
4 Risk, Surplus and With-Profits Business

4.1 Risk and Surplus

Premium and valuation bases state what future outcomes the actuary expects.But the

future is uncertain:

• The actuary does not know who will die, or when.

• Premiums will be invested in assets such as bonds and equities, many of which earn a

rate of return that cannot be guaranteed in advance.

• Future expenses are hard to predict accurately, especially because some may be

affected by inflation.

All such sources of uncertaintyintroduce risk. The only statement that can be made with

certainty is that the future will not be exactly as assumed in the actuary’s basis.Each

introduces the possibility of a good or a bad outcome, once the future experience is known.

For insurance businessthe following are good outcomes:
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Interest: Experience > Basis

Mortality: Experience < Basis

Expenses: Experience < Basis

For annuity businessthe following are good outcomes:

Interest: Experience > Basis

Mortality: Experience > Basis

Expenses: Experience < Basis

We know, from the recursive relationships between reserves (discrete model) or Thiele’s

equation (continuous model) that the following is true:

If the premium and valuation bases are the same, and the experience follows

them exactly, then the assets the office holds will always be exactly equal to

the policy value.

It follows, since we know that the experience will not exactly follow the premium/valuation

basis, that at any time the office will hold assets not equal in value to the policy value. The
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difference is called surplusPositive surplus is good, negative surplus (a deficit) is bad.

For a portfolio of long-term contracts, the ultimate surplus cannot be known until all the

contracts have expired.But we can measure how much surplus emerges each year (or

other short period). We need to do this in order to:

(a) pay bonuses to with-profit policyholders

(b) pay dividends to shareholders

(c) measure the change in working capital

because none of these can wait, possibly for decades, until the policies have expired.

Surplus is measured using the valuation basis. In the discrete model it goes as follows:

Step 1: Choose a valuation basis and calculate the policy values at the start of the year.

Step 2: Assume the office holds assets equal to the policy values at the start of the year.

Step 3: Calculate the value of the assets at the end of the year, adding interest actually earned

and premiums actually paid and deducting the actual amounts of claims and expenses.
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Step 4: Calculate the policy values for policies in force at the end of the year.

• Step 5: The surplus emergingduring the year is the difference between (3) and (4).

In the continuous model, we measure the instantaneous rateat which surplus is emerging,

as follows:

Step 1: Choose a valuation basis and calculate the policy values at time t.

Step 2: Assume the office holds assets equal to the policy values at time t.

Step 3: By substituting the actual forces of interest and mortality (and possibly rate of

expense) into Thiele’s equation, calculate the rate at which the value of the

assets is changing.

Step 4: Using Thiele’s equation, calculate the expectedrate of change of the reserve.

Step 5: The rate at which surplus is emerging is the difference between (3) and (4).

We can measure the amount of surplus emerging over any period by integrating the rate at

which it emerges.

Consider a whole life policy, issued to (x):
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• SA of $1 payable immediately on death

• Premiums are payable continuously

• No expenses

• Valuation basis δ and µx+t

• Actual experience δ′ and µ′x+t

On the valuation basis we expect the reserve to change at rate:

d

dt
V (t) = V (t) δ + P̄x − µx+t(1− V (t)).

However, it is actually changing at rate:

d

dt
V ′(t) = V (t) δ′ + P̄x − µ′x+t(1− V (t))

=
d

dt
V (t) + St
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where St is the rate at which surplus is earned (or emerges).Therefore:

St = (δ′ − δ) V (t) +
(

µx+t − µ′x+t

)

(1− V (t)).

Note:

• δ′ − δ represents the excess of actual

interest earned over expected interest.

• µxt
− µ′x+t represents the excess of the expected mortality over the actual

experience.

Given the need to avoid negative surpluses (losses) we next consider how likely it isthat

this will happen.
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4.2 Risk Reserves

Our starting point is a life insurance company that prices its policies using the equivalence

principle. Suppose the probability that the insured event occurs is small (e.g. a term

assurance).

If the company sold very few policiesthen:

• the probability of making a loss is very small; but

• if a loss occurs, the size of the loss could greatly exceed the premiums received.

