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Abstract

This thesis addresses the problem of the optimal timing of investment decisions. A

number of models are formulated and studied. In these, an investor can enter an

investment that pays a dividend, and has the possibility to leave the investment,

either receiving or paying a fee. The objective is to maximise the expected dis-

counted cashflow resulting from the investor’s decision making over an infinite time

horizon. The initialisation and abandonment costs, the discounting factor, and the

running payoffs are all functions of a state process that is modelled by a general one-

dimensional positive Itô diffusion. Sets of sufficient conditions that lead to results of

an explicit analytic nature are identified. These models have numerous applications

in finance and economics.

To address the family of models that we study, we first solve the discretionary

stopping problem that aims at maximising the performance criterion

Ex

[
e−

R τ
0 r(Xs)dsg(Xτ )1{τ<∞}

]
over all stopping times τ , where X is a general one-dimensional positive Itô diffusion,

r is a strictly positive function and g is a given payoff function. Our analysis, which

leads to results of an explicit analytic nature, is illustrated by a number of special

cases that are of interest in applications, and aspects of which have been considered

in the literature and we establish a range of results that can provide useful tools for

developing the solution to other stochastic control problems.
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1. INTRODUCTION

We formulate and solve a number of stochastic optimisation problems that are con-

cerned with the optimal timing of investment decisions. In the course of our analysis

we investigate the solvability of an ordinary differential equation, which plays a fun-

damental role in solving the associated Hamilton-Jacobi-Bellman (HJB) equations,

and we solve a discretionary stopping problem, which is closely related to our in-

vestment models.

An investment is characterised by making a known payment in order to receive

an unknown cashflow in the future. The holder of an investment may relinquish

the cashflow once it has been initiated, for example, if the payoff of stopping is

greater than the expected value of future cashflows. A simple example could be the

decision to buy an equity, which has a transaction cost. Holding the equity gives

the investor a dividends stream. If the investor feels that the equity is undervalued,

and the current market price is less than the net present value of future dividends,

they would buy the equity. Alternatively, if the investor held the equity and it was

overvalued, they would sell it. The investor could repeat the process any number of

times. Another example could be the decision to build a production facility, which

will have a cost but will provide an income based on the demand for its product. At

some point in the future the demand for the product may fall or, equivalently, more

producers may enter the economy, and so the cashflow generated by the facility

becomes negative. At this point, the investor may be tempted to abandon the

production facility, which could incur a cost. This type of decision may be only

possible once. As the investor is under no obligation to either initiate an investment

project or to abandon an existing project, we describe the problem as discretionary.

1



The Optimal Timing of Investment Decisions 2

The motivation for the thesis came about whilst the author was working in

industry and so called “real options” models were being promoted, with the classical

real options model being that introduced by McDonald and Siegel [MS86]. The

problem considered aims to choose the stopping time τ that maximises

Ex

[
(e−rτXτ −K)

]
.

The model addresses the question of when is it optimal to initiate an investment

project, the value of which is modelled by the state process X and initiating the

project incurs a cost K, while r is a discounting rate. This model is closely related

to the widely studied perpetual American call option, first considered by Samuel-

son [Sam65] and McKean [McK65]. When X is modelled by a geometric Brownian

motion a result of this model is that an investor in a project would either act im-

mediately, or, wait forever. This strategy is counter-intuitive to managers, whose

gut feeling tells them there are some projects that should be initialised at some

trigger level. The author was interested in whether generalising the payoff, state

process dynamics and discounting would result in more intuitive results, and how

cases where a stopping boundary, the boundary between stopping and continuation

regions, could be identified from the problem data. Another limitation of the ap-

proach taken by McDonald and Siegel was that X represents the net present value

(the discounted sum of all future cashflows) of the project. It would be preferable

to develop models that represented the whole life of the investment, of initiation,

running and abandonment. Once the partially reversible problem of initiating and

then abandoning a project is solved in a general setting, it becomes a relatively

straightforward exercise to address the reversible investment problem in a general

setting.

Models relating to single entry and exit problems have been studied in the con-

text of real options by various authors. For example, Paddock, Siegel and Smith

[PSS88] and Dixit and Pindyck [DP94, Sections 6.3, 7.1] adopt an economics per-

spective. More recent works include Knudsen, Meister and Zervos [KMZ98], who

generalise Dixit and Pindyck’s model, but consider the abandonment problem alone,
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and Duckworth and Zervos [DZ00], who extend Knudsen, Meister and Zervos to in-

clude the initialisation problem. In fact, the model studied by Duckworth and Zervos

[DZ00] can be seen as an extension of a fundamental real options problem introduced

by McDonald and Siegel [MS86], which is concerned with determining the value of a

firm when there is an option to shut down. McDonald and Siegel [MS86] implicitly

considered the payoff being the discounted future cashflows of the project, Knudsen,

Meister and Zervos [KMZ98] explicitly model these payoffs in solving the abandon-

ment problem, and Duckworth and Zervos [DZ00] combine the two approaches. All

these papers assume that the underlying state process is represented by a geometric

Brownian motion, and that the entry and exit costs as well as the discounting rate

are all constants.

With regard problems involving sequential entries and exits, Brekke and Øksendal

[BØ94] analyse a general model, without providing explicit results. Duckworth and

Zervos [DZ01] consider the special case where the state process is represented by a

geometric Brownian motion, the entry and exit costs as well as the discounting rate

are constants, and they provide explicit results. Other authors, such as Lumley and

Zervos [LZ01], Hodges [Hod04], Pham [Pha] and Wang [Wan05], consider related

problems.

The objective of this thesis is to study general investment models with a view to

obtaining results of an explicit nature. We consider models where the state process

driving the economy is modelled by general one-dimensional Itô diffusions, rather

than specific diffusions such as a geometric Brownian motion. We assume that

the costs associated with taking or leaving the investment and the cashflow of the

investment are deterministic functions of the state process. In addition, there is

discounting, which again may be state dependent, and the investor has an infinite

time horizon. Within this general context, we consider two investment models. In

the first one, only one entry and/or exit into the investment may be made, this is

closely related to “real options” problems were the decision is not reversible. In the

second one, any number of entries and exits can be made and is more closely related

to general investment problems. In addressing our objective, results are obtained

that are useful not only in addressing optimal stopping problems but also in solving
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more general stochastic control problems.

In the models we study there is some stochastic process that represents the state

of the economy, such as the price of an equity or the demand for a product. We

model this state process, X, by the one-dimensional Itô diffusion

dXt = b(Xt) dt + σ(Xt) dWt, X0 = x > 0,

where W is a standard, one-dimensional Brownian motion, and b, σ are given deter-

ministic functions such that Xt > 0, for all t > 0, with probability 1. Generalising

the existing theory so that it can account for stochastic processes modelled by gen-

eral Itô diffusions is motivated by a wide range of practical applications. These

include financial and economic applications where the assets exist in equilibrium

market conditions and tend to fluctuate about some long-term mean level, rather

than, on average, grow or fall exponentially, as modelled by a geometric Brownian

motion. Such assets include interest rates, exchange rates and commodities, where

there is empirical evidence of mean-reversion (e.g., see Metcalf and Hassett [MH95]

and Sarkar [Sar03]). Considering general Itô diffusions also facilitates modelling of

non-financial applications, such as those found in biological systems.

Introducing state dependent discounting enables a more realistic modelling frame-

work of decisions. In the context of financial decision-making, the discounting rate

accounts for the time-value of money, for the associated investment’s depreciation

rate and for the likelihood of the investment’s default. In view of this observation,

discounting should reflect the effect of the economic environment on the likelihood of

default of an investment project, which may well be related to the underlying asset’s

value or demand. Specifically, if a firm’s income relies on the price of one product,

they will find their borrowing costs higher if the price of that product falls. In a

biological setting, state dependent discounting reflects the dependence of extinction

likelihood on the environment.

State dependent payoffs are motivated by a number of applications. First, they

allow for utility based decision making, which, apart from the work of Henderson and

Hobson [HH02], and despite its fundamental importance, has hardly found its way
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into real options theory. Second, they allow for financial modelling based on non-

monetary state processes, for example, when the underlying process is the demand

for a product, which may be appropriate if the demand for a product can be modelled

more easily than the product’s price. Third, state-dependent payoff functions are

useful when dealing with cases where inputs are a finite resource. For example,

consider the case where a financier has decided to invest in a widget production

facility, because the price of widgets is high. In this situation, one would expect

there other financiers to be investing in other widget production facilities, and, if

widget producers are a scarce resource, their cost may go up. Within this general

framework, we identify the investment strategies that are optimal, depending on the

dynamics of the state process as well as the structure of the payoff functions and

the discounting factor.

To address the investment problems that we study, we first solve the discretionary

stopping problem that aims to maximise

Ex

[
e−Λτ g(Xτ )1{τ<∞}

]
, where Λt =

∫ t

0

r(Xs)ds,

over all stopping times τ , where r is strictly positive and g is a given payoff function.

This stopping problem is related to perpetual American options whose payoff is

given by g. One of the attractive features of perpetual options is that one can

obtain explicit analytic expressions for their values and they are important in the

theory of finance because their prices provide upper bounds for the corresponding

finite maturity options. In addition, our analysis provides the prices of perpetual

American “power” options, which have been studied in discrete time by Novikov

and Shiryaev [NS04], for a range of underlying asset price dynamics.

The theory of optimal stopping has numerous applications and has attracted

the interest of numerous researchers. Important, older accounts of this theory in-

clude Shiryaev [Shi78], El-Karoui [EK79] and Krylov [Kry80] , while more recent

contributions include Salminen [Sal85], Davis and Karatzas [DK94], Øksendal and

Reikvam [ØR98], Beibel and Lerche [BL00], Guo and Shepp [GS01], Dayanik and

Karatzas [DK03] and Alvarez [Alv04]. We solve the problem that we consider by
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means of dynamic programming techniques, specifically we employ Bellman’s prin-

ciple to identify a variational inequality, we verify that the solution to this equation

identifies with the value function of our stopping problem and we provide a solution

to the variational inequality by appealing to the so-called smooth pasting princi-

ple. This is an approach that differs from the one taken by, for example Beibel

and Lerche [BL00], who use a martingale technique to identify the free-boundary

between the continuation and stopping region, or Dayanik and Karatzas [DK03] and

Alvarez [Alv04], who employ r-excessive functions.

In order to address our investment models in a general setting the solution of

the ODE

1

2
σ2(x)w′′(x) + b(x)w′(x)− r(x)w(x) + h(x) = 0, x ∈ ]0,∞[.

needs to be understood. This understanding is developed in Chapter 2. Many of

the key results, in Section 2.4, were developed in the course of studying the discre-

tionary stopping problem presented in Chapter 3, and can be best appreciated in

hindsight. In particular, the importance of the transversality condition, introduced

in Section 3.2, in enabling explicit results to be obtained cannot be understated.

Once we have the results from Chapter 2, we solve the discretionary stopping

problem in Chapter 3. We solve this stopping problem under general assumptions

on the underlying state process X, the payoff function g and the discounting rate r.

We consider a number of special cases in Section 3.4.

The results of Chapter 3, in turn, can be applied in answering the investment

problems in Chapter 4. We presented two types of investment problems, in Sec-

tion 4.3 we addressed cases where there the structure of the problem prevents de-

cisions from being reversed, and they could all be re-cast as versions of the dis-

cretionary stopping problem studied in the preceding chapter. In Section 4.4 we

considered the case where decisions could be reversed. However, even if a decision

can be reversed, it may not be optimal to reverse a decision, and in these circum-

stances the problems reduce to the problems studied in Section 4.3.



2. STUDY OF AN ORDINARY

DIFFERENTIAL EQUATION

2.1 Introduction

In this chapter we study an ODE that plays a fundamental role in our analysis in

the following chapters. The results of this chapter have applications not only in the

field of optimal stopping but also in more general control problems.

In Section 2.4 we study the solution to the non-homogeneous ODE

1

2
σ2(x)w′′(x) + b(x)w′(x)− r(x)w(x) + h(x) = 0, x ∈ ]0,∞[, (2.1)

which is related to the variational inequalities we solve in addressing our investment

models. Prior to addressing the non-homogeneous ODE we investigate the solution

to the associated homogeneous ODE in Section 2.3. In Section 2.2 we consider a

positive one-dimensional Itô diffusion that is closely related with the ODE that we

use in solving our problems in Chapters 3 and 4.

Most of the results presented here have been established by Feller [Fel52] and

can be found in various forms in several references that include Breiman [Bre68],

Mandl [Man68], Itô and McKean [IM74], Karlin and Taylor [KT81], Rogers and

Williams [RW94] and Borodin and Salminen [BS02]. Our presentation, which is

based on modern probabilistic techniques, has largely been inspired by Rogers and

Williams [RW94, Sections V.3, V.5, V.7 ] and includes ramifications not found in

the literature.

7
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2.2 The properties of the underlying diffusion

We consider a stochastic system, the state process X of which satisfies is modelled

by the positive, one-dimensional Itô diffusion

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x > 0, (2.2)

where W is a one-dimensional standard Brownian motion and b, σ : ]0,∞[→ R are

given deterministic functions satisfying the conditions (ND)′ and (LI)′ in Karatzas

and Shreve [KS91, Section 5.5C], and given in the following assumption.

Assumption 2.2.1 The functions b, σ : ]0,∞[→ R satisfy the following conditions:

σ2(x) > 0, for all x ∈ ]0,∞[,

for all x ∈ ]0,∞[, there exists ε > 0 such that

∫ x+ε

x−ε

1 + |b(s)|
σ2(s)

ds <∞.

This assumption guarantees the existence of a unique, in the sense of probability

law, solution to (2.2) up to an explosion time. In particular, given c > 0, the scale

function pc and the speed measure mc(dx), given by

pc(x) =

∫ x

c

exp

(
−2

∫ s

c

b(u)

σ2(u)
du

)
ds, for x > 0, (2.3)

mc(dx) =
2

σ2(x)p′c(x)
dx, (2.4)

are well-defined. In what follows, we assume that the constant c > 0 is fixed.

We also assume that the diffusion X is non-explosive and the boundaries of the

diffusion at zero and infinity are inaccessible. In particular, we impose the following

assumption (see Karatzas and Shreve [KS91, Theorem 5.5.29]).

Assumption 2.2.2 If we define

uc(x) =

∫ x

c

[
pc(x)− pc(y)

]
mc(dy), (2.5)

then limx↓0 uc(x) = limx→∞ uc(x) = ∞.
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2.3 The solution to the homogeneous ODE

The objective is to show that the general solution to the ODE

1

2
σ2(x)w′′(x) + b(x)w′(x)− r(x)w(x) = 0, for x > 0. (2.6)

is given by

w(x) = Aψ(x) +Bφ(x). (2.7)

Here, A,B ∈ R are constants and the functions φ, ψ are defined by

φ(x) =

1/Ec[e
−Λτx ], for x < c,

Ex[e
−Λτc ], for x ≥ c,

(2.8)

ψ(x) =

Ex[e
−Λτc ], for x < c,

1/Ec[e
−Λτx ], for x ≥ c.

(2.9)

respectively, with

Λt =

∫ t

0

r(Xs)ds.

Here, and in what follows, given a weak solution to (2.2), Ez represents an expec-

tation with the diffusion starting at X0 = z and given a point a ∈ ]0,∞[, we denote

by τa the first hitting time of {a}, i.e.,

τa = inf{t ≥ 0|Xt = a},

with the usual convention that inf ∅ = ∞.

Since X is continuous, a simple inspection of (2.8) (resp., (2.9)) reveals that φ

(resp., ψ) is strictly decreasing (resp., increasing). Also, since X is non-explosive,

these definitions imply

lim
x↓0

φ(x) = lim
x→∞

ψ(x) = ∞.

We also need the following assumption.



The Optimal Timing of Investment Decisions 10

Assumption 2.3.1 The function r :]0,∞[→ ]0,∞[ is locally bounded.

One purpose of the following result is to show that the definitions of φ, ψ in (2.8),

(2.9), respectively, do not depend, in a non-trivial way, on the choice of c ∈ ]0,∞[.

Lemma 2.3.1 Suppose that Assumptions 2.2.1–2.3.1 hold. Given any x, y ∈ ]0,∞[

the functions φ, ψ defined by (2.8), (2.9), respectively, satisfy

φ(y) = φ(x)Ey[e
−Λτx ] and ψ(x) = ψ(y)Ex[e

−Λτy ], for all x < y. (2.10)

Moreover, the processes (e−Λtφ(Xt), t ≥ 0) and (e−Λtψ(Xt), t ≥ 0) are both local

martingales.

Proof. Given any points a, b, c ∈ ]0,∞[ such that a < b < c, we calculate

Ea[e
−Λτc ] = Ea

[
eΛτb Ea[e

−(Λτc−Λτb
)|Fτb ]

]
= Ea[e

−Λτb ]Eb[e
−Λτc ],

where the second equality follows thanks to the strong Markov property of X. In

view of this result, given any x < z < y, the choice a = x, b = z and c = y yields

Ex[e
−Λτy ] = Ex[e

−Λτz ]Ez[e
−Λτy ],

which, combined with the definition of ψ, implies the second identity in (2.10). We

can verify the second identity in (2.10) when x < y < z or z < x < y as well as the

second identity in (2.10) by appealing to similar arguments.

Now, given any initial condition x and any sequence (xn) such that x < x1 and

limn→∞ xn = sup ]0,∞[, we observe that the second identity in (2.10) implies

ψ(Xt)1{t≤τxn} = ψ(xn)EXt [e
−Λτxn ]1{t≤τxn}, for all t ≥ 0.

