx > t} × P {Ty > t}

= tpx tpy
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and (useful result) the joint life survival function tpxy is the product of the single life

survival functions.

If Tx and Ty are not independent then we cannot write tpxy = tpx tpy .

If Tx and Ty are independent then also:

tqxy = 1− tpxy

= 1− tpx tpy

= 1− {(1− tqx)(1− tqy)}

= tqx + tqy − tqx tqy.

Example: Given nqx = 0.2 and nqy = 0.4

calculate nqxy and npxy .

Solution:

nqxy = nqx + nqy − nqx nqy
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= 0.2 + 0.4− 0.2× 0.4

= 0.52

npxy = npx × npy

= 0.8× 0.6

= 0.48

To simplify the evaluation of probabilities, like tpxy , we can develop a life table function,

lxy , associated with Tmin.

If Tx and Ty are independent then:

tpxy = tpx tpy =
lx+t

lx

ly+t

ly
=

lx+t:y+t

lx:y

where:

lxy = lx ly.
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We obtain the p.d.f. of Tmin, denoted fxy(t), by differentiation when Tx and Ty are

independent:

fxy(t) =
d

dt
tqxy

= −
d

dt
tpxy

= −
d

dt
tpx · tpy

= −

[

tpx

d

dt
tpy + tpy

d

dt
tpx

]

= − [tpx (−tpyµy+t) + tpy (−tpxµx+t)]

= tpxy (µx+t + µy+t).
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Compare this to the single life case:

fx(t) = tpx µx+t.

Now, define µxy(t) as the ‘force of mortality’ associated with Tmin. We can show directly

that

µxy(t) = µx+t + µy+t

when Tx and Ty are independent because:

µxy(t) =
fxy(t)

tpxy

= µx+t + µy+t.

However, using the multiple-state formulation of the model, we see that Tmin is just the
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time when state 1 is left.The survival function associated with this event is, by definition,

tp
11
• (where the bullet represents policy inception) and we know that:

tp
11
• = exp

(

−

∫ t

0

µ12
s + µ13

s ds

)

.

By differentiating this, the ‘force of mortality’ associated with leaving state 1 is the sum of

the intensities out of state 1 without assuming that Tx and Ty are independent.

The distribution of Tmax

Define:

tqxy = P {Tmax ≤ t} (c.d.f.)

tpxy = P {Tmax > t}

So that tqxy + tpxy = 1. We have:
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tpxy = P{Tmax > t)}

= P{Tx > t or Ty > t}

= P{Tx > t}+ P{Ty > t}

− P{Tx > t and Ty > t}

= tpx + tpy − tpxy

which does not require Tx and Ty to be independent. If they are independent then:

tpxy = tpx + tpy − tpx tpy

and also:

tqxy = P{Tmax ≤ t}
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= P {Tx ≤ t and Ty ≤ t}

= P{Tx ≤ t}P{Ty ≤ t} = tqx tqy.

The p.d.f. of Tmax and the ‘force of mortality’ µxy(t)associated with Tmax are left as

tutorial questions.

Expectations of joint lifetimes

Define:
◦
exy = E[Tmin] and

◦
exy = E[Tmax].

Now, consider the following identities:

Identity 1 Tmin + Tmax = Tx + Ty .

Identity 2 TminTmax = TxTy .
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These can be verified by considering the three exhaustive and exclusive cases:

Tx > Ty, Tx < Ty and Tx = Ty.

Taking expectations of the first identity gives:

E [Tmin + Tmax] = E [Tx + Ty]

=⇒ E [Tmin] + E [Tmax] = E [Tx] + E [Ty]

=⇒
◦
exy +

◦
exy =

◦
ex +

◦
ey.

¿From the second identity we have:

E [Tmin Tmax] = E [Tx Ty]

and if Tx and Ty are independent we have:

E [Tmin Tmax] = E [Tx] E [Ty] .
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Evaluation of EPVs

We can evaluate EPVs using the distributions of Tmin and Tmax, just as for a single life,

as an alternative to solving Thiele’s equations. For example, consider an assurance with a

sum assured of $1 payable immediately on the first death of (x) and (y).

The PV of benefits = vTmin

with p.d.f. = tpxy µxy(t)

so the expected present value Āxy is:

Āxy = E

[

vTmin
]

=

∫ ∞

0

vt
tpxy µxy(t) dt.