The limiting case is a person who does not buy insurance: effectively they become an

insurance company with one policy.

Consider a portfolio of N insurance policiesissued to identical, but independent, lives.

For policy i define:

Li = random loss at inception

Then the Li are i.i.d. random variables,and because the equivalence principle has been
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used E[Li] = 0.Let σ be the standard deviation of each Li, i.e. Var[Li] = σ2.

The total loss on the insurance portfolio is:

L =
N
∑

i=1

Li

and the Law of Large Numbers (LLN) means that:

lim
N→∞

L

N
= E[L1].

This underlies the intuitive reason for insurance to exist — pooling large numbers of

small risks leads to a more certain outcome.(The motto of the Institute of Actuaries is

certum ex incertis.)

However, the LLN does not imply that all risk can be eliminated, merely that it can be

collectivised. By the Central Limit Theorem, as N →∞:
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N
∑

i=1

(Li − E[Li])

√
N

∼ Normal
(

0, σ2
)

or:
L

σ
√

N
∼ Normal (0, 1) .

Therefore:

P[Loss on Portfolio] = P[L > 0] =
1

2
.

This means that if we:

• make realistic assumptionsin the premium basis;

• price using the equivalence principle; and

• sell a large numberof policies

then the probability P[L > 0] of making a loss on the whole portfolio approaches 1/2.This
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is unacceptable to all stakeholders — policyholders, regulators and the owners of the

insurance company.

However, all is not lost. We will show that as N increases the size of any loss is likely to be

much loweras a proportion of the premiums received. Suppose the premium per policy is

P (regular or single, it does not matter). Then the loss on the ith policy, as a proportion of

the premium, is Li/P . The total loss, as a proportion of all premiums, is L/NP .Since:

L

σ
√

N
∼ Normal(0, 1)

We have:

L

NP
=

σ

P
√

N
.

L

σ
√

N
∼ Normal

(

0,
σ2

P 2N

)

.

Hence as N increases, the variance of the proportionateloss decreases as 1/N . Hence
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the probability of loss approaches 1/2, but the probability of a large loss approaches 0.

To use these results we need to compute σ2 = Var[Li].In general Var[Li] must be

calculated numerically (easy on a spreadsheet) except in a few cases.

Consider a whole life contract to (x) with:

• SA of $1 payable at end of year of death

• level annual premiums

• interest i% p.a.

• no expenses.

Then:

Li = vKx+1 − PxäKx+1

= vKx+1 − Px

(

1− vKx+1

d

)
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=

(

1 +
Px

d

)

vKx+1 − Px

d
.

This means that:

Var[Li] =

(

1 +
Px

d

)2

Var[vKx+1]

=

(

1 +
Px

d

)2
(

∗Ax − (Ax)2
)

where ∗ indicates interest at i2 + 2i,as usual.

We illustrate these ideas with an example.

Example

Whole life policies issued to lives aged 40:

• SA $1 at end of year of death

• Mortality: A1967-70 ultimate
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• Interest: 4% p.a.

• Given A40 = 0.09422 @ 8.16% p.a.

For the ith policy:

Var[Li] =

(

1 +
P40

d

)2
(

∗A40 − (A40)
2
)

= 0.0370

Now suppose we sell 10 such policies. Then:

L
√

10(0.0370)
∼ Normal(0, 1).

With this distribution we can calculate approximately some relevant probabilities. We might

be interested in questions like:

(a) what loss will be exceeded 25% of the time?
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(b) what loss will be exceeded 5% of the time?

Solution: We note that:

(a) P

[

L
√

10(0.0370)
> 0.674

]

= 0.25

or P[L > 0.410] = 0.25.

(b) P

[

L
√

10(0.0370)
> 1.645

]

= 0.05

or P[L > 1.001] = 0.05.

To put these in perspective, note that one year’s premiums for these 10 policies is

10(0.01447) = 0.1447, so there is:

(a) a 25% chance that the future loss will exceed 283% of one year’s premiumson the

portfolio; and
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(b) a 5% chance that the future loss will exceed 692% of one year’s premiumson the

portfolio.