In view of this identity, we appeal to the strong Markov property of X, once again
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to calculate

Ex

[
e−Λτxnψ(Xτxn

)
∣∣Ft] = e−Λtψ(xn)Ex

[
e−(Λτxn−Λt)

∣∣Ft]1{t<τxn} + e−Λτxnψ(xn)1{τxn≤t}

= e−Λtψ(Xt)1{t<τxn} + e−Λτxnψ(xn)1{τxn≤t}

= e−Λ(t∧τxn )ψ(Xt∧τxn
).

However, this calculation and the tower property of conditional expectation implies

that, given any times s < t,

Ex

[
e−Λt∧τxnψ(Xt∧τxn

)|Fs
]

= Ex

[
Ex

[
e−Λt∧τxnψ(Xt∧τxn

)
∣∣Ft] ∣∣Fs]

= e−Λs∧τxnψ(Xs∧τxn
),

which proves that
(
e−Λtψ(Xt), t ≥ 0

)
is a local-martingale. Proving that(

e−Λtφ(Xt), t ≥ 0
)

is a local-martingale follows similar arguments. 2

We can now prove the following result.

Theorem 2.3.1 Suppose that Assumptions 2.2.1–2.3.1 hold. The general solution

to the ordinary differential equation (2.6) exists in the classical sense, namely there

exists a two dimensional space of functions that are C1 with absolutely continuous

first derivatives, and that satisfy (2.6) Lebesgue-a.e.. This solution is given by (2.7),

where A,B ∈ R are constants and the functions φ, ψ are given by (2.8), (2.9),

respectively. Moreover, φ is strictly decreasing, ψ is strictly increasing, and, if the

drift b ≡ 0, then both φ and ψ are strictly convex.

Proof. First, we recall that, given l < x < m,

Px(τl < τm) =
pc(x)− pc(m)

pc(l)− pc(m)
(2.11)

(e.g., see Karatzas and Shreve [KS91, Proposition 5.5.22] or Rogers and Williams

[RW94, Definition V.46.10]). Also in view of the second identity in (2.10), we can
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see that

ψ(x) < ψ(m)Ex

[
1{τm<τl}

]
+ ψ(m)Ex

[
e−Λτm 1{τl<τm}

]
= ψ(m)Px(τm < τl) + ψ(m)Ex

[
Ex

[
e−Λτm

∣∣Fτl] 1{τl<τm}
]
.

Now, since X has the strong Markov property we can see that

Ex

[
e−Λτm

∣∣Fτl]1{τl<τm} = e−Λτl Ex

[
e−Λ(τm−τl) |Fτl

]
1{τl<τm}

= e−Λτl
ψ(l)

ψ(m)
1{τl<τm},

with the last equality following thanks to (2.10). Combining these calculations we

can see that

ψ(x) < ψ(m)Px(τm < τl) + ψ(l)Ex

[
e−Λτl 1{τl<τm}

]
< ψ(m)Px(τm < τl) + ψ(l)Px(τl < τm). (2.12)

Now, let us assume that b ≡ 0, so that the diffusion X defined by (2.2) is in

natural scale, in which case pc(x) = x − c. Combining this fact with (2.11), it is

straightforward to verify that

x = lPx(τl < τm) +mPx(τm < τl).

However, this calculation and (2.12) imply that ψ is strictly convex. In this case,

we have also that

Px(τl < τm) =
x−m

l −m
. (2.13)

Under the assumption that b ≡ 0, which implies that ψ is strictly convex, we
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can use the Itô-Tanaka and the occupation times formulae to calculate

ψ(Xt)−
∫ t

0

r(Xs)ψ(Xs) ds = ψ(x) +

∫
]0,∞[

Lat
1

σ2(a)

[
1

2
σ2(a)µ′′(da)− r(a)ψ(a) da

]
+

∫ t

0

ψ′−(Xs)σ(Xs) dWs,

where ψ′− is the left-hand-side first derivative of ψ, µ′′(da) is the distributional second

derivative of ψ, and La is the local time process of X at level a. With regard to the

integration by parts formula, this implies

e−Λtψ(Xt) = ψ(x) +

∫ t

0

e−Λs d

∫
]0,∞[

Las
1

σ2(a)

[
1

2
σ2(a)µ′′(da)− r(a)ψ(a) da

]
+

∫ t

0

e−Λsψ′−(Xs)σ(Xs) dWs.

Since (e−Λtψ(Xt), t ≥ 0) is a local-martingale (see Lemma 2.3.1), this identity

implies that the finite variation process Q defined by

Qt =

∫ t

0

e−Λsd

∫
]0,∞[

Las
1

σ2(a)

[
1

2
σ2(a)µ′′(da)− r(a)ψ(a) da

]
, for t ≥ 0,

is a local martingale. Since finite-variation local martingales are constant, it follows

that Q ≡ 0, which implies∫
]0,∞[

Lat ν(da) = 0, for all t ≥ 0, (2.14)

where the measure ν is defined by

ν(da) =
1

2
µ′′(da)− r(a)ψ(a)

σ2(a)ψ′′(a)
. (2.15)

To proceed further, fix any points l < a < m, define

τl,m = inf {t ≥ 0 |Xt /∈ ]l,m[} ,
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and let (Tj) be a localising sequence for the local martingale
∫ ·

0
sgn(Xs − a)dXs.

With regard to the definition of local times and Doob’s optional sampling theorem,

we can see that

Ex

[ ∣∣Xτl,m∧Tj
− a
∣∣ ] = |x− a|+ Ex

[ ∫ τl,m∧Tj

0

sgn(Xs − a) dXs

]
+ Ex

[
Laτl,m∧Tj

]
= |x− a|+ Ex

[
Laτl,m∧Tj

]
.

However, passing to the limit using the dominated convergence theorem on the left

hand side and the monotone convergence theorem on the right hand side, we can

see that this identity implies

Ex

[
Laτl,m

]
= Ex

[ ∣∣Xτl,m − a
∣∣ ]− |x− a|

=
(m− a)(x− l)

m− l
+

(a− l)(m− x)

m− l
− |x− a| , (2.16)

the second equality following thanks to (2.13). Now, (2.14), the fact that t 7→ Lat

increases on the set {t ≥ 0 |Xt = a} and Fubini’s theorem, imply

0 = Ex

[ ∫
]0,∞[

Laτl,m ν(da)
]

= Ex

[ ∫
]l,m[

Laτl,m ν(da)
]

=

∫
]l,m[

Ex

[
Laτl,m

]
ν(da).

Combining this calculation with (2.16), it is a matter of algebraic calculation to

verify that ∫ m

l

h(a; l, x,m) ν(da) = 0, (2.17)

where h(·; l, x,m) is the tent-like function of height 1 defined by

h(a; l, x,m) =

(a− l)/(x− l), for a ∈ [l, x],

(m− a)/(m− x), for a ∈ [x,m].
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Now, fix any points xl < xm in ]0,∞[ and let (lj) and (mj) be strictly decreasing

and strictly increasing, respectively, sequences such that

l1 <
xl + xm

2
< m1, lim

j→∞
lj = xl and lim

j→∞
mj = xm.

We can see that

1]xl,xm[(a) = lim
j→∞

Hj(a), for all a ∈ ]0,∞[,

where the increasing sequence of functions (Hj) is defined by

Hj(a) = h

(
a;xl,

xl + xm
2

, xm

)
+
xl + xm − 2lj
xm − xl

h

(
a;xl, lj,

xl + xm
2

)
+

2mj − (xl + xm)

xm − xl
h

(
a;
xl + xm

2
,mj, xm

)
, for a ∈ ]0,∞[ and j ≥ 1.

Using the monotone convergence theorem and (2.17), it follows that

ν(]xl, xm[) = lim
j→∞

∫ xm

xl

Hj(a) ν(da) = 0,

which proves that the signed measure ν assigns measure 0 to every open subset

of ]0,∞[. However, this observation and the definition of ν in (2.15) imply that

the total variation of ν is zero, and, therefore, µ′′(da) is an absolutely continuous

measure. It follows that there exists a function ψ′′ such that

µ′′(da) = ψ′′(a) da and
1

2
σ2(a)ψ′′(a) = r(a)ψ(a), Lebesgue-a.e..

However, the second identity here shows that ψ is a classical solution to (2.6).

Now, let us consider the general case where the drift b does not vanish. In this
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case, we use Itô’s formula to verify that, if X̄ = pc(X), then

dX̄t = σ̄(X̄t)dWt, X̄0 = pc(x),

where

σ̄(x̄) = p′c
(
p−1
c (x̄)

)
σ
(
p−1
c (x̄)

)
, for x̄ ∈ ]0,∞[.

Since X̄ is a diffusion in natural scale, the associated function ψ̄ defined as in (2.9)

is a classical solution of

1

2
σ2(a)ψ̄′′(a)− r(a)ψ̄(a) = 0. (2.18)

Now, recalling that pc is twice differentiable in the classical sense, we can see that

if we define ψ̃(x) = ψ̄(pc(x)) then

ψ̃′(x) = ψ̄′
(
pc(x)

)
p′c(x),

ψ̃′′(x) = ψ̄′′
(
pc(x)

)[
p′c(x)

]2
+ ψ̄′

(
pc(x)

)
p′′c (x).

However, combining these calculations with (2.18), we can see that ψ̃ satisfies the

ODE (2.6).

To prove that ψ̃, namely the classical solution to (2.6), as constructed above,

identifies with ψ defined by (2.9), we apply Itô’s formula to e−Λ(τy∧T )ψ̃(Xτy∧T ), where

T > 0 is a constant, and we use arguments similar to the ones employed in the proof

of Theorem 3.3.1, to show that

Ex

[
e−Λτy∧T ψ̃(Xτy∧T )

]
= ψ̃(x), for all x < y.

Since ψ > 0 is increasing, the monotone and the dominated convergence theorems

imply

lim
T→∞

Ex

[
e−Λτy∧T ψ̃(Xτy∧T )

]
= ψ̃(y)Ex

[
e−Λτy

]
, for all x < y.

However, these calculations, show that ψ̃ satisfies the second identity in (2.10) and
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therefore identifies with ψ defined by (2.9). Proving all of the associated claims for

φ follows similar reasoning. 2

Remark 2.3.1 Although we have chosen to undertake this analysis for a positive

diffusion, similar results can be obtained for a regular Itô diffusion with values in

any interval I where I ⊆ R.

Using the fact that φ and ψ satisfy the ODE (2.6), it is a straightforward exercise

to verify that the scale function, pc, defined by (2.3) satisfies

p′c(x) =
φ(x)ψ′(x)− φ′(x)ψ(x)

W(c)
, for all x > 0, (2.19)

where W is the Wronskian of φ and ψ, defined by

W(x) = φ(x)ψ′(x)− φ′(x)ψ(x)

and W(x) > 0 for all x > 0.

2.4 Study of a non-homogeneous ordinary differential equa-

tion

We now study the non-homogeneous ODE (2.1),

1

2
σ2(x)w′′(x) + b(x)w′(x)− r(x)w(x) + h(x) = 0, x ∈ ]0,∞[.

We need to impose the following assumptions, which are stronger than Assump-

tion 2.2.1 and Assumption 2.3.1, respectively.

Assumption 2.2.1′ The conditions of Assumption 2.2.1 hold true, and

the function σ is locally bounded.
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Assumption 2.3.1′ The conditions of Assumption 2.3.1 hold true, and there exists

a constant r0 such that

0 < r0 ≤ r(x) <∞, for all x > 0. (2.20)

We can now prove the following propositions.

Proposition 2.4.1 Suppose that Assumption 2.2.1′, Assumption 2.2.2 and Assump-

tion 2.3.1′ hold. The following statements are equivalent:

(I) Given any initial condition x > 0 and any weak solution Sx to (2.2),

Ex

[∫ ∞

0

e−Λt|h(Xt)| dt
]
<∞.

(II) There exists an initial condition y > 0 and a weak solution Sy to (2.2) such

that

Ey

[∫ ∞

0

e−Λt|h(Xt)| dt
]
<∞.

(III) Given any x > 0,∫ x

0

|h(s)|ψ(x)m(ds) <∞ and

∫ ∞

x

|h(s)|φ(x)m(ds) <∞.

(IV) There exists y > 0 such that∫ y

0

|h(s)|ψ(x)m(ds) <∞ and

∫ ∞

y

|h(s)|φ(x)m(ds) <∞.

If these conditions hold, then the function

Rh(x) =
φ(x)

W(c)

∫ x

0

h(s)ψ(s)m(ds) +
ψ(x)

W(c)

∫ ∞

x

h(s)φ(s)m(ds), x ∈ ]0,∞[,

(2.21)
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is well-defined, is twice differentiable in the classical sense and satisfies the ODE

(2.1), Lebesgue-a.e.. In addition, Rh admits the expression

Rh(x) = Ex

[∫ ∞

0

e−Λsh(Xs) ds

]
, for all x > 0. (2.22)

Proof. Suppose that (IV) is true and let y be such that

C1 :=

∫ y

0

|h(s)|ψ(s)m(ds) <∞ and C2 :=

∫ ∞

y

|h(s)|φ(s)m(ds) <∞.

and so∫ x

0

|h(s)|ψ(s)m(ds),

∫ y

x

|h(s)|ψ(s)m(ds) ≤ C1, for all x ∈ ]0, y[, (2.23)∫ x

y

|h(s)|φ(s)m(ds),

∫ ∞

x

|h(s)|φ(s)m(ds) ≤ C2, for all x ∈ ]y,∞[. (2.24)

Combining these inequalities with the fact that ψ is increasing and φ is decreasing,

we can see that∫ ∞

x

|h(s)|φ(s)m(ds) =

∫ y

x

|h(s)|φ(s)m(ds) +

∫ ∞

y

|h(s)|φ(s)m(ds)

≤ φ(x)

ψ(x)

∫ y

x

|h(s)|ψ(s)m(ds) + C2

≤ φ(x)

ψ(x)
C1 + C2

< ∞ (2.25)
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and ∫ x

0

|h(s)|ψ(s)m(ds) =

∫ y

0

|h(s)|ψ(s)m(ds) +

∫ x

y

|h(s)|ψ(s)m(ds)

≤ C1 +
ψ(x)

φ(x)

∫ x

y

|h(s)|φ(s)m(ds)

≤ C1 +
ψ(x)

φ(x)
C2

< ∞. (2.26)

However, (2.23)–(2.26) imply that (III) holds. The reverse implication is obvious.

To proceed further, assume that h = h+
B where h+

B is a positive and bounded mea-

surable function. In this case, it is straightforward to verify that (I) and (II) are both

satisfied. Since φ and ψ are continuous functions satisfying limx→∞ φ(x), limx↓0 ψ(x) <

∞ and m is a locally finite measure, the function Rh+
B1[1/k,k]

: ]0,∞[→ R+ given by

(2.21), or, equivalently, by

Rh+
B1[1/k,k]

(x) =
φ(x)

W(c)
1[1/k,k](x)

∫ x

1/k

h+
B(s)ψ(s)m(ds)

+
ψ(x)

W(c)
1[1/k,k](x)

∫ k

x

h+
B(s)φ(s)m(ds), (2.27)

is well-defined and bounded for all k > 1. In light of the calculations

R′
h+
B1[1/k,k]

(x) =
φ′(x)

W(c)

∫ x

0

h+
B(s)1[1/k,k](s)ψ(s)m(ds)

+
ψ′(x)

W(c)

∫ ∞

x

h+
B(s)1[1/k,k](s)φ(s)m(ds),

R′′
h+
B1[1/k,k]

(x) =
φ′′(x)

W(c)

∫ x

0

h+
B(s)1[1/k,k](s)ψ(s)m(ds)

+
ψ′′(x)

W(c)

∫ ∞

x

h+
B(s)1[1/k,k](s)φ(s)m(ds)

− 2h+
B(x)

σ2(x)
1[1/k,k](x)

we can see that Rh+
B1[1/k,k]

is twice differentiable in the classical sense, because this
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is true for the functions ψ and φ, and satisfies the ODE

1

2
σ2(x)w′′(x) + b(x)w′(x)− r(x)w(x) + h+

B(x)1[1/k,k](x) = 0, (2.28)

Lebesgue-a.e. in ]0,∞[.

Now, fix any k > 1, any initial condition x > 0, any weak solution Sx to (2.2)

and define the sequence of (Ft)-stopping times (τl) by

τl = inf {t ≥ 0 | Xt /∈ [1/l, l]} ,

Using Itô’s formula and the fact that Rh+
B1[1/k,k]

satisfies (2.28), we calculate

e−Λτl∧TRh+
B1[1/k,k]

(Xτl∧T ) +

∫ τl∧T

0

e−Λsh+
B(Xs)1[1/k,k](Xs) ds

= Rh+
B1[1/k,k]

(x) +M
(l)
t , (2.29)

where M (l) is defined by

M
(l)
t =

∫ τl∧t

0

e−Λsσ(Xs)R
′
h+
B1[1/k,k]

(Xs) dWs.