Note that evaluating an integral numerically is not significantly easier than solving Thiele’s

equations numerically.
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6.4 Curtate Future Joint Lifetimes

Basic definitions

We now introduce discrete random variables. Let:

Kmin = Integer part of Tmin

Kmax = Integer part of Tmax.

We can then define the curtate expectation of life as:

exy = E [Kmin]

exy = E [Kmax] .

For more properties of exy and exy see tutorial.

The associated deferred probabilities k

∣
∣qxy and k

∣
∣qxy (i.e. the distribution functions of
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Kmin and Kmaxare given by:

k

∣
∣qxy = P {k ≤ Tmin < k + 1}

= P {Kmin = k}

k

∣
∣qxy = P {k ≤ Tmax < k + 1}

= P {Kmax = k} .

Example: Given:

tq
non-smoker
x =

70− x + t

80− x

valid for 0 ≤ x ≤ 70 and 0 ≤ t ≤ 10, and that the force of mortality for smokers is twice

that for non-smokers, calculate the expected time to first death of a (70) smoker and a (70)

non-smoker. You are given that the lives are independent.
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Solution: We want:

◦
e
s n−s

70:70 =

∫ 10

0
tp

s n−s
70:70 dt =

∫ 10

0
tp

s
70 tp

n−s
70 dt.

Now let µx be the force of mortality for non-smokers, then:

tp
s
x = exp

(

−

∫ t

0

2 µx+r dr

)

=

[

exp

(

−

∫ t

0

µx+r dr

)]2

=
(

tp
n−s
x

)2

=

(
10− t

10

)2

.

Since:

tp
n−s
x = 1−

(
70− 70 + t

80− 70

)

=
10− t

10
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therefore:

◦
e
s n−s

70:70 =

∫ 10

0

[
10− t

10

]3

dt = 2.5 years.

Discrete joint life annuities

Any annuity or assurance we can define as a function of the single lifetime Kx, we can

define using Kmin, therefore depending on the first deathor Kmax, therefore

depending on the second death.

Example: Consider an annuity of $1 per annum, payable yearly in advance in advanceas

long as both (x) and (y) are alive (i.e. payable until the first death).The same reasoning

as in the single-life case shows that the present value of this is:

PV = äKmin+1 .
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We denote the EPV of this benefit äxyso:

äxy = E[äKmin+1 ]

=
∞∑

k=0

äk+1 k

∣
∣qxy

=
∞∑

k=0

vk
kpxy

Since the distribution of the present value is known, the variance, Var[äKmin+1 ], and

other moments can be calculated.

Example: Consider an annuity of $1 per annum, payable yearly in advance in advanceas

long as at least one of (x) and (y) is alive (i.e. payable until the second death).The same

reasoning as before leads to:

PV = äKmax+1 .
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We denote the EPV of this benefit äxyso:

äxy = E[äKmax+1 ]

=
∞∑

k=0

äk+1 k

∣
∣qxy

=
∞∑

k=0

vk
kpxy.

To help evaluate äxy note that:

äxy =
∞∑

k=0

vk
kpxy

=
∞∑

k=0

vk (kpx + kpy − kpxy)
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=
∞∑

k=0

vk
kpx +

∞∑

k=0

vk
kpy −

∞∑

k=0

vk
kpxy

= äx + äy − äxy.

Hence also:

äxy + äxy = äx + äy.

Computing äxy etc. using tables

It is easy to compute EPVs of discrete benefits using a spreadsheet if tpxy is known,

which is particularly simple if Tx and Ty are independent so tpxy = tpx tpy .

However, other methods can be used if joint life tablesare available, as they will be in

examinations.

(i) Given tabulated values of äxy directly.
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e.g. a(55) tables, but note that the values of axy are given not äxy , and they are only

given for even ages — may need to use linear interpolation.

For example:

a66:61 ≈
1

2
(a66:60 + a66:62).

(ii) Given commutation functions. e.g. A1967–70 tables, but note that they are only given

for x = y and at 4% interest.

