Aims

This course develops methods of multidimensional calculus to investigate geometrical properties of smooth curves and surfaces.

Syllabus

Curves in Euclidean space: Definition and symmetry of 3-dimensional Euclidean space, parametrised curves in Euclidean space, arc length, curvature and torsion. *(7 lectures)*

Vector fields and differential forms: Vector fields as derivative operations, differential 1-forms, line integrals, forms of higher degree, exterior derivative *(6 lectures)*

Moving frames and structure equations: Definition of a moving frame in Euclidean space, connection forms, first and second structure equations. *(4 lectures)*

Surfaces in Euclidean space: Surfaces described by maps into Euclidean space, normal vectors and tangent vectors, adapted frames, first and second fundamental forms, Gauss and mean curvature, Gauss and Codazzi equation. *(6 lectures)*

Curvature and geodesics: The meaning of curvature, Theorema Egregium, definition of geodesic, introduction to Riemannian geometry. *(7 lectures)*

Teaching and Assessment

Contact Hours: 3 lectures and 1 tutorial per week

Assessment: 0% by class tests or other continuous assessment

Resit Type: none
By the end of the course, students should be able to:

- compute arc lengths, curvature and torsion of curves and be able to interpret results geometrically
- compute action of vector field on a function and pairing of vector field with a 1-form
- compute wedge products and exterior derivatives of differential forms
- understand notion of moving frame and compute connection forms for given frame
- understand description of surface in terms of maps into Euclidean space
- compute normal and tangent vector fields to a parametrised surface
- understand definition of first and second fundamental form and of principal curvatures
- compute Gauss and mean curvature for simple parametrised surfaces
- understand geometrical meaning of Gauss curvature
- derive equation for geodesic on a given parametrised surface and find geodesics in simple cases
- state major theorems and definitions; understand the proofs of the theorems; reproduce proofs of minor results; reproduce major results when provided guidance

Content: January 2016