Combining the fact that R′
h+
B1[1/k,k]

is locally bounded, because Rh+
B1[1/k,k]

is continu-

ous, with the the fact that σ is locally bounded from Assumption 2.2.1′, we can see

that the quadratic variation of the local martingale M
(l)
t satisfies

Ex

[
〈M (l)〉∞

]
=

∫ ∞

0

Ex

[
1{s≤τl}

(
e−Λsσ(Xs)R

′
h+
B1[1/k,k]

(Xs)
)2
]
ds

≤ sup
y∈[1/l,l]

[
σ(y)R′

h+
B1[1/k,k]

(y)
]2 ∫ ∞

0

Ex

[
e−2Λs

]
ds

≤ 1

2r0
sup

y∈[1/l,l]

[
σ(y)R′

h+
B1[1/k,k]

(y)
]2

<∞,

the second inequality following as a consequence of (2.20) in Assumption 2.3.1′. This
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proves that M (l) is a martingale bounded in L2, so, Ex

[
M

(l)
t

]
= 0, for all t ≥ 0.

This observation and (2.29) imply

Ex

[
e−Λτl∧TRh+

B1[1/k,k]
(Xτl∧T ) +

∫ τl∧T

0

e−Λsh+
B(Xs)1[1/k,k] ds

]
= Rh+

B
1[1/k,k](x).

(2.30)

Since Rh+
B1[1/k,k]

is bounded, the dominated convergence theorem implies

lim
T→∞

lim
l→∞

Ex

[
e−Λτl∧TRh+

B1[1/k,k]
(Xτl∧T )

]
= 0,

while the monotone convergence theorem yields

lim
T→∞

lim
l→∞

Ex

[∫ τl∧T

0

e−Λsh+
B(Xs)1[1/k,k](Xs) ds

]
= Ex

[∫ ∞

0

e−Λsh+
B(Xs)1[1/k,k](Xs) ds

]
.

These limits and (2.30) imply

Ex

[∫ ∞

0

e−Λsh+
B(Xs)1[1/k,k](Xs) ds

]
= Rh+

B1[1/k,k]
(x).

Recalling the definition of Rh+
B1[1/k,k]

as in (2.27), we can pass to the limit k → ∞
in this identity to obtain

Rh+
B
(x) = Ex

[∫ ∞

0

e−Λsh+
B(Xs) ds

]
. (2.31)

Note that, since, h+
B plainly satisfies conditions (I) and (II), this identity also implies

that h+
B satisfies conditions (III) and (IV).

Now assume that h = h+, where h+ is a positive measurable function. Using

(2.31) with h+
B = h+∧n, for n ≥ 1, and applying the monotone convergence theorem,

we can see that, given any initial condition x > 0 and any weak solution Sx to (2.2),

Ex

[∫ ∞

0

e−Λsh+(Xs) ds

]
= Rh+(x), (2.32)
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where both sides may be equal to infinity. However, with reference to the definition

of Rh+ , this proves that (I) and (III) are equivalent and that (II) and (IV) imply each

other. Recalling the equivalence of (III) and (IV) that we proved above, it follows

that statements (I)–(IV) are all equivalent. Furthermore, given any h satisfying

(I)–(IV), we can immediately see that (2.32) implies (2.22) once we consider the

decomposition h = h+ − h− of h to its positive and its negative parts h+ and h−,

respectively. 2

The following result is concerned with a number of properties of the function Rh

studied in the previous proposition.

Proposition 2.4.2 Suppose that Assumption 2.2.1′, Assumption 2.2.2 and Assump-

tion 2.3.1′ hold.. Let h : ]0,∞[→ R be a measurable function satisfying Condi-

tions (I)–(IV) in Proposition 2.4.1. The function Rh given by (2.21) or (2.22)

satisfies

lim
x↓0

Rh(x)

φ(x)
= lim

x→∞

Rh(x)

ψ(x)
= 0, (2.33)

inf
x>0

h(x)

r(x)
≤ Rh(x) ≤ sup

x>0

h(x)

r(x)
, for all x > 0, (2.34)

R′
h(x)φ(x)−Rh(x)φ

′(x) = p′c(x)

∫ ∞

x

h(s)φ(s)m(ds), for all x > 0, (2.35)

R′
h(x)ψ(x)−Rh(x)ψ

′(x) = −p′c(x)
∫ x

0

h(s)ψ(s)m(ds), for all x > 0, (2.36)

if h/r is increasing (resp., decreasing), then Rh is increasing (resp., decreasing).

Also,

Rr(x) = 1, for all x > 0. (2.37)

Furthermore, given a solution Sx = (Ω,F,Ft,Px, X,W ) to (2.2) and an (Ft)-stopping
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time τ ,

Ex

[
e−ΛτRh(Xτ )1{τ<∞}

]
= Rh(x)− Ex

[∫ τ

0

e−Λth(Xt) dt

]
, (2.38)

Ex

[
e−ΛτRh(Xτ )1{τ<∞}

]
= Ex

[∫ ∞

τ

e−Λth(Xt) dt

]
, (2.39)

while, if (τn) is a sequence of stopping times such that limn→∞ τn = ∞, Px-a.s., then

lim
n→∞

Ex

[
e−Λτn |Rh(Xτn)|1{τn<∞}

]
= 0. (2.40)

Proof. Fix a solution Sx = (Ω,F,Ft,Px, X,W ) to (2.2) and let τ be an (Ft)-stopping

time. Using the definition of Λ and the strong Markov property of X, we can see

that (2.22) implies

Rh(x) = Ex

[∫ τ

0

e−Λth(Xt) dt+ e−Λτ Ex

[∫ ∞

τ

e−(Λs−Λτ )h(Xs) ds | Fτ
]
1{τ<∞}

]
= Ex

[∫ τ

0

e−Λth(Xt) dt+ e−Λτ EXτ

[∫ ∞

0

e−Λsh(Xs) ds

]
1{τ<∞}

]
= Ex

[∫ τ

0

e−Λth(Xt) dt+ e−ΛτRh(Xτ )1{τ<∞}

]
,

which establishes (2.38). Also, this expression and (2.22) imply immediately (2.39),

while (2.40) follows from the observation that |Rh| ≤ R|h| (note that h satisfies

conditions (I)–(IV) of Proposition 2.4.1 if and only in |h| does), (2.39) and the

dominated convergence theorem.

Now, let c > 0 be the point that we used in (2.3) and (2.4) to define the

scale function and the speed measure of the diffusion X. Given a solution Sc =

(Ω,F,Ft,Pc, X,W ) to (2.2) and any x > 0, we denote by τx the first hitting time of

{x}, and we note that limx↓0 τx = limx→∞ τx = ∞, Pc-a.s., because the diffusion X

is non-explosive by Assumption 2.2.2. In view of this observation and the fact that

r(x) ≥ r0 > 0, for all x > 0, by Assumption 2.3.1′, we have that (2.40) implies

lim
x↓0

Ec

[
e−Λτx

]
Rh(x) = lim

x→∞
Ec

[
e−Λτx

]
Rh(x) = 0.
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However, these limits and the definitions (2.8) and (2.9) of the functions φ and ψ

imply (2.33). Also, a simple inspection of the ODE (2.1) reveals that if we set

h = r then Rr satisfies (2.37), noting that Rr is well-defined thanks to (2.20) in

Assumption 2.3.1′. We can verify (2.35) and (2.36) by a straightforward calculation

using the definition (2.21) of Rh and (2.19).

To proceed further, let us assume that h/r is increasing, let us fix any x > 0,

and let us define Cx = h(x)/r(x). In view of (2.38), the monotonicity of h/r, and

the definition (2.9) of ψ we calculate

Rh(·)−Cxr(·)(x− ε) = Ex−ε

[∫ τx

0

e−Λt [h(Xt)− Cxr(Xt)] dt

]
+Rh(·)−Cxr(·)(x)Ex−ε

[
e−Λτx

]
≤ Rh(·)−Cxr(·)(x)

ψ(x− ε)

ψ(x)
, for all ε > 0, (2.41)

which shows that

Rh(·)−Cxr(·)(x)−Rh(·)−Cxr(·)(x− ε)

ε
≥
Rh(·)−Cxr(·)(x)

ψ(x)

ψ(x)− ψ(x− ε)

ε
, for all ε > 0.

Recalling that Rh(·)−Cxr(·) is C1, we can pass to the limit ε ↓ 0 in this inequality to

obtain

R′
h(·)−Cxr(·)(x) ≥ Rh(·)−Cxr(·)(x)

ψ′(x)

ψ(x)
. (2.42)

Making a calculation similar to the one in (2.41) using the definition (2.8) of φ this

time, we can see that

Rh(·)−Cxr(·)(x+ ε) ≥ Rh(·)−Cxr(·)(x)
φ(x+ ε)

φ(x)
, for all ε > 0.

Rearranging terms and passing to the limit ε ↓ 0, we can see that this inequality

implies

R′
h(·)−Cxr(·)(x) ≥ Rh(·)−Cxr(·)(x)

φ′(x)

φ(x)
. (2.43)
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Recalling that the strictly positive function ψ is strictly increasing and that the

strictly positive function φ is strictly decreasing, we can see that (2.42) implies

R′
h(·)−Cxr(·)(x) ≥ 0 if Rh(·)−Cxr(·)(x) ≥ 0, while, (2.43) implies R′

h(·)−Cxr(·)(x) ≥ 0

if Rh(·)−Cxr(·)(x) ≤ 0. Now, combining the inequality Rh(·)−Cxr(·)(x) ≥ 0 with the

identities

R′
h(·)−Cxr(·)(x) =

φ′(x)

W(c)

∫ x

0

[h(s)− Cxr(s)]ψ(s)m(ds)

+
ψ′(x)

W(c)

∫ ∞

x

[h(s)− Cxr(s)]φ(s)m(ds)

= R′
h(x)− CxR

′
r(x)

= R′
h(x)

that follow from the definition (2.21) of Rh and (2.37), we can see that R′
h(x) ≥ 0.

However, since the point x > 0 has been arbitrary, this analysis establishes the claim

that, if h/r is increasing, then Rh is increasing. Proving the claim corresponding to

the case when h/r is decreasing follows similar symmetric arguments.

Finally, to show (2.34), let us assume that h := infx>0 h(x)/r(x) > −∞. In this

case, we can use (2.37) and the representation (2.22) to calculate

Rh(x)− inf
x>0

h(x)

r(x)
= Rh(x)−Rhr(·)(x)

= Ex

[∫ ∞

0

e−Λt

[
h(Xt)− inf

x>0

h(x)

r(x)
r(Xt)

]
dt

]
≥ 0,

which establishes the lower bound in (2.34). The upper bound in (2.34) can be

established in exactly the same way, and the proof is complete. 2
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The following lemma gives result useful for practical applications.

Lemma 2.4.1 Suppose that Assumption 2.2.1′, Assumption 2.2.2 and Assump-

tion 2.3.1′ hold. Let h : ]0,∞[→ R be a measurable function satisfying Condi-

tions (I)–(IV) in Proposition 2.4.1. If, in addition, h/r is increasing, then if 0 is a

natural boundary (not an entrance boundary) then

lim
x↓0

Rh(x) = lim
x↓0

h(x)

r(x)
, (2.44)

and if ∞ is a natural boundary then

lim
x→∞

Rh(x) = lim
x→∞

h(x)

r(x)
. (2.45)

Proof We have

Rh(x) ≤ sup
x>0

h(x)

r(x)
Ex

[∫ ∞

0

d
(
e−Λt)

)]
= sup

x>0

h(x)

r(x)

and

Rh(x) ≥ inf
x>0

h(x)

r(x)
Ex

[∫ ∞

0

d
(
e−Λt)

)]
= inf

x>0

h(x)

r(x)
.
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For b < x

Rh(x) = Ex

[∫ τb

0

h(Xt)e
−Λtdt

]
+ Ex

[∫ ∞

τb

h(Xt)e
−Λtdt

]
= Ex

[∫ τb

0

h(Xt)e
−Λtdt

]
+R(b)Ex

[
e−Λτb

]
≥ inf

x>b

h(x)

r(x)
Ex

[∫ τb

0

d
(
e−Λt)

)]
+R(b)Ex

[
e−Λτb

]
= inf

x>b

h(x)

r(x)

(
1− Ex

[
e−Λτb

])
+R(b)Ex

[
e−Λτb

]
= inf

x>b

h(x)

r(x)

(
1− φ(x)

φ(b)

)
+R(b)

φ(x)

φ(b)

while for x < b

Rh(x) = Ex

[∫ τb

0

h(Xt)e
−Λtdt

]
+ Ex

[∫ ∞

τb

h(Xt)e
−Λtdt

]
= Ex

[∫ τb

0

h(Xt)e
−Λtdt

]
+R(b)Ex

[
e−Λτb

]
≤ sup

x<b

h(x)

r(x)
Ex

[∫ τb

0

d
(
e−Λt)

)]
+R(b)Ex

[
e−Λτb

]
≤ sup

x<b

h(x)

r(x)

(
1− Ex

[
e−Λτb

])
+R(b)Ex

[
e−Λτb

]
= sup

x<b

h(x)

r(x)

(
1− ψ(x)

ψ(b)

)
+R(b)

ψ(x)

ψ(b)
.

If ∞ is a natural boundary (not an entrance boundary) then limx→∞ φ(x) = 0

and we can say

lim
x→∞

Rh(x) ≤ lim sup
x→∞

h(x)

r(x)

≥ lim inf
x→∞

h(x)

r(x)

and we have the result for the limit as x tends to infinity. Similarly if 0 is a natural
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boundary then limx→∞ ψ(x) = 0 and we can say

lim
x↓0

Rh(x) ≤ lim sup
x↓0

h(x)

r(x)

≥ lim inf
x↓0

h(x)

r(x)

and we have the result for the limit as x tends to zero. 2

Remark 2.4.1 In the cases where we do not have a natural boundary point, Rh

does not converge to a value determined in a straightforward way by h and r in

the limit. To see this, consider the case of the so-called square root mean reverting

process, defined by

dXt = κ(θ −Xt) dt+ σ
√
Xt dWt, X0 = x > 0,

where κ, θ and σ are positive constants satisfying κθ− 1
2
σ2 > 0. Note that this dif-

fusion has an entrance boundary point at zero. It is a standard exercise to calculate

that

Ex[Xt] = θ + (x− θ)e−κt,

Ex

[
X2
t

]
=

(
σ2θ

2κ
+ θ2

)
+ e−κt

(
2θ(x− θ)− 2

σ2θ

2κ
+
σ2x

κ

)
+ e−2κt

(
σ2θ

2κ
− σ2x

κ
+ (x− θ)2

)
.

Now, let us consider the following three cases for the payoff function, h:

h1(x) = 0, h2(x) = x and h3(x) = x2.

and assume that r is a constant. In all these cases limx↓0 h(x)/r(x) = 0. However,
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we can see that

lim
x↓0

Rh1(x) = 0,

lim
x↓0

Rh2(x) =
θκ

r(r + κ)
> 0,

lim
x↓0

Rh3(x) =

(
σ2θ

2κ
+ θ2

)[
2κ2

r(r + κ)(r + 2κ)

]
> 0.



3. A DISCRETIONARY STOPPING

PROBLEM

3.1 Introduction

In this chapter we address a discretionary stopping problem as a prelude to address-

ing our investment problems. We solve this stopping problem general conditions on

the underlying diffusion, the payoff and the discounting. Also, we consider several

special cases. Although all of the special cases of interest that we are aware of are

associated with stochastic differential equations that have unique strong solutions,

we adopt a weak formulation. Working within this more general framework, which

involves no additional technicalities, has been motivated by the extra degrees of free-

dom that it offers relative to modelling and has a view to applications in stochastic

control beyond optimal stopping.

Section 3.2 is concerned with a rigorous formulation of the stopping problem that

we solve. In this section, we consider the case of the perpetual American call option

which highlights an issue related to waiting forever, which is mentioned in the intro-

duction in relation to McDonald and Siegel [MS86], namely that the problem data

may not conform to standard economic theory. Combining the observations from

this special case with the results of Section 2.4 we develop Assumption 3.2.1 that is

sufficient for our problem to conform with applications in finance and economics.

In Section 3.3 we solve the discretionary stopping problem. With reference to

the motivation of the thesis, we are particularly interested in identifying the nature

of the stopping boundary given the problem data and in solving the discretionary

stopping problem we distinguish cases based on the nature of the stopping boundary.

31
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In Section 3.4, we address a number of special cases of interest. These cases

involve a number of choices for the underlying state process X that have been

considered in the literature, while the payoff functions identify with standard utility

functions with the discount rate being assumed to be constant. In particular we

consider the cases that arise when X is a geometric Brownian motion; a square-

root mean-reverting process as in the Cox-Ingersoll-Ross interest rate model; and a

geometric Ornstein-Uhlenbeck process, which has been proposed by Cortazar and

Schwartz as a model for a commodity’s price and has been used in population

modelling.

3.2 Problem formulation and assumptions

We start by defining a stopping strategy.

Definition 3.2.1 Given an initial condition x > 0, a stopping strategy is any pair

(Sx, τ) such that Sx = (Ω,F,Ft,Px, X,W ) is a weak solution to (2.2) and τ is an

(Ft)-stopping-time. We denote by Sx the set of all such stopping strategies.

The objective is to maximise the performance criterion

J(Sx, τ) = Ex

[
e−Λτ g(Xτ )1{τ<∞}

]
,

where Λt =
∫ t

0
r(Xs) ds and g : ] 0,∞[→ R and r : ]0,∞[→ ]0,∞[ are given deter-

ministic functions, over all stopping strategies (Sx, τ) ∈ Sx. Accordingly we define

the value function v by

v(x) = sup
(Sx,τ)∈Sx

J(Sx, τ), for x > 0.