Similar calculations for larger portfolios are shown in Table 1.

Table 1: Relationship between probabilities of future loss and size of portfolio.

Probability of 25% Probability of 5%

Portfolio future loss exceeds future loss exceeds

Size N Value % 1 yr prems Value % 1 yrs prems

10 0.410 283 1.001 692

100 1.296 89 3.164 219

1000 4.100 28 10.006 69

Insurance depends on pooling large numbers of independent risks. But the insurer cannot

alter the fact that P[L > 0]→ 1/2, it is a mathematical fact. The insurer has to find ways
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of managing or mitigating the risk of loss.

Suppose the company holds extra assets of amount R, in addition to the reserve

equal to the policy values.This is called a risk reserve.Then instead of considering

P[L > 0], instead consider P[L−R > 0].Effectively, the risk reserve allows the insurer

to absorb losses up to R without being insolvent. Then:

(a) It is feasible for regulators to set out how big a risk reserve is needed, by specifying a

suitably small ruin probability.For example, the regulator may require that:

P[L−R > 0] ≤ 0.01.

.

(b) The CLT shows that as the insurer sells more policies, the risk reserve needed per

policygets smaller.

Where does the risk reserve come from? The answer is it must come from capital. In fact it

is the main reason why insurance companies need capital.Capital may be provided by

investors, or by the policyholders themselves. Either way, the providers of capital
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will expect to be rewarded.

Summary:

• For one policy, the probability of loss may be smallbut the size of the loss can be

much greaterthan the size of the premium.

• The loss as a proportion of premiums can be reducedby selling more policies BUT this

increasesthe probability of loss.

• The probability of loss can be mitigated by holding a risk reserve, available to meet

losses up to a certain limit.

• The investors who supply the capital to set up the risk reserve must be rewarded.

This is an example of a technique of risk management, which is a large and important

topic in its own right.

Next, we consider the keystone of the system which for over 200 years allowed the

policyholders themselvesto be the investors who provided the risk reserve.

71



4.3 Lidstone’s Theorem

Lidstone’s theorem states that, for whole life and endowment policies:

(i) as the rate of interest increases, net premium policy values decrease.

(ii) as the rate of mortality increases, net premium policy values increase.

We will discuss the result for the rate of interest.

This is not a trivial result since, as an example, for a whole life policy, the policy value at

time t is:

V (t) = Ax+t − Px äx+t

and both the EPVs and the net premium on the right hand side are affected by the interest

rate.
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Proof of Lidstone’s Theorem

We will prove the ‘interest rate’ result only for the special case of a whole life policy.

We consider the whole life policy with:

• Sum assured of $1 payable immediately on death.

• Premiums payable continuously.

Stage 1

Suppose δand δ′represent two forces of interest (δ 6= δ′) with corresponding net premium

policy values V (t)and V ′(t)

We need to prove:

δ < δ′ =⇒ V (t) > V ′(t).

Now, given annual premium rates of P̄x and P̄ ′x (corresponding to the forces of interest δ

and δ′ respectively) and force of mortality µx, Thiele’s

differential equations are:
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d

dt
V (t) = V (t) δ + P̄x − µx+t(1− V (t))

(4.3)

d

dt
V ′(t) = V ′(t) δ′ + P̄ ′x − µx+t(1− V ′(t)).

(4.4)

By adding and subtracting V (t) δ′, equation (4.4) can be expressed as:

d

dt
V ′(t) =V ′(t) δ′ + V (t) δ′ − V (t) δ′

+ P̄ ′x − µx+t(1− V ′(t)).
(4.5)

Taking away equation (4.5)from equation (4.3):
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d

dt
(V (t)− V ′(t)) = (δ′ + µx+t) (V (t)− V ′(t))

− Ct

(4.6)

where: Ct = (P̄ ′x − P̄x) + (δ′ − δ)V (t).Now let f(t) = V (t)− V ′(t). Then

equation (4.6)can be written as:

(4.7)
d

dt
f(t) = (δ′ + µx+t) f(t)− Ct.