Note that (assuming independence):

äxy =
∞∑

t=0

vt
tpxy =

∞∑

t=0

vt
tpx tpy

=
∞∑

t=0

{

vt lx+t ly+t

lx ly

}
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=
∞∑

t=0

{

v
1

2
(x+y)+t lx+t ly+t

v
1

2
(x+y) lx ly

}

=
Nxy

Dxy

where:

Dxy = v
1

2
(x+y) lx ly

Nx+t:y+t =
∞∑

r=0

Dx+t+r: y+t+r.
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Warning:

äxy:n = äxy − n

∣
∣äxy

= äxy − vn
npx npy äx+n:y+n

= äxy −
1

vn

Dx+n Dy+n

Dx Dy

äx+n:y+n.

Example: Using a(55) mortality and 6% interest calculate the following:

(i) ä80:75

(ii) 10| ä70:65.

Solution:

ä80:75 = 0.5(ä80:74 + ä80:76)

= 0.5(1 + a80:74 + 1 + a80:76)

= 0.5(4.395 + 4.538) = 4.467.
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10| ä70:65 = v10
10p70 10p65 ä80:75

=
1

v10

(
v10

10p70 v10
10p65

)
ä80:75

=
1

v10

(
D80

D70

) (
D75

D65

)

ä80:75

=(1.06)10
(

3440.5

11559

)(
8536.2

19281

)

4.467

= 1.054.

We can extend many of the formulations for single life annuities to joint life annuities. This

applies to:

• Deferred annuities (e.g. previous example)

• Temporary annuities, äxy:n etc.
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• Increasing annuities, (Iä)xy etc.

• Annuities paid monthly. For example:

ä(m)
xy ≈ äxy −

m− 1

2m
.

• Approximations for annuities paid continuously. For example:

axy ≈ äxy − 0.5 = axy + 0.5.

Example (Question No 8 Diploma Paper June 1997):

A certain life office issues a last survivor annuity of $2,000 per annum, payable annually in

arrear, to a man aged 68 and a woman aged 65.

(a) Using the a(55) ultimate table (male/female as appropriate) and a rate of interest of

4% per annum, estimate the expected present value of this benefit.

(b) Using the basis of (a) above, derive an expression (which you need NOT evaluate)
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for the standard deviation of the present value of this benefit, in terms of single life

and joint life annuity functions.

Solution:

(a) We want: 2000 a
m f

68:65

= 2000
(

am
68 + a

f
65 − a

m f
68:65

)

≈ 2000

(

am
68 + a

f
65 −

1

2

(

a
m f
68:64 + a

m f
68:66

))

= 2000 (8.688 + 11.497

−
1

2
(7.418 + 7.186)

)

= 25, 766.00.
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(b) Present Value = 2000 aKmax

So we want: Var

[

2000 aKmax

]

= 20002
Var

[

äKmax+1 − 1
]

= 20002
Var

[

äKmax+1

]

= 20002
Var

[
1− vKmax+1

d

]

=

(
2000

d

)2

Var
[
vKmax+1

]

=

(
2000

d

)2 (

∗A
m f

68:65
−

(

A
m f

68:65

)2
)
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where * means evaluated at:

j = i2 + 2i = 8.16%.

We now use:

Axy = 1− d äxy

and:

äxy = äx + äy − äxy

and:

SD[PV ] =
√

V ar[PV ]

to get:

2000

d

{

1− ∗d
(
∗äm

68 + ∗ä
f
65 −

∗ä
m f
68:65

)

−
[

1− d
(

äm
68 + ä

f
65 − ä

m f
68:65

)]2
} 1

2

.
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Joint life assurances

Consider an assurance with sum assured $1, payable at the end of the year of death of the

first of (x) and (y) to die. The benefit is payable at time Kmin + 1 so has present value:

vKmin+1.

The expected present value is denoted Axy , and:

Axy = E

[

vKmin+1
]

=

∞∑

k=0

vk+1
k

∣
∣qxy.

Relationships: Recall from single life:

Ax = 1− däx.
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It can be shown by similar reasoning that:

Axy = 1− däxy

Āxy = 1− δ āxy

Axy:n = 1− däxy:n

Āxy:n = 1− δ āxy:n

and so on.

Associated with the second death we have:

Axy = E[vKmax+1] =
∞∑

k=0

vk+1
k| qxy
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and similar relationships can be derived, e.g:

Axy = 1− däxy

Axy:n = 1− däxy:n .

Reversionary Annuities

We noted before that:

āx|y = āy − āxy

just by noticing that the following define identical cashflows no matter when (x) and (y)

should die:

(1) a reversionary annuity of $1 per annum payable continuously while (y) is alive,

following the death of (x).