Now, with a view to developing an understanding of the problem under con-

sideration, we consider the case of a perpetual American call option written on an

underlying asset, the stochastic dynamics of which are modelled by a geometric

Brownian motion.
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Lemma 3.2.1 Suppose that X is a geometric Brownian motion, so that b(x) = bx

and σ(x) = σx, for some constants b and σ, and r(x) ≡ r > 0, for some constant

r. Suppose also that the payoff function is given by g(x) = x−K, where K ≥ 0 is a

constant. If b > r (resp., b < r), then the process (e−rtXt, t ≥ 0) is a submartingale

(resp., supermartingale) and v(x) = ∞ (resp., if K = 0, then v(x) = x).

Proof. Given any initial condition x > 0,

e−rtXt = xe(b−r)te−
1
2
σ2t+σWt , for t ≥ 0.

Combining this observation with the fact that the process (e−
1
2
σ2t+σWt , t ≥ 0) is a

martingale, we can see that all of the claims made are true. 2

In the context of this lemma, we can see that (Sx, 0) is an optimal strategy if

K = 0 and b < r. Given any K ≥ 0, if b − r > 1
2
σ2, then the stopping strategy

(S∗x, τ ∗), where S∗x is a weak solution to (2.2) and

τ ∗ = inf{t ≥ 0| Wt = −a},

where a > 0 is any constant, provides an optimal strategy. Indeed, since τ ∗ < ∞,

Px-a.s., and Ex [τ ∗] = ∞, this claim follows from the calculation

Ex[e
−rτ∗(Xτ∗ −K)] ≥ xe−aσEx

[
e(b−r−

1
2
σ2)τ∗

]
−K

> xe−aσ
[
1 +

(
b− r − 1

2
σ2

)
Ex[τ

∗]

]
−K

= ∞.

When b > r and b − r < 1
2
σ2, we have not been able to find an optimal stopping

strategy. As a matter of fact, we have been tempted to conjecture that there is no

optimal stopping strategy in this case.
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We note that, when b > r, which is associated with v ≡ ∞, and when b = r,

which is a case that we have not associated with a conclusion,

lim
t→∞

Ex

[
e−Λtg(Xt)

]
≡ lim

t→∞
Ex

[
e−rtXt

]
> 0,

for all initial conditions x > 0. In this case, the problem data does not satisfy the

so-called transversality condition

lim
t→∞

Ex

[
e−Λtg(Xt)

]
≡ lim

t→∞
Ex

[
e−rtXt

]
= 0.

Such a condition has a natural economic interpretation because it reflects the idea

that one should expect that the present value of any asset should be equal to zero

at the end of time, given that nobody can benefit by holding the asset after the

end of time. We expect that problems in finance and economics should satisfy this

condition.

Based on this observation and the results in Section 2.4, we impose the following

assumption in order to be able to carry out our analysis of the problem.

Assumption 3.2.1 The function g : ]0,∞[→ R is C1 with an absolutely continuous

first derivative. In addition, given any weak solution, Sx to (2.2) the function g

satisfies

Ex

[∫ ∞

0

e−Λt
∣∣Lg(Xt)

∣∣dt] <∞, for all x > 0, (3.1)

where

Lg(x) :=
1

2
σ2(x)g′′(x) + b(x)g′(x)− r(x)g(x).

Remark 3.2.1 If we define the measurable function h as

h(x) = −Lg(x), for x > 0, (3.2)
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then, the function g satisfies the non-homogeneous ODE

1

2
σ2(x)g′′(x) + b(x)g′(x)− r(x)g(x) + h(x) = 0, x ∈ ]0,∞[.

Therefore, by identifying Rh with g and by Propositions 2.4.1 and 2.4.2 in Sec-

tion 2.4, the following statements are true.

a. Given any weak solution, Sx to (2.2) and any (Ft)-stopping time, τ , the function

g satisfies

Ex

[
e−Λτ g(Xτ )1{τ<∞}

]
<∞, for all x > 0. (3.3)

In addition, Dynkin’s formula holds,

Ex

[
e−Λτ g(Xτ )1{τ<∞}

]
= g(x) + Ex

[(∫ τ

0

e−ΛtLg(Xt)dt

)
1{τ<∞}

]
, for all x > 0.

(3.4)

b. The function g satisfies the following transversality condition. Given any weak

solution, Sx, to (2.2), if (τn) is a sequence of stopping times such that limn→∞ τn =

∞, Px-a.s., then

lim
n→∞

Ex

[
e−Λτn |g(Xτn)|1{τn<∞}

]
= 0. (3.5)

c. With reference to the functions φ and ψ, defined by (2.8) and (2.9), respectively,

and the scale function pc defined by (2.3), the function g satisfies the following

identities

lim
x↓0

g(x)

φ(x)
= lim

x→∞

g(x)

ψ(x)
= 0, (3.6)

g′(x)φ(x)− g(x)φ′(x) = −p′c(x)
∫ ∞

x

Lg(s)φ(s)m(ds), for all x > 0, (3.7)

g′(x)ψ(x)− g(x)ψ′(x) = p′c(x)

∫ x

0

Lg(s)ψ(s)m(ds), for all x > 0. (3.8)
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Remark 3.2.2 In relation to the case of a perpetual American option, studied

above, we observe that

Ex

[∫ ∞

0

e−Λs |Lg(Xs)| ds
]

= |(b− r)|
∫ ∞

0

e(b−r)sds+K

and so the conditions laid out in Assumption 3.2.1 are not satisfied if b ≥ r, which

reflects some of the comments made earlier.

3.3 The solution to the discretionary stopping problem

In solving our stopping problem we shall employ the tools of dynamic programming

and break our overall problem into a series of sub-problems. We do this by consid-

ering, without loss of generality, our options at time zero, which are either to wait

or stop. Consider the case when we wait for a time ∆t and then continue optimally,

we expect that the value function v should satisfy the following inequality

v(x) ≥ Ex

[
e−Λ∆T v(X∆T )

]
.

Using Itô’s formula, dividing by ∆t and taking the limit ∆t ↓ 0 yields

1

2
σ2(x)v′′(x) + b(x)v′(x)− r(x)v(x) ≤ 0.

Alternatively, we can stop, and so we expect that

v(x) ≥ g(x).

We therefore expect that the value function v identifies with a solution w to the

Hamilton-Jacobi-Bellman (HJB) equation

max

{
1

2
σ2(x)w′′(x) + b(x)w′(x)− r(x)w(x), g(x)− w(x)

}
= 0, x > 0. (3.9)
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To develop our intuition of the problem in hand further, consider the case where the

payoff is increasing. In this case we expect that there is a single boundary point,

x∗, separating the continuation and stopping regions and we postulate that it is

optimal to wait for as long as the state process X assumes values less than x∗ and

stop as soon as X hits the set [x∗,∞[. With reference to the heuristic arguments

given above, we therefore look for a solution w to (3.9) that satisfies

1

2
σ2(x)w′′(x) + b(x)w′(x)− r(x)w(x) = 0, for x < x∗, (3.10)

g(x)− w(x) = 0, for x ≥ x∗. (3.11)

Such a solution is given by

w(x) =

{
Aφ(x) +Bψ(x), if x < x∗,

g(x), if x ≥ x∗,

where φ (resp., ψ) is the strictly decreasing (resp., increasing) function given by

(2.8) (resp., (2.9)). In addition, we expect that the value function is positive and

bounded near zero and so we must have A = 0. To specify the parameter B and

x∗, we appeal to the so-called “smooth-pasting” condition of optimal stopping that

requires the value function to be C1, in particular, at the free boundary point x∗.

This requirement yields the system of equations

Bψ(x∗) = g(x∗) and Bψ′(x∗) = g′(x∗),

which is equivalent to

B =
g(x∗)

ψ(x∗)
=
g′(x∗)

ψ′(x∗)
and q(x∗) = 0,

where q is defined by

q(x) = g(x)ψ′(x)− g′(x)ψ(x), x > 0,
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and we note that q(x∗) = 0 corresponds to a turning point of g/ψ, since ψ(x) > 0

for all x > 0.

To develop an intuition as to how g/ψ affects the stopping problem, consider a

different approach to solving the problem. Instead of looking for the stopping time

look for the stopping boundary, for example define the value function as

ṽ(x) = sup
b

Ex

[
e−Λτbg(b)

]
= sup

b
Ex

[
e−Λτb

]
g(b)

Now, starting in the “continuation” region, so x < x∗ since g is increasing, we have

Ex[e
−Λτb ] = ψ(x)/ψ(b)

and

ṽ(x) = sup
b

(
g(b)

ψ(b)

)
ψ(x).

This approach is adopted in Beibel and Lerche [BL00], and provides a clear expla-

nation of why maxima of g/ψ or g/φ are of interest. Unfortunately, this approach

is of limited value when x > x∗.

With these comments in mind, we now provide the following verification theorem,

as a prelude to our main results. Note that the theorems in this section all rely on

Assumptions 2.2.1′, 2.2.2, 2.3.1′, 3.2.1, which are, respectively, that the SDE has

a weak solution, it is non-explosive, discounting is strictly positive and the payoffs

satisfy the transversality conditions.

Theorem 3.3.1 Suppose that Assumptions 2.2.1′, 2.2.2, 2.3.1′ and 3.2.1 hold. In

addition, suppose that the HJB equation (3.9) has a solution w and w ∈ C1(]0,∞[)∩
C2(]0,∞[ \S), where S is a set of a finite number of points, then the value function

v defined in Section 3.2 identifies with w.
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Proof: Fix any initial condition x > 0 and any weak solution Sx to (2.2) and define

Mt =

∫ t

0

e−Λsσ(Xs)w
′(Xs)dWs (3.12)

Lt =

∫ t

0

e−Λsσ(Xs)g
′(Xs)dWs. (3.13)

In addition, we note that our Assumptions mean that Dynkin’s and Itô’s formulae

imply

Ex

[
Lτ1{τ<∞}

]
= 0 (3.14)

for any stopping time τ . Now, fix any initial condition x > 0 and any stopping

strategy (Sx, τ) ∈ Sx, define

τn = inf
{
t ≥ 0

∣∣ Xt ≤ 1/n
}
, for n ≥ 1/x∗.

and we have

M τn
t − Lτnt =

∫ t

0

1{s≤τn}e
−Λsσ(Xs)

(
w′(Xs)− g′(Xs)

)
dWs. (3.15)

Given (3.9) and the nature of our problem imply that w(x) = g(x) for all x ≥ x∗

and that σ2, w′ and g′ are all locally bounded and that r is strictly positive,

Ex [〈M τn
t − Lτnt 〉∞] = Ex

[∫ ∞

0

1{s≤τn}e
−2Λsσ2(Xs)

(
w′ − g′

)2

(Xs) ds

]
≤ sup

x∈[1/n,x∗]

σ2(x)
(
w′(x)− g′(x)

)2Ex

[∫ ∞

0

e−2Λs ds

]
≤ sup

x∈[1/n,x∗]

σ2(x)
(
w′(x)− g′(x)

)2
2r0

< ∞.

With reference to [RY99, Chapter IV, Proposition 1.23], this implies that
{
(Mt −

Lt), t < ∞
}

is an L2-bounded martingale. Therefore, by appealing to Doob’s op-
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tional sampling theorem, it follows that Ex

[(
M τn

τ −Lτnτ
)
1{τ∧τn<∞}

]
= 0, which com-

bined with (3.14) implies that Ex

[
M τn

τ 1{τ∧τn<∞}
]

= 0. Now, since w ∈ C1(]0,∞[)∩
C2(]0,∞[ \ {x∗}) and w′ is of bounded variation, we can use Itô’s formula to calcu-

late

e−Λτ∧τnw(Xτ∧τn)1{τ∧τn<∞} = w(x) +

(∫ τ∧τn

0

e−ΛsLw(Xs) ds+M τn
τ

)
1{τ∧τn<∞},

(3.16)

adding the term e−Λτ g(Xτ )1{τ<τn<∞} to both sides of this equation, taking expec-

tations and given that w satisfies (3.9), we have

Ex

[
e−Λτ g(Xτ )1{τ<τn<∞}

]
≤ w(x)− w(1/n)Ex

[
e−Λτn1{τn≤τ<∞}

]
. (3.17)

Applying the dominated convergence theorem, given (3.3), implies

lim
n→∞

Ex

[
e−Λτ g(Xτ )1{τ<τn<∞}

]
= Ex

[
e−Λτ g(Xτ )1{τ<∞}

]
. (3.18)

The fact that w remains bounded as x tends to 0 together with the fact that 0 is

inaccessible imply

lim
n→∞

w(1/n)Ex

[
e−Λτn1{τn≤τ<∞}

]
= 0. (3.19)

In view of (3.18)–(3.19), (3.17) implies

Ex

[
e−Λτ g(Xτ )1{τ≤∞}

]
≤ w(x),

which proves v(x) ≤ w(x).

To prove the reverse inequality, given any T > 0, let (S∗x, τ ∗) be the strategy

considered in the statement of the theorem. By following the arguments that lead
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to (3.17) we can see that

Ex

[
e−Λ∗

τ∗g(X∗
τ∗)1{τ∗≤τ∗n∧T}

]
= w(x)− Ex

[
e
−Λ∗

τ∗nw(1/n)1{τ∗n≤T<τ∗}

]
− Ex

[
e−Λ∗Tw(X∗

T )1{T<τ∗n<τ∗}
]
.

This calculation and (3.18)–(3.19) imply

Ex

[
e−Λ∗

τ∗g(X∗
τ∗)1{τ∗≤∞}

]
= w(x),

which proves v(x) ≥ w(x), and establishes the optimality of (S∗x, τ ∗), and the proof

is complete. 2

The motivation for the thesis was to develop the theory of discretionary stopping

such that we could understand under what conditions x∗ exists in the interval ]0,∞[.

The discussion around the perpetual American call, in Section 3.2, demonstrate

that some problems do not conform to standard economic theory, and we impose

Assumption 3.2.1 in order to restrict ourselves to those problems that do conform

to standard economic theory. Given this verification theorem, we can now prove our

main results, which we split into three theorems. Theorem 3.3.2 focuses on the two

cases where immediately stopping or never stopping is optimal, and the stopping

boundary, x∗, is not in the interval ]0,∞[. Theorem 3.3.3 focuses on the cases

where there is a single, continuous, continuation region, separated from a single,

continuous stopping region by a single point x∗ ∈]0,∞[. Theorem 3.3.4 considers

two cases when two stopping boundaries exist in ]0,∞[.

Theorem 3.3.2 (No stopping boundaries) Suppose that Assumptions 2.2.1′, 2.2.2,

2.3.1′ and 3.2.1 hold. We have the following solutions to the discretionary stopping

problem formulated in Section 3.2 when there are no stopping boundaries in ]0,∞[.

Case I. If Lg is positive for all x > 0 then given any initial condition x > 0,

the value function v identifies with w(x) = 0 and there is no admissible

stopping strategy.

Case II. If Lg is negative for all x > 0 given any initial condition x > 0, the
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value function v identifies with w(x) = g(x) and the stopping strategy

(S∗x, 0) ∈ Sx, where S∗x is a weak solution to (2.2) is optimal.

Proof of Case I. The structure of this case implies that xψ = ∞, hence the HJB

equation is equivalent to

1

2
σ2(x)w′′(x) + b(x)w′(x)− r(x)w(x) = 0 for all x ∈ ]0,∞[, (3.20)

w(x) ≥ g(x) for all x ∈ ]0,∞[. (3.21)

Clearly, w(x) = 0 satisfies (3.20) and given the arguments preceding these theorems,

we have g(x) < 0 for all x, and (3.21) is satisfied. Also, w ∈ C1(]0,∞[)∩C2(]0,∞[),

and so appealing to Theorem 3.3.1, we complete the proof.

Proof of Case II. The structure of this case implies that xψ = 0, hence the HJB

equation is equivalent to

1

2
σ2(x)w′′(x) + b(x)w′(x)− r(x)w(x) ≤ 0 for all x ∈ ]0,∞[, (3.22)

w(x) = g(x) for all x ∈ ]0,∞[. (3.23)

Clearly, w(x) = g(x) satisfies (3.23) and given the arguments preceding these theo-

rems, we have Lg(x) < 0 for all x, and (3.22) is satisfied. Since g satisfies Dynkin’s

formula, (3.4), and the transversality condition, (3.5), we can use a modification

Theorem 3.3.1 to complete the proof. 2

Remark 3.3.1 It is important to appreciate how the integrability condition, As-

sumption 3.2.1 impacts our problem. Firstly, it ensures our problem data satisfies

the transversality condition, and so it conforms to standard economic theory. In ad-

dition we have (3.8), which implies that if Lg is positive then g/ψ is increasing, and

we have (3.6), that limx→∞ g(x)/ψ(x) = 0. These immediately imply that g(x) < 0

for all x, and, since our stopping is discretionary, we would never stop. In the case

where Lg is negative, then g/ψ is decreasing, and the corresponding consequence of
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(3.6) is that g(x) > 0 for all x. We also note that (3.4) implies that

Ex

[
e−Λτ g(Xτ )1{τ<∞}

]
< g(x), for all x > 0,

and so it would be optimal to stop immediately.

For future reference, we associate an increasing g/ψ (resp., decreasing g/φ) with

the continuation region, while a decreasing g/ψ (resp., increasing g/φ) is associated

with stopping.

Theorem 3.3.3 (One stopping boundary) Suppose that Assumptions 2.2.1′, 2.2.2,

2.3.1′ and 3.2.1 hold. We have the following solutions to the discretionary stopping

problem formulated in Section 3.2 when there is one stopping boundary in ]0,∞[.