Stage 2

Our aim was to prove:

δ < δ′ =⇒ V (t) > V ′(t)

which is equivalent to proving:
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δ < δ′ =⇒ f(t) > 0.

This is our new aim. By rewriting (4.7) as:

(4.8)
d

dt
f(t)− (δ′ + µx+t) f(t) = −Ct

we notice that this is a differential equation which can be solved using the integration factor

method.

Reminder of the Integration Factor method

Recall that if we have an ordinary differential

equation of the form:
d

dt
y(t)− a(t)y(t) = b(t),
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we define the integrating factor as:

IF (t) = exp



−
t

∫

0

a(s)ds



 .

Then multiplying both sides of the differential equation by IF (t), we get:

d

dt
(y(t)IF (t)) = b(t)IF (t)

which can be solved by integration.

Continuing our proof of Lidstone’s theorem, we

consider equation (4.8):
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d

dt
f(t)− (δ′ + µx+t) f(t) = −Ct

and define the integrating factor:

IF (t) = exp



−
t

∫

0

(δ′ + µx+s)ds



 .

Multiplying both sides of equation (4.8) by IF (t), we get:

(4.9)
d

dt
(IF (t)f(t)) = −CtIF (t).
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Stage 3

Our aim from Stage 2 was to prove:

δ < δ′ =⇒ f(t) > 0.

Since IF (t) ≥ 0, this is equivalent to proving:

δ < δ′ =⇒ IF (t)f(t) ≥ 0.

This is our new aim. We note that:

• f(0) = 0

• f(ω − x) = 0 for some duration ω.
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Now integrating both sides of equation (4.9), we get:

ω−x
∫

0

[

d

dt
(IF (t)f(t))

]

dt = −
ω−x
∫

0

CtIF (t)dt

which implies that:

IF (ω − x)f(ω − x)− IF (0)f(0)

= −
ω−x
∫

0

CtIF (t)dt.

80



Now, since f(ω − x) = 0 and f(0) = 0, we have:

ω−x
∫

0

CtIF (t)dt = 0.
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Stage 4

Given that:

• IF (t) is always≥ 0 and

• Ct is always increasing

(Reminder: Ct = (P̄ ′x − P̄x) + (δ′ − δ) V (t))

the integral
ω−x
∫

0

CtIF (t)dt can only be equal to zero if Ctchanges sign at some duration.

Therefore, there exists a duration t0 such that:

Ct < 0 if t < t0

Ct ≥ 0 if t ≥ t0.

Now consider
d

dt
(IF (t)f(t)) = −CtIF (t):
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t < t0 =⇒ Ct < 0

=⇒ −CtIF (t) ≥ 0

=⇒ d

dt
(IF (t)f(t)) ≥ 0.

and:

t ≥ t0 =⇒ Ct ≥ 0

=⇒ −CtIF (t) ≤ 0

=⇒ d

dt
(IF (t)f(t)) ≤ 0.

We now have the following information on the

function IF (t)f(t):

(a) IF (t)f(t) = 0 when t = 0

83



(b) IF (t)f(t) = 0 when t = ω − x

(c)
d

dt
(IF (t)f(t)) ≥ 0 when t < t0

(d)
d

dt
(IF (t)f(t)) ≤ 0 when t > t0.

Step 5

¿From these features we plot the graph of IF (t)f(t) against t, which must look like

Figure 3.
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6

-

IF (t)f(t)

tt0 ω − x0

Figure 3: The graph of IF (t)f(t).

Therefore:

δ < δ′ =⇒ IF (t)f(t) > 0

=⇒ f(t) > 0
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=⇒ V (t) > V ′(t)

which proves Lidstone’s theorem.
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Summary of Proof

Stage 1 Statement of Theorem to be proved:

δ < δ′ =⇒ V (t) > V ′(t).

Stage 2 Reformulate theorem to give equivalent statement: δ < δ′ =⇒ f(t) > 0,

where f(t) = V (t)− V ′(t).

Stage 3 Reformulate theorem again to give another equivalent statement:

δ < δ′ =⇒ IF (t)f(t) ≥ 0, where IF (t) is an integrating factor:

IF (t) = exp

(

−
t
∫

0

(δ′ + µx+s)ds

)

.