(2) an annuity of $1 per annum payable continuously to (y) for life, less an annuity of $1

168



per annum payable continuously until the first death of (x) and (y).

Hence the cashflows have identical present values, and the same EPVs. We can apply

similar reasoning to other variants of reversionary annuities, for example:

äx|y = äy − äxy

=
∞∑

k=0

vk
kpy(1− kpx)

ax|y = ay − axy

=
∞∑

k=1

vk
kpy(1− kpx)

ä
(m)
x|y = ä(m)

y − ä(m)
xy

=
1

m

∞∑

k=0

v
k

m k

m

py(1− k

m

px)
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a
(m)
x|y = a(m)

y − a(m)
xy

=
1

m

∞∑

k=1

v
k

m k

m

py(1− k

m

px).

We can take advantage of some relationships to simplify calculations.

For example:

äx|y = äy − äxy

= (1 + ay)− (1 + axy)

= ay − axy.

Hence:

äx|y = ax|y.

Similarly, we can derive other relationships like:
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(a) äx|y ≈ āx|y

(b) ä
(m)
x|y ≈ äx|y.

Example: Calculate the annual premium (payable while both lives are alive) for the

following contract for a man aged 70 and woman aged 64.

Benefits:

• SA of $10,000 payable immediately on first death; and

• a reversionary annuity of $5,000 payable

continuously to the survivor for the remainder of their lifetime.

Basis:

• Renewal expenses 10% of all premiums.

• a(55) Ultimate, male/female as appropriate

• Interest at 8%.
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Solution: Let P = Annual Premium.

EPV of premiums less expenses

= 0.9 P ä
m f
70:64

= 0.9 P (1 + 5.576)

= 5.9184 P.

EPV of assurance

= 10, 000Ā
m f
70:64

= 10, 000
(

1− δ ā
m f
70:64

)

≈ 10, 000
(

1− 0.076961(am f
70:64 + 0.5)

)

= 10, 000 (1− 0.076961(5.576 + 0.5))

= 5, 323.85.
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EPV of reversionary annuity

= 5, 000
(

ā
m f

70|64 + ā
f m

64|70

)

= 5, 000
(

a
m f

70|64 + a
f m

64|70

)

= 5, 000
(

a
f
64 − a

m f
70:64 + am

70 − a
f m
64:70

)

= 5, 000 (8.574 + 6.268− 2× 5.576)

= 18, 450.0.

Now set: EPV[Income] = EPV[Outgo]

=⇒ 5.9184 P = 5, 323.85 + 18, 450.0

=⇒ P = 4, 016.94.
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Contingent assurances

Consider a contingent assurance with sum assured $1 payable immediately on the death

of (x), if (y) is still then alive.

The probability that life (x) dies within t years with life (y) being alive when life (x) dies is

denoted tq
1
xyand:

tq
1
xy = P[(x) dies within t years and before (y)]

= P[Tx < t and Tx < Ty].

This is an example of a contingent probability,so called because they are associated with

the death of a life contingent on the survival or death of another life.

Now let fx(r) be the density of Tx and fy(r) be the density of Ty , then:

tq
1
xy =

∫ t

r=0

∫ ∞

s=r

fx(r)fy(s)ds dr
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=

∫ t

r=0

fx(r)

[∫ ∞

s=r

fy(s)ds

]

dr.

Since: ∫ ∞

s=r

fy(s)ds = rpy

then:

tq
1
xy =

∫ t

r=0
rpx µx+r rpy dr.

Illustration: (x) survives to time r and then dies and (y) survives beyond r, giving:

rpx µx+r rpy

-| |
Age

︷ ︸︸ ︷

(x) survives = rpx

?

(x) dies = µx+r

| -
(y) survives = rpy

x

y

x + r

y + r175



Note that since one of (x) and (y) has to die first:

tq
1
xy + tq

1
xy = tqxy.

We define tq
2
xy as the probability that (x) dies within t years but after (y) has died.

Therefore:

tqx = tq
1
xy + tq

2
xy

from which:

tq
2
xy =

∫ t

0
rpx µx+r (1− rpy) dr.

With these probabilities we can now evaluate the EPV Ā1
xy .

Ā1
xy =







vTx if Tx < Ty

0 if Tx ≥ Ty.
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¿From this it can be shown that:

Ā1
xy =

∫ ∞

0

vr
rpx µx+r rpy dr.