Case I. If g/ψ achieves a maximum for some xψ ∈ ]0,∞[, but g/φ does not, and

Lg(x) ≤ 0 for all x ≥ xψ then the value function v identifies with the

function w defined by

w(x) =

Bψ(x), if x < xψ,

g(x), if x ≥ xψ,
(3.24)

with B = g(xψ)/ψ(xψ) > 0 being the value of the maximum. Further-

more, given any initial condition x > 0, the stopping strategy (S∗x, τ ∗) ∈
Sx, where S∗x is a weak solution to (2.2) and

τ ∗ = inf{t ≥ 0 | Xt ≥ xψ},

is optimal.

Case II. If g/φ achieves a maximum for some xφ ∈ ]0,∞[, but g/ψ does not,and

Lg(x) ≤ 0 for all x ≤ xφ, then the value function v identifies with the
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function w defined by

w(x) =

Aφ(x), if x > xφ,

g(x), if x ≤ xφ,
(3.25)

with A = g(xφ)/φ(xφ) > 0 being the value of the maximum. Furthermore,

given any initial condition x > 0, the stopping strategy (S∗x, τ ∗) ∈ Sx,

where S∗x is a weak solution to (2.2) and

τ ∗ = inf{t ≥ 0 | Xt ≤ xφ},

is optimal.

Proof of Case I. Firstly, we note that since g/ψ achieves a maximum at x = xψ

and Lg(x) ≤ 0 for all x > xψ then g/ψ is decreasing for all x > xψ. Given that (3.6)

holds if there is a maximum of g/ψ at xψ its value is positive, and so B > 0.

To prove that w given by (3.24) satisfies the HJB equation (3.9), we need to

show that

g(x)− w(x) ≤ 0, for x > xψ, (3.26)

Lw(x) ≤ 0, for x ≤ xψ. (3.27)

Using the fact that B is given by the value of the maximum, we can see that (3.26)

is equivalent to

B =
g(xψ)

ψ(xψ)
≥ g(x)

ψ(x)
, for all x ≤ xψ,

which is true, given g/ψ has a maximum. Similarly, with regard to the structure of

w, given by (3.24), (3.27) is equivalent to

Lg(x) ≤ 0, for all x ≥ xψ, (3.28)

which is true by assumption.
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To complete the proof, we apply Theorem 3.3.1.

Proof of Case II. This case is symmetric to Case I. We note that Lg(x) ≤ 0 for

all x ≤ xφ combined with the fact that g/φ achieves a maximum at x = xφ ensures

that g/φ is increasing for all x < xφ. Given (3.6) holds, then the maximum of g/φ

at xφ is positive, and so A > 0.

To prove that w given by (3.25) satisfies the HJB equation (3.9), we need to

show that

Lw(x) ≤ 0, for x ≤ xφ, (3.29)

g(x)− w(x) ≤ 0, for x > xφ. (3.30)

With regard to the structure of w, given by (3.24), (3.29) is equivalent to

Lg(x) ≤ 0, for all x ≤ xφ, (3.31)

which is true by assumption. Similarly, using the fact that A is given by the value

of the maximum, we can see that (3.30) is equivalent to

A =
g(xφ)

φ(xφ)
≥ g(x)

φ(x)
, for all x > xφ,

which is true, given g/φ has a maximum.

To complete the proof, we apply Theorem 3.3.1. 2

Theorem 3.3.4 (Two stopping boundaries) Suppose that Assumptions 2.2.1′,

2.2.2, 2.3.1′ and 3.2.1 hold. We have the following solutions to the discretionary

stopping problem formulated in Section 3.2 when there are two stopping boundaries

in ]0,∞[..

Case I. This statement is incorrect. If g/φ achieves a maximum for some

xφ ∈ ]0,∞[, and g/ψ achieves a maximum for some xψ ∈ ]xφ,∞[. If, in

addition, Lg(x) ≤ 0 for all x ≤ xφ and for all x ≥ xψ then the value
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function v identifies with the function w defined by

w(x) =


g(x), if x ≤ xφ,

Aφ(x) +Bψ(x), if xφ < x < xψ,

g(x), if x ≥ xψ,

(3.32)

with A = g(xφ)/φ(xφ) > 0, and, B = g(xψ)/ψ(xψ) > 0 being the values of

the maxima. Furthermore, given any initial condition x > 0, the stopping

strategy (S∗x, τ ∗) ∈ Sx, where S∗x is a weak solution to (2.2) and

τ ∗ = inf{t ≥ 0 | Xt /∈]xφ, xψ[},

is optimal.

Case II. If g/ψ achieves a maximum for some xψ ∈ ]0,∞[, and g/φ achieves a

maximum for some xφ ∈ ]xψ,∞[. If, in addition, Lg(x) ≤ 0 for all

x ∈ [xψ, xφ], then the value function v identifies with the function w

defined by

w(x) =


Bψ(x), if x < xψ,

g(x), if xψ ≤ x ≤ xφ,

Aφ(x), if x > xφ,

(3.33)

with B = g(xψ)/ψ(xψ) > 0, and A = g(xφ)/φ(xφ) > 0 being the values of

the maxima. Furthermore, given any initial condition x > 0, the stopping

strategy (S∗x, τ ∗) ∈ Sx, where S∗x is a weak solution to (2.2) and

τ ∗ = inf{t ≥ 0 | Xt ∈ [xψ, xφ]},

is optimal.

Proof of Case I. As above, we note that given the condition on Lg and (3.6),

then the maxima of g/φ and g/ψ are positive.
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To prove that w given by (3.32) satisfies the HJB equation (3.9), we need to

show that

Lw(x) ≤ 0, for x ≤ xφ, (3.34)

g(x)− w(x) ≤ 0, for xφ < x < xψ, (3.35)

Lw(x) ≤ 0, for x ≥ xψ. (3.36)

We can see immediately that (3.34) and (3.36) hold, given the structure of w, given

by (3.32), and the structure of Lg, given by assumption. We can see that (3.35) is

equivalent to

g(x) ≤ Aφ(x) +Bψ(x),if xφ < x < xψ. (3.37)

This is true for all g(x) ≤ 0 given x ∈ ]0,∞[ and A,B, ψ and φ are positive. If

g(x) > 0, we can write (3.37) in two ways

g(x)

φ(x)
≤ g(xφ)

φ(xφ)
+
g(xψ)

φ(xψ)

ψ(x)

φ(x)
or

g(x)

ψ(x)
≤ g(xφ)

φ(xφ)

φ(x)

ψ(x)
+
g(xψ)

φ(xψ)

which are true given that g(xφ)/φ(xφ) and g(xψ)/φ(xψ) are maxima and that all the

parameters are positive.

To complete the proof, we apply a modification of Theorem 3.3.1.

Proof of Case II. As above, we note that given the condition on Lg and (3.6),

then the maxima of g/φ and g/ψ are positive.

To prove that w given by (3.33) satisfies the HJB equation (3.9), we need to

show that

g(x)− w(x) ≤ 0, for x < xψ, (3.38)

Lw(x) ≤ 0, for xψ ≤ x ≤ xφ, (3.39)

g(x)− w(x) ≤ 0, for x > xφ. (3.40)

Again, (3.39) is true given the structure of w and the assumption of Lg in the
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interval [xψ, xφ]. Similarly we can show that (3.38) and (3.40) are true given that A

and B are maxima.

To complete the proof, we apply a modification of Theorem 3.3.1. 2

Remark 3.3.2 These results are similar to those derived, in a general sense, in

Beibel and Lerche [BL00]. The main difference is that Beibel and Lerche consider

the case where you look for a stopping boundary, with the assumption that you start

in a continuation region. They do not investigate the nature of the problem beyond

the stopping boundary. By doing this, we are able to propose Case II, which is not

considered in Beibel and Lerche.

Theorem 3.3.3 depends on the nature of φ and ψ and whether g/φ or g/ψ achieve

maxima, which are conditions not exogenous to the problem data. We have the

following sufficient conditions on the existence of turning points of g/ψ and g/φ

that satisfy the conditions in Theorem 3.3.3 and can be deduced from the problem

data.

Lemma 3.3.1 Suppose that Assumptions 2.2.1′, 2.2.2, 2.3.1′ and 3.2.1 hold and if

g(x) > 0 for some x ∈ ]0,∞[. Then we have the following two cases

(a) If

Lg(x)

> 0, for x < x1,

< 0, for x > x1,
x1 > 0, (3.41)

then g/ψ achieves a unique maximum for some xψ ∈ ]x1,∞[ and xψ is the unique

solution to qψ(x) = 0, where qψ is defined by

qψ(x) = p′c(x)

∫ x

0

Lg(s)ψ(s)m(ds), for all x > 0. (3.42)
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(b) If

Lg(x)

< 0, for x < x2,

> 0, for x > x2,
x2 > 0. (3.43)

then g/φ achieves a unique maximum for some xφ ∈ ]0, x2[ and xφ is the unique

solution to qφ(x) = 0, where qφ is defined by

qφ(x) = p′c(x)

∫ ∞

x

Lg(s)φ(s)m(ds), for all x > 0. (3.44)

Proof of Case a. We have that g/ψ is increasing for x < x1, given (3.8) and the

fact that Lg is positive for x < x1. Since g(x) > 0 for some x ∈ ]0,∞[, then for the

same interval g/ψ is positive. Given (3.6), then g/ψ achieves at least one maximum.

Given (3.41) and (3.8), this maximum is unique. Using (3.8), (3.42) is simply

qψ(x) = ψ2(x)
d

dx

(
g(x)

ψ(x)

)
and noting ψ(x) > 0 for all x > 0, the proof is complete.

Proof of Case b. Similarly, we have that g/φ is decreasing for x > x2, given (3.7)

and the fact that Lg is positive for x > x2. Since g(x) > 0 for some x ∈ ]0,∞[,

then for the same interval g/φ is positive. Given (3.6), then g/φ achieves at least

one maximum. Given (3.43) and (3.7), this maximum is unique. Given (3.41) and

(3.8), this maximum is unique. Using (3.7), (3.44) is simply

qφ(x) = −φ2(x)
d

dx

(
g(x)

φ(x)

)
and noting φ(x) > 0 for all x <∞, the proof is complete. 2

Remark 3.3.3 We may be interested in cases where the discount function r has a

hyperbolic term, to reflect the difficulty of borrowing if the economic environment is

poor. In these cases we might be confronted with Lg making more than one crossing

of Lg(x) = 0. In these cases we have the following heuristic.
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1. If Lg(x) > 0 for all x < x1 and Lg(x) < 0 for all x > x2, x1 ≤ x2, then Case I

of Theorem 3.3.3 is most likely to apply.

2. If Lg(x) < 0 for all x < x1 and Lg(x) > 0 for all x > x2, x1 ≤ x2, then Case II

of Theorem 3.3.3 is most likely to apply.

3. If Lg(x) < 0 for all x < x1 and Lg(x) < 0 for all x > x2, x1 ≤ x2, then Case I

of Theorem 3.3.4 could apply.

4. If Lg(x) > 0 for all x < x1 and Lg(x) > 0 for all x > x2, x1 ≤ x2, then Case II

of Theorem 3.3.4 could apply.

3.4 Special cases

We now consider a number of special cases of the general discretionary stopping

problem that we studied in the previous section. Our aim here is to establish under

what conditions the boundary, x∗, between the continuation and stopping region

lies in ]0,∞[. This is in line with the motivation for the thesis discussed in the

introduction.

We focus on cases where the discounting is constant, r(x) = r > 0. This is

motivated by the fact that we can find explicit solutions to the relevant ODE.

Remark 3.3.3 can provide insights into the cases where we have state dependent

discounting. We consider state process dynamics that are widely used in finance and

economics and payoffs associated with commonly used utility function. In particular,

we investigate the situation when X is a geometric Brownian motion, in which case

b(x) = bx and σ(x) = σx, for all x > 0,

a square-root mean-reverting process, which arises when

b(x) = κ(θ − x) and σ(x) = σ
√
x, for all x > 0,
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or a geometric Ornstein-Uhlenbeck process, in which case

b(x) = κ(θ − x)x and σ(x) = σx, for all x > 0.

The payoff function, g, is given as

g(x) = ξxη −K (3.45)

g(x) = ξ ln(x+ η)−K, (3.46)

g(x) = γ
(
1− ξe−ηx

)
, (3.47)

where ξ, η, γ > 0 and K ∈ R are constants. For η ∈ ]0, 1[ and K = 0, the choice of g

as in (3.45) identifies with a power utility function, while for η ≥ 1, such a choice is

associated with a perpetual American power option, discussed in the introduction.

Choices of g as in (3.46) and (3.47) are associated with logarithmic utility and

exponential utility functions, respectively.

The Itô diffusions under consideration have been well studied in the literature,

and they all satisfy Assumptions 2.2.1′ and 2.2.2. In all cases, we assume that

r(x) ≡ r, for some constant r > 0, so that Assumption 2.3.1′ is satisfied. So, our

first objective is to establish under what conditions these state process dynamics

and payoffs satisfy the transversality condition, which is true if Assumption 3.2.1

holds. Secondly, we wish to find the conditions under which x∗ ∈]0,∞[. Our final

objective in this section is to derive expressions for φ and ψ, once these are known,

with the knowledge that x∗ ∈]0,∞[, it is a straightforward exercise to identify the

value of x∗ and the value function.

Our choices of g are increasing and positive for some interval, so we would expect

them to be associated with Case I of Theorem 3.3.3. Therefore, given that all our

payoffs are positive for some x, we need to investigate under what conditions Lg

crosses the y-axis once, and we have the cases in Lemma 3.3.1. Clearly if our

Assumptions hold for g, then they will hold for −g with (3.43) replacing (3.41), and

we would expect the choice of −g to be associated with Case II of Theorem 3.3.3.

To show (3.1) of Assumption 3.2.1 is satisfied, it is sufficient to show that there
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exists a constant j ≥ 1 such that

∣∣Lg(x)∣∣ ≤ C(1 + xj), for all x > 0, (3.48)

E
[
Xj
s

]
<∞. (3.49)

To see this, consider any weak solution, Sx, to (2.2), and combine (2.20) from As-

sumption 2.3.1′, (3.48) with (3.49), fact that Xt > 0 and Fubini’s Theorem, and

so

Ex

[∫ ∞

0

e−Λt
∣∣Lg(Xt)

∣∣dt] ≤ C

∫ ∞

0

e−Λtdt+ CEx

[∫ ∞

0

e−ΛtXj
t dt

]
≤ C

r0
+ CEx

[∫ ∞

0

e−ΛsXj
t dt

]
≤ C

r0
+ C

∫ ∞

0

e−r0tEx

[
Xj
t

]
dt

< ∞.

It is a matter of calculation to verify that if g is as in (3.45) then j in (3.48)

corresponds to η for a geometric Brownian motion and square root mean reverting

diffusion and η + 1 for an exponential and geometric Ornstein-Uhlenbeck diffusion.

If g is as in (3.46), j = 1 for all the diffusions under consideration, where as for g is

as in (3.47), Lg(x) < C for all x. Hence, verification of Assumption 3.2.1 is a case

of verifying (3.49) for these values of j. However, (3.49) holds for all the diffusions

under consideration apart from geometric Brownian motion, as they all have finite

moments of all orders.

We now turn our attention to identifying the functions φ and ψ that are associ-

ated with the four diffusions under consideration. It turns out that a number of the

cases considered are related to Kummer’s ordinary differential equation

zu′′(z) + (β − z)u′(z)− αu(z) = 0, (3.50)

where α, β > 0 are constants. Independent solutions to this ordinary differential

equation can be expressed in terms of the confluent hypergeometric function 1F1,
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defined by

1F1(α, β; z) =
∞∑
m=0

1

m!

(α)m
(β)m

zm,

where (α)0 = 1 and (α)m = α(α + 1) · · · (α +m− 1), and the function U , which is

defined by

U(α, β; z) =
π

sin πβ

[
1F1(α, β; z)

Γ(1 + α− β)Γ(β)
− z1−β 1F1(α+ 1− β, 2− β; z)

Γ(α)Γ(2− β)

]
(see Magnus, Oberhettinger and Soni [MOS66, Chapter VI] or Abramowitz and

Stegun [AS72, Chapter 13]). We have, in addition, that

d

dz
1F1(α, β; z) =

α

β
1F1(α+ 1, β + 1; z) and

d

dz
U(α, β; z) = −αU(α+ 1, β + 1; z).

For future reference, observe that for α, β > 0, 1F1(α, β; ·) is positive and strictly

increasing on ]0,∞[, 1F1(α, β; 0) = 1 and limz→∞ 1F1(α, β; z) = ∞. Also, recalling

the identity
π

sin πβ
= Γ(β)Γ(1− β),

(see Magnus, Oberhettinger and Soni [MOS66, Chapter I] or Abramowitz and Stegun

[AS72, 6.1.7]), we can see that

U(α, β; z) =
Γ(1− β)

Γ(1 + α− β)
1F1(α, β; z)− Γ(β)

(1− β)Γ(α)
z1−β

1F1(α+ 1− β, 2− β; z).

