Aims

To give an introduction to some advanced topics in number theory.

Syllabus

Basics: Revision of basic number theory: Euler’s \(\phi \) function; Modular arithmetic; Fundamental Theorem of Arithmetic and Chinese Remainder Theorem (3 lectures)

Congruences and units mod \(n \): Polynomial congruences; Hensel’s Lemma; algebraic structure of the group of units in \(\mathbb{Z}_n \); primitive units. (5 lectures)

Quadratic residues: The Legendre symbol and the law of quadratic reciprocity (5 lectures)

Distribution of primes: Primes in specific congruence classes; Fermat primes and Mersenne primes; The Prime Number Theorem. (5 lectures)

Sums of squares: Gaussian integers; sums of squares. (5 lectures)

Möbius inversion: Arithmetic functions; the Möbius function and the Möbius inversion formula. (4 lectures)

The Riemann zeta function: Dirichlet series; introduction to the Riemann \(\zeta \)-function. (3 lectures)

Teaching and Assessment

Contact Hours: 3 lectures and 1 tutorial per week

Assessment: 0% by class tests or other continuous assessment

100% by end of course 2-hour exam

Resit Type: none
By the end of the course, students should be able to:

- have a good grasp of the fundamentals of number theory
- be able to manipulate Legendre symbols using quadratic reciprocity, and apply this to quadratic congruence problems
- have an understanding of the theory of the distribution of primes
- understand and manipulate Gaussian integers, and apply them to problems about sums of squares
- have an understanding of the basic theory of arithmetic functions and Dirichlet series