Similarly, we can derive an expression for the EPV of a benefit of $1 payable immediately

on the death of (x) if it is after that of (y), denoted Ā2
xy :

Ā2
xy =

∫ ∞

0

vr
rpx µx+r (1− rpy) dr.

We see, what is intuitively clear, that:

Āx = Ā1
xy + Ā2

xy.

Other important relationships:

(a) Āxy = Ā1
xy + Ā 1

xy and Āxy = Ā2
xy + Ā 2

xy .
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(b) A1
xy =

∞∑

t=0

vt+1
tpxtpy · q

1
x+t:y+t.

(c) Axy = A1
xy + A 1

xy and Axy = A2
xy + A 2

xy .

(d) A1
xy ≈ (1 + i)−

1

2 Ā1
xy .

If the two lives are the same age, and the same mortality table is applies to both, then:

Ā1
xx =

1

2
Āxx

A1
xx =

1

2
Axx

Ā2
xx =

1

2
Āxx

A2
xx =

1

2
Axx.
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6.5 Examples

Example 1

Find the expected present value of an annuity of $10,000 p.a. payable annually in advance

to a man aged 65, reducing to $5,000 p.a. continuing in payment to his wife, now aged 61,

if she survives him.

Basis:

• Mortality — a(55) ultimate, male/female as appropriate

• Interest: 8% p.a.

• Ignore the possibility of divorce.

Solution

EPV

= 10, 000 äm
65 + 5, 000 ä

m f

65|61

= 10, 000 (am
65 + 1) + 5, 000 a

m f

65|61
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= 10, 000 (7.4 + 1) + 5, 000
(

a
f
61 − a

m f
65:61

)

= 10, 000 (8.4) + 5, 000 (9.124− 6.619)

= 96, 525.

Since:

a
m f
65:61 ≈

1

4

(

a
m f
66:62 + a

m f
66:60 + a

m f
64:62 + a

m f
64:60

)

=
1

4
(6.392 + 6.519 + 6.709 + 6.854)

= 6.619.

Example 2

(a) Express nq 2
xy in terms of single life probabilities and contingent probabilities

referring to the first death.

(b) Suppose µx = 1
80−x

for 0 ≤ x ≤ 80,
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evaluate 20q
2

40:50.

Solution

(a) tq
2

xy

=

∫ t

r=0
rpy µy+r (1− rpx) dr

=

∫ t

r=0
rpy µy+r dr −

∫ t

r=0
rpy µy+r rpx dr

= tqy − tq
1

xy.

(b) nqx = 1− npx

= 1− exp

{

−

∫ n

0

µx+t dt

}
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= 1− exp

{

−

∫ n

0

1

80− x− t
dt

}

= 1− exp {[log (80− x− t)]
n

0}

= 1− exp

{

log

(
80− x− n

80− x

)}

=
n

80− x
.

and we have nq 1
xy

=

∫ n

0
tpx tpy µy+t dt

=
1

(80− x)(80− y)

∫ n

0

(80− x− t) dt

=
n (80− x)− 1

2n2

(80− x)(80− y)
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∴ 20q
2

40:50 = 20q50 − 20q
1

40:50

=
20

30
−

20× 40− 1
2 202

40× 30

=
1

6
.

Example 3

Consider a reversionary annuity of $1 p.a. payable quarterly in advance during the lifetime

of (y) following the death of (x). Show that the expected present value of this benefit is

approximately equal to:

ax|y +
1

8
Ā1

xy.

Solution

Hint: Fix a time t to represent the death of (x), as below:
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-| |
Age

︷ ︸︸ ︷

(x) survives = tpx

?

(x) dies = µx+t

| -
(y) survives = tpy

and gets ä
(4)
y+t

x

y

x + t

y + t

Hence:

EPV =

∫ ∞

0

vt
tpx µx+t tpy ä

(4)
y+t dt

≈

∫ ∞

0

vt
tpx µx+t tpy

(

āy+t +
1

8

)

dt

=

∫ ∞

0

vt
tpx µx+t tpy āy+t dt
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+
1

8

∫ ∞

0

vt
tpx µx+t tpy dt

= āx|y +
1

8
Ā1

xy ≈ ax|y +
1

8
Ā1

xy.
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