With regard to this expression, it is worth noting that, although the gamma function

x 7→ Γ(x) has simple poles at x = −m, m ∈ N∗, U is well defined and finite for

β = 2, 3, 4, . . .. Although we do not need this result in our analysis, it is worth noting

that limz↓0 U(α, β; z) = ∞ if β > 1. Also, for α > 0 and β > 1, U(α, β; ·) is positive,

strictly decreasing in ]0,∞[ and limz→∞ U(α, β; z) = 0 (see Magnus, Oberhettinger

and Soni [MOS66, Chapter VI] or Abramowitz and Stegun [AS72, Chapter 13]).
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3.4.1 Geometric Brownian motion

Geometric Brownian motion is the most commonly used model in finance for the

value of an asset. In this case, the state process dynamics are given by

dXt = bXt dt+ σXt dWt, X0 = x > 0,

where b, σ are constants and the ODE associated with (3.9) is given by

1

2
σ2x2w′′(x) + bxw′(x)− rw(x) = 0, for x > 0. (3.51)

We start by establishing the conditions under which (3.49) holds. Given

E
[∫ ∞

0

e−ΛtXj
t dt

]
=

∫ ∞

0

x exp

{(
jb− j

1

2
σ2 +

1

2
j2σ2 − r

)
t

}
E
[
e(−

1
2
j2σ2t+jσWt)

]
dt

Assumption 3.2.1 is satisfied if

r > jb+
1

2
j(j − 1)σ2.

It is a straightforward, all be it tedious, exercise to verify that (3.41) is satisfied

when

g is given by (3.45), K > 0 and r > ηb+
1

2
η(η − 1)σ2,

g is given by (3.46) and K > ξ ln η,

g is given by (3.47) and ξ > 1.

The proof of the following well-known result is straightforward and omitted.

Lemma 3.4.1 The increasing function ψ and the decreasing function φ spanning

the solution set to (3.51) are given by

ψ(x) = xn and φ(x) = xm,
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where the constants m < 0 < n are defined by

m,n =
1

2
− b

σ2
±

√(
b

σ2
− 1

2

)2

+
2r

σ2
.

3.4.2 Square-root mean-reverting process

The diffusion X defined by

dXt = κ(θ −Xt) dt + σ
√
Xt dWt, X0 = x > 0,

where κ, θ and σ are positive constants satisfying κθ − 1
2
σ2 > 0 models the short

rate in the Cox-Ingersoll-Ross interest rate model, and has attracted considerable

interest in the theory of finance. Note that the assumption that κθ − 1
2
σ2 > 0 is

imposed because it is necessary and sufficient forX to be non-explosive, in particular

for the hitting time of 0 to be infinite with probability 1. Also, the ODE associated

with (3.9) takes the form

1

2
σ2xw′′(x) + κ(θ − x)w′(x)− rw(x) = 0, for x > 0. (3.52)

We can verify that (3.41) is satisfied when

g is given by (3.45) and K > 0,

g is given by (3.46) and K > ξ

(
ln η − κθ

ηr

)
,

g is given by (3.47) and ξ >
r

r + ηκθ
.

Lemma 3.4.2 The increasing function ψ and the decreasing function φ spanning

the solution set to (3.52) are given by

ψ(x) = 1F1

(
r

κ
,
2κθ

σ2
;
2κ

σ2
x

)
and φ(x) = U

(
r

κ
,
2κθ

σ2
;
2κ

σ2
x

)
.
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Proof. Setting y = 2κx/σ2 and h(y) = w(x), the ODE (3.52) becomes

yh′′(y) +

(
2κθ

σ2
− y

)
h′(y)− r

κ
h(y) = 0,

which is Kummer’s equation for α = r/κ > 0 and β = 2κθ/σ2 > 1, the inequality

as a consequence of the assumption that κθ − 1
2
σ2 > 0, and the result follows. 2

3.4.3 Geometric Ornstein-Uhlenbeck process

The diffusion X defined by

dXt = κ(θ −Xt)Xt dt+ σXt dWt, X0 = x > 0, (3.53)

where κ, θ and σ are positive constants, has been proposed by Cortazar and Schwartz

[CS97] as a model for a commodity’s price and has played a role in population

modelling. The ordinary differential equation associated with (3.9) for this diffusion

takes the form

1

2
σ2x2w′′(x) + κ(θ − x)xw′(x)− rw(x) = 0, for x > 0. (3.54)

We can verify that (3.41) is satisfied when

g is given by (3.45) and K > 0,

g is given by (3.46) and K > ξ ln η,

g is given by (3.47) and ξ > 1.

Lemma 3.4.3 The increasing function ψ and the decreasing function φ spanning

the solution set to (3.54) are given by

ψ(x) = xn 1F1

(
n, 2n+

2κθ

σ2
;
2κx

σ2

)
and φ(x) = xnU

(
n, 2n+

2κθ

σ2
;
2κx

σ2

)
,
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where

n =
1

2
− κθ

σ2
+

√(
κθ

σ2
− 1

2

)2

+
2r

σ2
.

Proof. Motivated by Dixit and Pindyck [DP94, Chapter 5, Section 5A], we consider

a candidate for the solution to (3.54) of the form

w(x) = Axnf(x)

which results in

xnf(x)

[
1

2
σ2n(n− 1) + κθn− r

]
+ xn+1

[
1

2
σ2xf ′′(x)

(
σ2n+ κ[θ − x]

)
f ′(x)− κnf(x)

]
= 0.

This can be true for all x > 0 only if

1

2
σ2n(n− 1) + κθn− r = 0, (3.55)

and

1

2
σ2xf ′′(x) + (σ2n+ κθ − κx)f ′(x)− κnf(x) = 0. (3.56)

We note that the negative solution to (3.55) would result in choices for ψ and φ not

having the required monotonicity properties. Choosing n to be the positive solution

to (3.55), and setting x = σ2y/(2κ) and g(y) = f(x), we can see that (3.56) becomes

yg′′(y) +

(
2n+

2κθ

σ2
− y

)
g′(y)− ng(y) = 0,

which is Kummer’s equation with α = n > 0 and β = 2n + 2κθ/σ2 > 0 and the

expressions for ψ and φ in the statement follow.

Since xn and 1F1 are both increasing functions, the function ψ is plainly increas-
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ing. To see that φ is decreasing, we recall that

zU(a, b+ 1; z) = U(a− 1, b; z) + (b− a)U(a, b; z)

(see Magnus, Oberhettinger and Soni [MOS66, Section 6.2]). Using this result, we

calculate,

d

dx
φ(x) = − (β − α+ 1)nxn−1U(α+ 1, β;x)

which is negative for if and only if β > α− 1. However, we can see that β > α− 1

if and only if

3

2

κθ

σ2
+

√(
κθ

σ2
− 1

2

)2

+
2r

σ2
>

1

2
,

which is true for all κ, θ, σ, r > 0. 2



4. THE INVESTMENT PROBLEMS

4.1 Introduction

We now consider investment problems that involve both single entry and exit as

well sequential entry and exit. Section 4.2 provides a formulation of the various

investment problems studied.

In Section 4.3 we solve the single entry and exit problems. Specifically, we

address the issues of the initialisation of a random cashflow, the abandonment of an

existing cashflow and the initialisation and then the abandonment of a stochastic

cashflow. We show that these problems can all be reduced to appropriate versions

of the discretionary stopping problem studied in Chapter 3.

In Section 4.4, we study the sequential entry and exit decisions relying on intu-

ition developed in Section 4.3. We start by investigating the case where multiple

entry and exit decisions may define the optimal strategy. We then consider the sim-

pler case where being “in” or “out” of the investment is optimal, whatever the value

of the state process. We finish by considering the case, where although any number

of entry and exit decisions are possible, the optimal strategy is, in fact, similar to

the initialisation or abandonment strategies in Section 4.3.

The problems in Section 4.3 have been formulated to be irreversible, or in the case

of the initialisation and then the abandonment of a cashflow, partially reversible.

The problems in Section 4.4 have been formulated to be reversible, however switching

back (reversing) may not form part of the optimal strategy.

59
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4.2 Problem formulation and assumptions

We consider the following classes of decision strategies.

Definition 4.2.1 Given an initial condition x > 0, we define the following decision

strategies, bearing in mind the definition of a stopping strategy given in Defini-

tion 3.2.1.

An initialisation strategy is any admissible stopping strategy (Sx, τ1) ∈ Sx.

An abandonment strategy is any admissible stopping strategy (Sx, τ0) ∈ Sx.

An admissible initialisation and abandonment strategy is any triplet (Sx, τ1, τ0)
where Sx = (Ω,F,Ft,Px, X,W ) is a weak solution to (2.2) and τ1, τ0 are (Ft)-

stopping times such that τ1 ≤ τ0, Px-a.s.. We denote by Cx the family of all

such admissible strategies.

An admissible switching strategy, is a pair (Sx, Z) where Sx = (Ω,F,Ft,Px, X,W )

is a weak solution to (2.2) and Z is an Ft adapted, finite variation, càdlàg

process taking values in {0, 1} with Z0 = z. We denote by Zx,z the set of all

such control strategies.

We consider the following related optimisation problems. The first one, the

initialisation of a payoff flow problem, can be regarded as determining the optimal

time at which a decision maker should activate an investment project. In this

context, each initialisation strategy (Sx, τ1) ∈ Sx is associated with the performance

criterion

J I(Sx, τ1) = Ex

[(∫ ∞

τ1

e−Λth(Xt) dt− e−Λτ1g1(Xτ1)

)
1{τ1<∞}

]
. (4.1)

Here h : ]0,∞[→ R is a deterministic function modelling the payoff flow that the

project yields after its initialisation, while g1 : ]0,∞[→ R is a deterministic function

modelling the cost of initialising the project and where Λt :=
∫ t

0
r(Xs)ds, with

r : ]0,∞[→]0,∞[, is a given deterministic discounting function. The objective of the
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decision maker is to maximise J I over all initialisation strategies, (Sx, τ1) ∈ Sx. The

resulting value function is defined by

vI(x) = sup
(Sx,τ1)∈Sx

J I(Sx, τ1), for x > 0. (4.2)

The abandonment of a payoff flow problem aims at determining the optimal time

at which a decision maker, who receives a payoff from an active investment project,

should terminate the project. In this case, each abandonment strategy, (Sx, τ0) ∈ Sx,

is associated with the performance index

JA(Sx, τ0) = Ex

[∫ τ0

0

e−Λth(Xt) dt− e−Λτ0g0(Xτ0)1{τ0<∞}

]
. (4.3)

Here, the function h : ]0,∞[→ R is the same as in (4.1), while g0 : ]0,∞[→ R is a

deterministic function modelling the cost of abandoning the project. This problem’s

value function is given by

vA(x) = sup
(Sx,τ0)∈Sx

JA(Sx, τ0), for x > 0. (4.4)

The initialisation of a payoff flow with the option to abandon problem is the

combination of the previous two problems. It arises when a decision maker is faced

with the requirement to optimally determine the time at which an investment project

should be activated and, subsequently, the time at which the project should be

abandoned. In this problem, the associated performance criterion is defined by

J IA(Sx, τ1, τ0) = Ex

[(
−e−Λτ1g1(Xτ1) +

∫ τ0

τ1

e−Λth(Xt)dt

)
1{τ1<∞}

−e−Λτ0g0(Xτ0)1{τ0≤∞}

]
, (4.5)

where the functions h, g1 and g0 are the same as in (4.1) and (4.3). The objective is to

maximise this performance index over all admissible initialisation and abandonment
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strategies in Cx, and the associated value function is defined by

vIA(x) = sup
(Sx,τ1,τ0)∈Cx

J IA(Sx, τ1, τ0), for x > 0. (4.6)

The sequential entry and exit problem models the situation where the decision

maker can choose between two deterministic payoffs of the state process, and there

is no limit as to the number of times the decision maker can switch between the two

payoffs, and the decision maker can reverse their decision. In this problem, the task

of the decision maker is to select the times when the system should be switched.

These sequential decisions form a control strategy and they are modelled by the

process Z. For clarity, we shall differentiate the two payoffs by calling one “closed”

and the other “open”. If the system is open at time t then Zt = 1, where as if it

closed at time t then Zt = 0. While operating in the open mode the system provides

a running payoff given by a function h1 : ]0,∞[→ R and while in closed mode the

payoff is given by h0 : ]0,∞[→ R. The transition from one operating mode to the

other is immediate. The transitions between open and closed modes are indicated by

(∆Zs)
+ = 1{Zt−Zt−=1} with a cost given by the function g1 : ]0,∞[→ R. Switching

between closed and open modes is given by (∆Zs)
− = 1{Zt−−Zt=1} and the associated

cost is given by g0 : ]0,∞[→ R. Given this formulation, the objective of the decision

maker is to maximise the performance criterion

JS(Sx, Z) := Ex,z

[ ∫ ∞

0

e−Λt

[
Zth1(Xt) + (1− Zt)h0(Xt)

]
dt

−
∑
0≤s

e−Λs

(
g1(Xs)(∆Zs)

+ + g0(Xs)(∆Zs)
−
)]

(4.7)

over all admissible switching strategies. Accordingly we define the value function v

by

vS(x, z) := sup
(Sx,Z)∈Zx,z

JS(Sx, Z), for x > 0. (4.8)
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In place of Assumption 3.2.1, used in the discretionary stopping problem, we

impose the following conditions on the investment problems data.

Assumption 4.2.1 The functions g1, g0 : ]0,∞[→ R are C1 with absolutely con-

tinuous first derivatives and h and h1 − h0 are measurable. In addition:

a. Given any weak solution, Sx to (2.2) the functions g1, g0 satisfy

Ex

[∫ ∞

0

e−Λt
∣∣Lg0(Xt)

∣∣dt] <∞, for all x > 0, (4.9)

Ex

[∫ ∞

0

e−Λt
∣∣Lg1(Xt)

∣∣dt] <∞, for all x > 0, (4.10)

where the operator L is defined as in (2.6).

b. Given any weak solution, Sx to (2.2) the functions h, h1 − h0 satisfy

Ex

[∫ ∞

0

e−Λt
∣∣h(Xt)

∣∣dt] <∞, for all x > 0, (4.11)

Ex

[∫ ∞

0

e−Λt
∣∣h1(Xt)− h0(Xt)

∣∣dt] <∞, for all x > 0, (4.12)

These conditions are the integrability conditions which imply the transversality con-

dition necessary for our problem data to conform to economic theory.

In the cases where there is the possibility of both entry and exit decisions, we

impose the following assumption based on hindsight from our subsequent analysis.

Assumption 4.2.2 The functions g1, g0 : ]0,∞[→ R satisfy the following condi-

tions

L (g0 + g1) (x) < 0 for all x > 0. (4.13)

This condition ensures entry takes place before exit, it separates the entry and exit

point and ensures the exit point is below the entry point.

In the case of the sequential entry and exit problem, in order to exclude the

possibility of making a profit simply by switching, instantaneously, between open

and closed modes, we have an additional assumption.
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Assumption 4.2.3 The functions g1, g0 : ]0,∞[→ R satisfy the following condi-

tions

g0(x) + g1(x) > 0, for all x > 0. (4.14)

4.3 The single entry or exit investment problem

This section considers the two irreversible problems of initialising, with no subse-

quent abandonment, of a payoff flow (Subsection 4.3.1) and of abandoning, with no

subsequent re-initialisation of a payoff flow (Subsection 4.3.2). The section ends with

the semi-reversible problem of initialising a payoff with the option to subsequently

abandon the payoff.

The theorems in this section rely on Assumptions 2.2.1′, 2.2.2, 2.3.1′, 4.2.1, which

are, respectively, that the SDE has a weak solution, it is non-explosive, discounting

is strictly positive and the payoffs satisfy the transversality conditions.

4.3.1 The initialisation of a payoff flow problem

Given Assumptions 2.2.1′, 2.2.2, 2.3.1′ and 4.2.1, we have that the function Rh,

defined in Proposition 2.4.1 with the representation

Rh(x) = Ex

[∫ ∞

0

e−Λsh(Xs) ds

]
, for all x > 0,

is well-defined. Furthermore, we can use (2.39) of Proposition 2.4.2 to see that,

given any initialisation strategy (Sx, τ1),

J I(Sx, τ1) = Ex

[
e−Λτ1 (Rh − g1) (Xτ1)1{τ1<∞}

]
.

It is easy to confirm that Assumption 4.2.1 means that all the assumptions of The-

orems 3.3.2 and 3.3.3 are satisfied, so, with reference to Lemma 3.3.1, its solution is

provided by the following result.
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Theorem 4.3.1 Suppose that Assumptions 2.2.1′, 2.2.2, 2.3.1′ and 4.2.1 hold, and

consider the initialisation problem formulated in Section 4.2.

Case I. If L (Rh − g1) (x) > 0 for all x > 0 then given any initial condition

x > 0, the value function is given by vI(x) = 0 and there is no admissible

initialisation strategy.

Case II. If L (Rh − g1) (x) < 0 for all x > 0 then given any initial condition x > 0,

the value function is given by vI(x) = (Rh − g1) (x) and the initialisation

strategy (SI
x, 0) ∈ Sx, where SI

x is a weak solution to (2.2) is optimal.

Case III. If (Rh − g1) (x) > 0 for some x ∈]0,∞[ and

L (Rh − g1) (x)

> 0, for x < x1,

< 0, for x > x1,
x1 > 0. (4.15)

The value function vI identifies with the function wI defined by

wI(x) =

Bψ(x), if x < xI
1,

(Rh − g1) (x), if x ≥ xI
1,

(4.16)

with xI
1 > 0 being the unique solution to qI(x) = 0, where qI is defined by

qI(x) = p′c(x)

∫ x

0

L (Rh − g1) (s)ψ(s)m(ds), for all x > 0, (4.17)

and BI > 0 being given by

BI =
(Rh − g1) (xI

1)

ψ(xI
1)

=
(Rh − g1)

′ (xI
1)

ψ′(xI
1)

. (4.18)

Furthermore, given any initial condition x > 0, the initialisation strategy

(SI
x, τ

I
1) ∈ Sx, where SI

x is a weak solution to (2.2) and

τ I
1 = inf{t ≥ 0 | Xt ≥ xI

1},



The Optimal Timing of Investment Decisions 66

is optimal.