Stage 4 Determine the characteristics of the

function IF (t)f(t).

Stage 5 Plot IF (t)f(t)and conclude that:

δ < δ′ =⇒ IF (t)f(t) ≥ 0 and hence

δ < δ′ =⇒ V (t) > V ′(t).
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4.4 With-Profits Business

To re-cap, we have considered the following points so far:

• Most life insurance risks are increasingover time. If we insure risks over a long term

with a level premium, we build up a reserve.

• We can use the equivalence principleto set premiums if we insure many independent

risks (Law of Large Numbers).

• The CLT however shows that we need an additional reserve (risk reserve) to

manage or mitigatethe probability of overall loss on the insurance portfolio.

• Lidstone’s theorem gives us a simple practical way of setting up additional reserves by

basing all our calculations on an artificially low rate of interest.

Now, consider a policy which could be charged a premium of P̄ ′if a realistic force of

interest δ′was used. However, to increase the reserves, a lower force of interest δis used

(Lidstone’s theorem) such that the premium actually charged is P̄ .

Since:
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d

dt
V (t) = V (t) δ + P̄ − µx+t(1− V (t))

and:

d

dt
V (t) + St = V (t) δ′ + P̄ − µx+t(1− V (t))

then unless the experience is bad, surplus will emerge at rate St where:

St = (δ′ − δ) V (t).

Finally, we note the following:

• This surplus has emerged because the

policyholder was charged an artificially higher premium.
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• It is fair that the surplus emerging be returned to the policyholder.

• Surplus can be returned to the policyholder by declaring bonuses.

Hence we have invented with-profits business.

Example: Faculty & Institute of Actuaries: Subject 105, April 2002.

100 people aged exactly 50 are each sold a 15-year endowment assurance policy with

sum assured $100,000. The premiums are paid annually in advance, and the sum assured

is paid on maturity or at the end of the year of death.

The life insurance company’s assumptions are:

Mortality: A1967–70 Ultimate, and the lives are independent with respect to mortality.

Interest: 6% per annum.

Expenses: Initial: $300. Renewal: 2.5% of each premium, including the first.

Let P be the gross annual premium.

(1) State the gross future loss random variable for one policy at the outset.
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(2) Using your answer to part (1) or otherwise, evaluate, in terms of P :

(a) the mean and variance of the loss (in present value terms) for a single policy at

outset.

(b) the mean and variance of the loss (in present value terms) for the entire portfolio at

outset.

Note: A50:15 at 12.36% per annum = 0.20426

(3) Show what values the gross annual premium P can take if the company requires that

the probability it incurs a loss (in present value terms) on the entire portfolio has to be less

than 2.5%. Use the Normal approximation.

Solution: (1)

Li = PV [Outgo]− PV [Income]

= 100K vmin(K50+1,15) + 300

− 0.975 P ä
min(K50+1,15)
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=

(

100K +
0.975 P

d

)

vmin(K50+1,15)

+ 300− 0.975 P

d

(2)(a)

E[Li] = 100K A50:15 + 300− 0.975 ä50:15

= 44, 695− 9.577425 P

Var[Li] =

[

100K +
0.975 P

d

]2

Var

[

vmin(K50+1,15)
]

=

[

100K +
0.975 P

d

]2

×
{

∗A50:15 − (A50:15 )
2
}
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Where ∗ indicates interest at i2 + 2 i = 12.36%.

=⇒ SD[Li] = 0.084666 [100K + 17.225 P ]

(2)(b) For 100 policies we have:

Mean = 100 E[Li] = µ

Variance = 100 Var[Li] = σ2

Std Deviation = 10 SD[Li] = σ.

(3) We want: P {Loss > 0} < 0.025:

=⇒ P

{

Loss− µ

σ
>

0− µ

σ

}

< 0.025

=⇒ P

{

z > −µ

σ

}

< 0.025
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=⇒ µ

σ
< −1.96

=⇒ 100(44, 695− 9.577425 P )

< −1.96(84, 666 + 14.5837 P )

=⇒ P ≥ 4, 988.86.
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