4.3.2 The abandonment of a payoff flow problem

Now, (2.38) implies that, given any abandonment strategy (Sx, τ0),

JA(Sx, τ0) = Rh(x)− Ex

[
e−Λτ0 (Rh + g0) (Xτ0)1{τ0<∞}

]
and so

vA(x) = Rh(x) + sup
(Sx,τ0)∈Sx

Ex

[
−e−Λτ0 (Rh + g0) (Xτ0)1{τ0<∞}

]
.

The structure of Rh implies that we associate this situation with Case II of Theorem

3.3.3, and so with reference to Lemma 3.3.1 its solution is provided by the following

result.

Theorem 4.3.2 Suppose that Assumptions 2.2.1′, 2.2.2, 2.3.1′ and 4.2.1 hold, and

consider the abandonment problem formulated in Section 4.2.

Case I. If L (Rh + g0) (x) < 0 or (Rh + g0) (x) ≥ 0 for all x > 0 then given any

initial condition x > 0, the value function is given by vA(x) = Rh(x) and

there is no admissible abandonment strategy.

Case II. If L (Rh + g0) (x) > 0 for all x > 0 then given any initial condition x > 0,

the value function is given by vA(x) = −g0(x) and the abandonment

strategy (SA
x , 0) ∈ Sx, where SA

x is a weak solution to (2.2) is optimal.

Case III. If (Rh + g0) (x) < 0 for some x ∈]0,∞[ and

L (Rh + g0) (x)

> 0, for x < x0,

< 0, for x > x0,
x0 > 0. (4.19)



The Optimal Timing of Investment Decisions 67

The value function vA identifies with the function wA defined by

wA(x) =

−g0(x), if x ≤ xA
0 < x0,

Aφ(x) +Rh(x), if x > xA
0 ,

(4.20)

with xA
0 > 0 being the unique solution to qA(x) = 0, where qA is defined

by

qA(x) = p′c(x)

∫ ∞

x

L (Rh + g0) (s)φ(s)m(ds), for all x > 0, (4.21)

and AA > 0 being given by

−AA =
(Rh + g0) (xA

0 )

φ(xA
0 )

=
(Rh + g0)

′ (xA
0 )

φ′(xA
0 )

. (4.22)

Furthermore, given any initial condition x > 0, the abandonment strategy

(SA
x , τ

A
0 ) ∈ Sx, where SA

x is a weak solution to (2.2) and

τA
0 = inf{t ≥ 0 | Xt ≤ xA

0 },

is optimal.

4.3.3 The initialisation of a payoff flow with the option to abandon

problem

With regard to the initialisation of a payoff flow with the option to abandon problem,

recall that the performance criterion is given by

J IA(Sx, τ1, τ0) = Ex

[
e−Λτ1

(
Rh(Xτ1)− EXτ1

[ (
e−Λτ0

(
Rh + g0

)
(Xτ0)

)
1{τ0<∞}

]
− g1(Xτ1)

)
1{τ1<∞}

]
.

To address this problem we start by observing that the optimal strategy should
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never involve initialisation followed immediately by abandonment. This will be the

case if the initialisation point, which we denote by xIA
1 , is below the abandonment

point, which we denote by xIA
0 . With reference to Theorems 4.3.1 and 4.3.2, we

have a number of possibilities. Firstly, if Case I of Theorem 4.3.1 applies we would

never initialise, which corresponds to xIA
1 = ∞, and the problem does not arise.

For Case II of Theorem 4.3.2, characterised by L (Rh + g0) (x) > 0 for all x > 0,

we note that Assumption 4.2.2 means that we cannot have L (Rh − g1) (x) < 0 for

any x, and so Cases II–III of Theorem 4.3.1 are precluded. If we have Case III of

Theorem 4.3.1 and Case I of Theorem 4.3.2, then initialisation is optimal but we

would never abandon. In this case we can repose the initialisation and abandonment

problem as a pure initialisation problem,

sup
(Sx,τ1,τ0)∈Cx

J IA(Sx, τ1, τ0) = sup
(Sx,τ1)∈Sx

J I(Sx, τ1).

Hence, both initialisation and abandonment should only be optimal if we have

Case III of Theorem 4.3.1 and Case III of Theorem 4.3.2. These cases are charac-

terised, in part, by (4.15) and (4.19). With regard to these definitions and Assump-

tion 4.2.2, we will have that x0 < x1. Also, recall that the performance criterion

associated with abandonment is given and by

JA(Sx, τ0) = Rh(x)− Ex

[ (
e−Λτ0

(
Rh + g0

)
(Xτ0)

)
1{τ0<∞}

]
and the optimal strategy would be to abandon if X hits the stopping region ]0, xA

0 ],

With xA
0 < x0. Hence

vIA(x) = sup
(Sx,τ1,τ0)∈Cx

J IA(Sx, τ1, τ0)

= sup
(Sx,τ1,τ0)∈Cx

Ex

[(
e−Λτ1

(
JA(SXτ1

, τ0)− g1(Xτ1)
))

1{τ1<∞}
]

= sup
(Sx,τ1)∈Sx

Ex

[(
e−Λτ1

(
vA − g1

)
(Xτ1)

)
1{τ1<∞}

]
,

which equates to an optimal stopping problem with a payoff of vA(x)− g1(x). With



The Optimal Timing of Investment Decisions 69

reference to Case (a) of Lemma 3.3.1, we require vA(x)−g1(x) > 0 for some x ∈ ]0,∞[

and

L(vA − g1)(x)

> 0, for x < x1,

< 0, for x > x1,
x1 > 0.

with

vA(x) =

−g0(x), if x ≤ xA
0 ,

AAφ(x) +Rh(x), if x > xA
0 .

Given that we have xA
0 < x0 < x1, we note that

vA(x)− g1(x) =

−(g0(x) + g1(x)), if x ≤ xA
0 ,

AAφ(x) +Rh(x)− g1(x), if x > xA
0 .

L(vA − g1)(x) =

−L(g0 + g1)(x), if x ≤ xA
0 ,

L(Rh − g1)(x), if x > xA
0 .
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Based on these observations we have the following theorem.

Theorem 4.3.3 Suppose that Assumptions 2.2.1′, 2.2.2, 2.3.1′, 4.2.1 and 4.2.2

hold, and consider the initialisation and abandonment problem formulated in Sec-

tion 4.2. Suppose, in addition that

L (Rh + g0) (x)

> 0, for x < x0,

< 0, for x > x0,
x0 > 0, (4.23)

L (Rh − g1) (x)

> 0, for x < x1,

< 0, for x > x1,
x1 > 0, (4.24)

Rh(x) + g0(x) < 0 and Rh(x)− g1(x) > 0 for some x > 0. (4.25)

In this case, the optimal strategy will involve initialisation of the payoff flow and

abandonment at a later time. The value function vIA identifies with wIA where

wIA(x) =

BIAψ(x), if x < xIA
1 ,

AAφ(x) +Rh(x)− g1(x), if x ≥ xIA
1 ,

where xIA
1 > xA

0 . (4.26)

Here, AA and xA
0 are as defined in Theorem 4.3.2, with xIA

1 > 0 being the unique

solution to qIA(x) = 0, where qIA is defined by

qIA(x) = p′c(x)

[
W(c)AA +

∫ x

0

L (Rh − g1) (s)ψ(s)m(ds)

]
, for all x > 0, (4.27)

and BIA > 0 given by

BIA =

(
AAφ+Rh − g1

)
(xIA

1 )

ψ(xIA
1 )

=

(
AAφ+Rh − g1

)′
(xIA

1 )

ψ′(xIA
1 )

. (4.28)

Furthermore, given any initial condition x > 0, the initialisation strategy (SIA
x , τ

IA
1 ) ∈

Sx, where SIA
x is a weak solution to (2.2) and

τ IA
1 = inf{t ≥ 0 | Xt ≥ xIA

1 },
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combined with the abandonment strategy (SIA
x , τ

IA
0 ) ∈ Sx, where SIA

x is a weak solution

to (2.2) and

τ IA
0 = inf{t > τ IA

1 | Xt ≤ xIA
0 },

is optimal.

Proof: We first note that the payoff Aφ(x) + Rh(x) − g1(x) satisfies all the

assumptions associated with Theorem 4.3.1 and the payoff Rh + g0 satisfies all the

conditions of Theorem 4.3.2. In addition

W(c)AA = W(c)
AAφ(xA

0 )ψ′(xA
0 )− AAφ′(xA

0 )ψ(xA
0 )

W(xA
0 )

= −W(c)
(Rh + g0) (xA

0 )ψ′(xA
0 )− (Rh + g0)

′ (xA
0 )ψ(xA

0 )

W(xA
0 )

=

∫ xA
0

0

L(Rh − g0)(s)ψ(s)m(ds)

and so

qIA(x) = p′c(x)

[
W(c)AA −

∫ x

0

L (Rh − g1) (s)ψ(s)m(ds)

]
= p′c(x)

[∫ xA
0

0

L(Rh − g0)(s)ψ(s)m(ds)−
∫ x

0

L(Rh − g1)(s)ψ(s)m(ds)

]

= p′c(x)

[∫ xA
0

0

−L(g0 + g1)ψ(s)m(ds) +

∫ x

xA
0

L(Rh − g1)(s)ψ(s)m(ds)

]
.

The structure of L(Rh − g1)(x), given by (4.24), and L(g0 + g1), from (4.13) of

Assumption 4.2.2, combined with the fact that W(c) > 0 for any choice of c, means

that qIA(x) = 0 has a unique solution and in addition xA
0 < xIA

1 . Consequently,

τ IA
0 > τ IA

1 . 2

Remark 4.3.1 Comparing (4.26) and (4.16) we can see that vIA > vI. This con-

forms with the intuition that a project that can be abandoned after initialisation
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has more value than one that cannot. What is less intuitive, but is in line with “real

options” theory, is that by comparing (4.27) and (4.17) we can see that xIA
1 ≥ xI

1,

and you would wait longer to initialise a project that can be abandoned.

4.4 The sequential entry and exit investment problem

We now consider the cases where the decision maker is allowed to reverse their

decisions. We start in Subsection 4.4.1 by considering the case where switching

between the “open” and “closed” modes, depending on the state process, is the

optimal strategy. In Subsection 4.4.2 we turn our attention to the cases where it

is optimal to switch to the open or closed modes for specific values of the state

process but not to switch back, while in Subsection 4.4.3 it is optimal to operate

either in the open or closed modes for all values of the state process. The cases in

Subsections 4.4.2–4.4.3 reduce to ones studied above in Section 4.3 and Section 3.3,

however here the problem data mean that switching does not form part of the

optimal strategy, rather than the problem being formulated to prevent switching.

We can see that the performance criterion JS(Sx, Z) is equivalent to

JS(Sx, Z) = Ex

[∫ ∞

0

e−Λth0(Xt)dt

]
+ J̃S(Sx, Z)

where

J̃S(Sx, Z) = Ex,z

[∫ ∞

0

e−ΛtZth(Xt)dt−
∑
0≤s

e−Λs

(
g1(Xs)(∆Zs)

+ + g0(Xs)(∆Zs)
−
)]

and h(x) = h1(x)− h0(x). Hence,

vS(z, x) = Rh0(x) + ṽS(z, x)

ṽS(z, x) = sup
Sx,Z∈Zx,z

J̃S(Sx, Z), for x > 0, z ∈ {0, 1}

and we focus our attention on identifying ṽS(z, x), since Rh0(x) is a deterministic

function.
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In order to understand the form of our variational inequality, we consider the

case where the system starts in the closed mode, Z = 0, and our options are either

to wait or switch. If we wait for a time ∆t and then continue optimally, we expect

that the value function v should satisfy the following inequality

ṽS(0, x) ≥ Ex

[
e−Λ∆T ṽS(0, X∆T )

]
,

using Itô’s formula, dividing by ∆t and taking the limit ∆t ↓ 0, yields

1

2
σ2(x)ṽS

xx(0, x) + b(x)ṽS
x(0, x)− r(x)ṽS(0, x) ≤ 0.

Alternatively, we can switch, and so we expect that the value function of staying

closed is at least as good as the value function of being open minus the cost of

opening, so

ṽS(0, x) ≥ ṽS(1, x)− g1(x).

If we start in the open mode and Z = 1 then similar arguments yield

1

2
σ2(x)ṽS

xx(1, x) + b(x)ṽS
x(1, x)− r(x)ṽS(1, x) + h(x) ≤ 0,

if we wait, or, we can switch, and so we expect that

ṽS(1, x) ≥ ṽS(0, x)− g0(x).

Therefore, rearranging these expressions and generalising for z, we expect that the

value function, ṽS, identifies with a solution, w, of the Hamilton-Jacobi-Bellman

(HJB) equation

max
{1

2
σ2(x)wxx(z, x) + b(x)wx(z, x)− r(x)w(z, x) + zh(x),

w(1− z, x)− w(z, x)− zg0(x)− (1− z)g1(x)
}

= 0. (4.29)

For future reference, note that the theorems in this section all rely on Assump-

tions 2.2.1′, 2.2.2, 2.3.1′, 4.2.1, which are, respectively, that the SDE has a weak
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solution, it is non-explosive, discounting is strictly positive and the payoffs satisfy

the transversality conditions.

4.4.1 The case when switching is optimal

Given the intuition developed in the study of the initialisation, abandonment and

initialisation and abandonment cases, we start by considering the switching case

where the optimal strategy is to switch from the “open” mode to “closed” for all

x ≤ xS
0, and optimal to switch from the “closed” mode to the “open” mode for all

x ≥ xS
1. With reference to standard heuristic arguments that explain the structure

of (4.29), we look for a solution w to (4.29) that satisfies,

w(0, x)− w(1, x)− g0(x) = 0, for x ≤ xS
0, (4.30)

1

2
σ2(x)wxx(1, x) + b(x)wx(1, x)− r(x)w(1, x) + h(x) = 0, for x > xS

0, (4.31)

1

2
σ2(x)wxx(0, x) + b(x)wx(0, x)− r(x)w(0, x) = 0, for x < xS

1, (4.32)

w(1, x)− w(0, x)− g1(x) = 0, for x ≥ xS
1. (4.33)

Such a solution is given by

w(1, x) =

BSψ(x)− g0(x), if x ≤ xS
0,

ASφ(x) +Rh(x), if x > xS
0.

(4.34)

w(0, x) =

BSψ(x), if x < xS
1,

ASφ(x) +Rh(x)− g1(x), if x ≥ xS
1.

(4.35)

To specify the parameters AS, BS, xS
0 and xS

1, we appeal to the so-called “smooth-

pasting” condition of optimal stopping that requires the value function to be C1,

in particular at the free boundary points xS
0 and xS

1. This requirement yields the
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system of equations

ASφ(xS
0) +Rh(x

S
0) = BSψ(xS

0)− g0(x
S
0),

ASφ′(xS
0) +R′

h(x
S
0) = BSψ′(xS

0)− g′0(x
S
0),

and

ASφ(xS
1) +Rh(x

S
1)− g1(x

S
1) = BSψ(xS

1),

ASφ′(xS
1) +R′

h(x
S
1)− g′1(x

S
1) = BSψ′(xS

1).

From these expressions we can see that

AS =
(g0 +Rh)

′(xS
0)ψ(xS

0)− (g0 +Rh)(x
S
0)ψ

′(xS
0)

W(c)p′c(x
S
0)

= − (g1 −Rh)
′(xS

1)ψ(xS
1)− (g1 −Rh)(x

S
1)ψ

′(xS
0)

W(c)p′c(x
S
1)

(4.36)

and

BS =
(g0 +Rh)

′(xS
0)φ(xS

0)− (g0 +Rh)(x
S
0)φ

′(xS
0)

W(c)p′c(x
S
0)

= − (g1 −Rh)
′(xS

1)φ(xS
1)− (g1 −Rh)(x

S
1)φ

′(xS
0)

W(c)p′c(x
S
1)

. (4.37)

Combining (4.36)–(4.37) with the identities (2.35)–(2.36), noting that W(c) > 0 for

any choice of c > 0, we have the system of equations

qS
0 (xS

0, x
S
1) = 0,

qS
1 (xS

0, x
S
1) = 0,

where

qS
0 (u, v) =

∫ ∞

u

L(g0 +Rh)(s)φ(s)m(ds) +

∫ ∞

v

L(g1 −Rh)(s)φ(s)m(ds) (4.38)
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and

qS
1 (u, v) = −

[∫ u

0

L(g0 +Rh)(s)ψ(s)m(ds) +

∫ v

0

L(g1 −Rh)(s)ψ(s)m(ds)

]
.

(4.39)

With these observations in mind we have the following theorem.

Theorem 4.4.1 Suppose that Assumptions 2.2.1′, 2.2.2, 2.3.1′, 4.2.1, 4.2.2 and

4.2.3 hold, and consider the switching problem formulated in Section 4.2. Suppose,

in addition that

L (g0 +Rh) (x)

> 0, for x < x0,

< 0, for x > x0,
x0 > 0, (4.40)

L (g1 −Rh) (x)

< 0, for x < x1,

> 0, for x > x1,
x1 > 0, (4.41)

Rh(x) + g0(x) < 0 and Rh(y)− g1(y) > 0 for some x, y > 0. (4.42)

The value function ṽS identifies with w defined by (4.34)–(4.35) with AS, BS >

0, being given by (4.36)–(4.37), respectively, and 0 < xS
0 < xS

1 being the unique

solutions to qS
0 (y, z) = 0 and qS

1 (y, z) = 0, where qS
0 , q

S
1 are defined by (4.38)–(4.39),

respectively.

Furthermore, define the Ft-adapted, finite variation, càdlàg control process ZS,

taking values in {0, 1}, as being switched from the closed state to the open state

(ZS
s− = 0 to ZS

s = 1) at stopping times given by

τS
1 = inf{t ≥ s ≥ 0 | Xt ≥ xS

1 and ZS
s = ZS

t = 0},

while ZS is switched from the open state to the closed state (ZS
s− = 1 to ZS

s = 0) at

stopping times given by

τS
0 = inf{t ≥ s ≥ 0 | Xt ≤ xS

0 and ZS
s = ZS

t = 1}.
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Given any initial condition x > 0 and z ∈ {0, 1}, the switching strategy (SS
x, Z

S) ∈
Zx,z, where SS

x is a weak solution to (2.2) and ZS with ZS
0 = z is optimal.

Proof. Step 1. We begin by proving that the opening point, xS
1, and closing

point, xS
0, are unique with xS

0 < xS
1. We start by making the trivial observation that

(4.40) and (4.41) and Assumption 4.2.2 imply that x0 < x1. Now, we show that

(4.39) defines uniquely a mapping l : ]0,∞[ → ]0,∞[ such that

qS
1 (u, l(u)) = 0 and l(u) > u.

First, fix any 0 < u <∞ such that

qS
1 (u, u) = −

∫ u

0

L(g0 + g1)(s)ψ(s)m(ds)

which is positive given (4.13) of Assumption 4.2.2. Also

∂

∂v
qS
1 (u, v) = − 2L(g1 −Rh)(v)ψ(v)

σ2(v)W(c)p′c(v)

which is positive for x < x1 and negative for x > x1, and so if there is l(u) > u

such that qS
1 (u, l(u)) = 0 then it is unique. To show that l(u) exists, combine the

fact that limx→∞(g1 − Rh)(x)/ψ(x) = 0, which is a consequence of (4.10) and the

identities in Proposition 2.4.2, with (4.41) and (4.42) to see that

lim
x→∞

∫ x

0

L(g1 −Rh)(s)ψ(s)m(ds) = ∞,

and so, for any u <∞,

lim
v→∞

qS
1 (u, v) < 0.

Now, observe that

lim
u↓0

qS
1 (u, l(u)) = −

∫ l(u)

0

L(g1 −Rh)(s)ψ(s)m(ds)

= − 1

p′c(l(u))
qI(l(u))
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where qI is given by (4.17). Since we define l(u) by qS
1 (u, l(u)) = 0, with reference to

Theorem 4.3.1, which tells us that qI(x) = 0 at x = xI
1, we can see that limu↓0 l(u) =

xI
1 > x1 > 0 and consequently xS

1 > x1. For future reference, observe that

dqS
1 (u, l(u)) =

∂

∂u
qS
1 (u, l(u))du+

∂

∂v
qS
1 (u, l(u))dv

= 0

and so we have that

l′(u) = −
∂
∂u
qS
1 (u, l(u))

∂
∂v
qS
1 (u, l(u))

= − L(g0 +Rh)(u)

L(g1 −Rh)(l(u))

ψ(u)

ψ(l(u))

σ2(l(u))p′c(l(u))

σ2(u)p′c(u)
. (4.43)

Now consider

qS
0 (u, l(u)) =

∫ ∞

u

L(g0 +Rh)(s)φ(s)m(ds) +

∫ ∞

l(u)

L(g1 −Rh)(s)φ(s)m(ds)

=

∫ l(u)

u

L(g0 +Rh)(s)φ(s)m(ds) +

∫ ∞

l(u)

L(g0 + g1)(s)φ(s)m(ds)

and noting that L(g0 + g1)(x) ≤ 0 by Assumption 4.2.2, and L(g0 +Rh)(x) < 0 for

x > x0 by (4.40), we have that

lim
u→∞

qS
0 (u, l(u)) < 0.

Using (4.43), observe that

∂

∂u
qS
0 (u, l(u)) = − L(g0 +Rh)(u)φ(u)m(du) + L(g1 −Rh)(l(u))φ(l(u))m(dl(u))l′(u)

= − L(g0 +Rh)(u)ψ(u)m(du)

[
φ(u)

ψ(u)
− φ(l(u))

ψ(l(u))

]
.

Given
d

dx

(
φ(x)

ψ(x)

)
= −ψ

′(x)φ(x)− ψ(x)φ′(x)

ψ2(x)
< 0
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we have that ∂
∂u
qS
0 (u, l(u)) has the sign of −L(g0 +Rh)(u). Using this with the fact

that limu→∞ qS
0 (u, l(u)) < 0, there will be a unique xS

0 < x0 such that qS
0 (xS

0, l(x
S
0)) =

0 if limu↓0 q0(u) is positive. Noting that limu↓0 l(u) = xI
1 > x1 we have

lim
u↓0

∫ ∞

l(u)

L(g1 −Rh)(s)φ(s)m(ds) =

∫ ∞

xI
1

L(g1 −Rh)(s)φ(s)m(ds)

=
(g1 −Rh)(x

I
1)φ

′(xI
1)− (g1 −Rh)

′(xI
1)φ(xI

1)

p′c(x
I
1)

=
−BIψ(xI

1)φ
′(xI

1) +BIψ′(xI
1)φ(xI

1)

p′c(x
I
1)

= BIW(c)

where W(c) > 0 for any choice of c > 0 and BI > 0 is the co-efficient defined in

(4.18) and is positive given (4.41) and (4.42). Hence

lim
u↓0

qS
0 (u, l(u)) = lim

u↓0

∫ ∞

u

L(g0 +Rh)(s)φ(s)m(ds) +BIW(c)

> lim
u↓0

∫ ∞

u

L(g0 +Rh)(s)φ(s)m(ds)

= lim
u↓0

1

p′c(u)
qA(u)

where qA(u) is defined by (4.21). Since Rh satisfies (2.33) and g0 satisfies (3.6), we

have that limu↓0(g0 + Rh)(u)/φ(u) = 0. Combined with (4.40) and (4.42), we have

that limu↓0 q
A(u) is positive and so limu↓0 q0(u) is positive. As a result,

xS
0 < x0 < x1 < xS

1 (4.44)

and xS
0, x

S
1 are unique.

Step 2. We now confirm that AS and BS are positive. Combining (4.36) with
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(2.36) and (3.8) we have either,

W(c)AS =

∫ xS
0

0

L(Rh + g0(s))ψ(s)m(ds) (4.45)

≥ 0

with the final inequalities following from (4.40) and (4.44), or,

W(c)AS = −
∫ xS

1

0

L(g1 −Rh)(s)ψ(s)m(ds). (4.46)

Similarly (4.37) with (2.35) and (3.7) yield

W(c)BS =

∫ ∞

xS
1

L (g1 −Rh) (s)φ(s)m(ds)

≥ 0

with the final inequality following from (4.41) and (4.44). Hence, both AS and BS

are positive.

Step 3. We now show that (4.34) and (4.35) satisfy (4.29). To do this they also

need to satisfy the following inequalities;

1

2
σ2(x)wxx(1, x) + b(x)wx(1, x)− r(x)w(1, x) + h(x) ≤ 0, for x ≤ xS

0, (4.47)

w(0, x)− w(1, x)− g0(x) ≤ 0, for x > xS
0, (4.48)

w(1, x)− w(0, x)− g1(x) ≤ 0, for x < xS
1, (4.49)

1

2
σ2(x)wxx(0, x) + b(x)wx(0, x)− r(x)w(0, x) ≤ 0, for x ≥ xS

1. (4.50)

We note that (4.34) satisfies (4.47) given L(g0 + Rh)(x) > 0 for x < x0 by (4.40)

the fact that xS
0 < x0 while (4.35) satisfies (4.50) given xS

1 > x1 and (4.41).

For x > xS
0 , (4.48) becomes

ASφ(xS
0) +R(xS

0) + g0(x
S
0)

ψ(xS
0)

≤ ASφ(x) +R(x) + g0(x)

ψ(x)
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and so we require ASφ(x) + R(x) + g0(x)/ψ(x) to be increasing for x > xS
0. With

reference to (2.36), (3.8), (4.39) and (4.46), we have that

d

dx

[
ASφ(x) +R(x) + g0(x)

ψ(x)

]
=

[ASφ′(x) +R′(x) + g′0(x)]ψ(x)− [ASφ(x) +R(x) + g0(x)]ψ
′(x)

ψ2(x)

=
p′c(x)

ψ2(x)

[∫ x

0

L(g0 +Rh)(s)ψ(s)m(ds)−W(c)AS

]
=

p′c(x)

ψ2(x)

[ ∫ x

0

L(g0 +Rh)(s)ψ(s)m(ds) +

∫ xS
1

0

L(g1 −Rh)(s)ψ(s)m(ds)

]
= − p′c(x)

ψ2(x)
qS
1 (x, xS

1).

For x ∈ ]xS
0, x

S
1[, (4.48) is satisfied since qS

1 (y, z) < 0 for y > xS
0 and z = xS

1. For

x > xS
1, (4.48) is satisfied given (4.13) of Assumption 4.2.2 and (4.40).

For x < xS
1 , (4.49) becomes

ASφ(x) +R(x)− g1(x)

ψ(x)
≤ ASφ(xS

1) +R(xS
1)− g1(x

S
1)

ψ(xS
1)

and so we require ASφ(x) + R(x) − g1(x)/ψ(x) to be increasing in ]xS
0, x

S
1]. Using

(2.36), (3.8), (4.39) and (4.45) note that

d

dx

[
ASφ(x) +R(x)− g1(x)

ψ(x)

]
=

[ASφ′(x) +R′(x)− g′1(x)]ψ(x)− [ASφ(x) +R(x)− g1(x)]ψ
′(x)

ψ2(x)

= − p′c(x)

ψ2(x)

[
W(c)AS +

∫ x

0

ψ(s)L(g1 −Rh)(s)m(ds)

]
= − p′c(x)

ψ2(x)

[ ∫ xS
0

0

ψ(s)L(g0 +Rh)(s)m(ds) +

∫ x

0

ψ(s)L(g1 −Rh)(s)m(ds)

]
=

p′c(x)

ψ2(x)
qS
1 (xS

0, x).

Given qS
1 (y, z) > 0 for y = xS

0 and z < xS
1, (4.49) is satisfied for x ∈ ]xS

0, x
S
1[. For



The Optimal Timing of Investment Decisions 82

x ≤ xS
0, (4.49) is satisfied given (4.13) of Assumption 4.2.2 and (4.41).

Step 4. To verify that the solution w to the HJB equation (4.29) that we have

constructed identifies with the value function v of the optimal stopping problem, we

fix any initial condition x > 0 and any weak solution Sx to (2.2). Define an arbitrary

control strategy, Z, by picking arbitrary times at which to switch between the open

and closed modes. We can now define a sequence of (Ft)-stopping times (τm) by

τ1 = inf{t ≥ 0
∣∣Zt 6= z}

τm+1 = inf{t > τm
∣∣Zt 6= Zt−}.

In addition, given any T > 0, fix any initial condition x > 0 and any stopping

strategy (Sx, τ) ∈ Sx, define

τn = inf
{
t ≥ 0

∣∣ Xt /∈ [1/n, n]
}
, for n ≥ 1.

Now, since w ∈ C1(]0,∞[)∩C2(]0,∞[ \ {xS
0, x

S
1}) and w′ is of bounded variation, we

can use the Itô-Tanaka formula, to calculate

e−Λt∧τn∧Tw(Zt∧τn∧T , Xt∧τn∧T ) = w(z, x) +MT,n
t

+

∫ t∧τn∧T

0

e−Λs (Lw(Zs, Xs)) ds

+
∑

0<s≤t∧τn∧T

e−Λs [w(Zs, Xs)− w(Zs−, Xs)] (4.51)

where

MT,n
t :=

∫ t∧τn∧T

0

e−Λs (σ(Xs)wx(Zs, Xs)) dWs

= LT,nt + M̃T,n
t
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and

LT,nt :=

∫ t∧τn∧T

0

e−Λsσ(Xs)

((
BSψ′(Xs)1{Xs≤xS

0} + ASφ′(Xs)1{Xs>xS
0}
)
1{Zs=1}

+
(
BSψ′(Xs)1{Xs<xS

1} + ASφ′(Xs)1{Xs≥xS
1}
)
1{Zs=0}

)
dWs.

Given that g0, g1 and Rh all satisfy Dynkin’s formula, we have that Ex,z[M̃
T,n
t ] =

Ex,z[M
T,n
t − LT,nt ] = 0. With reference to Itô’s isometry, the continuity of ψ′ and φ′

and Assumptions 2.2.1′ and 2.3.1′, we can see that

Ex,z

[(
LT,nT

)2
]

=

∫ T

0

e−2Λtσ2(Xt)

((
BSψ′(Xt)1{Xt≤xS

0} + ASφ′(Xt)1{Xt>xS
0}

)
1{Zt=1}

+
(
BSψ′(Xt)1{Xt<xS

1} + ASφ′(Xt)1{Xt≥xS
1}

)
1{Zt=0}

)2

1{s≤τn} dt

=

∫ T

0

e−2Λtσ2(Xt)

(((
BSψ′(Xt)

)2
1{Xt≤xS

0} +
(
ASφ′(Xt)

)2
1{Xt>xS

0}

)
1{Zt=1}

+
((
BSψ′(Xt)

)2
1{Xt<xS

1} +
(
ASφ′(Xt)

)2
1{Xt≥xS

1}

)
1{Zt=0}

)
1{s≤τn} dt

≤
∫ T

0

e−2Λtσ2(Xt)
((

2BSψ′(Xt)
)2

1{Xt≤xS
1} +

(
2ASφ′(Xt)

)2
1{Xt>xS

0}

)
1{s≤τn} dt

≤ sup
x<xS

1

(
2BSψ′(x)σ(x)

)2
∫ T

0

e−2Λtdt+ sup
x>xS

0

(
2ASφ′(x)σ(x)

)2
∫ T

0

e−2Λtdt

< ∞.

This calculation shows that LT,n is a square-integrable martingale. Therefore by

appealing to Doob’s optional sampling theorem it follows that Ex,z

[
LT,nt

]
= 0, and

consequently Ex,z[M
T,n
t ] = 0. In view of this observation, we can add∫ τn∧T

0

e−ΛtZth(Xt)dt−
∑

0≤t≤τn∧T

e−Λt

(
g1(Xt)(∆Zt)

+ + g0(Xt)(∆Zt)
−
)
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to both sides of (4.51), on taking expectations and given that w satisfies (4.29), we

have

Ex,z

[∫ τn∧T

0

e−ΛtZth(Xt)dt−
∑

0≤t≤τn∧T

e−Λt

(
g1(Xt)(∆Zt)

+ + g0(Xt)(∆Zt)
−
)]

≤ w(z, x)− Ex,z

[
e−Λτn∧Tw(Zτn∧T , Xτn∧T )

]
. (4.52)

The dominated convergence theorem gives

lim
T→∞

Ex,z

[
e−Λτn∧Tw(Zτn∧T , Xτn∧T )

]
= Ex,z

[
e−Λτnw(Zτn , Xτn)

]
. (4.53)

Noting that

Ex,z

[
e−Λτnw(Zτn , Xτn)

]
= Ex,z

[
e−Λτn

(((
BSψ(Xτn)− g0(Xτn)

)
1{Xτn≤xS

0}

+
(
ASφ(Xτn) +Rh(Xτn)

)
1{Xτn>x

S
0}

)
1{Zτn=1}

+

((
BSψ(Xτn)

)
1{Xτn<x

S
1}

+
(
ASφ(Xτn) +Rh(Xτn)− g1(Xτn)

)
1{Xτn≥xS

1}

)
1{Zτn=0}

)]

and given Rh, g0 and g1 all satisfy the transversality condition, (2.40) of Proposition
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2.4.2, and that ASφ and BSψ are positive, we have that

0 ≤ lim
n→∞

Ex,z

[
e−Λτnw(Zτn , Xτn)

]
≤ lim

n→∞
Ex,z

[
e−Λτn

(
ASφ(Xτn)1{Xτn>x

S
0}

+BSψ(x)1{Xτn<x
S
1}

)]

≤
(
ASφ(xS

0) +BSψ(xS
1)

)
lim
n→∞

Ex,z

[
e−Λτn

]
= 0 (4.54)

with the last equality following as a consequence of Assumption 2.3.1′. Given (4.11)

of Assumption 4.2.1b and the continuity of g0, g1 and Assumption 2.3.1′, the dom-

inated convergence theorem gives

lim
n→∞

Ex,z

[∫ τn∧T

0

e−ΛtZth(Xt)dt−
∑

0≤t≤τn∧T

e−Λt

(
g1(x

S
1)(∆Zt)

+ + g0(x
S
0)(∆Zt)

−
)]

= Ex,z

[∫ ∞

0

e−ΛtZth(Xt)dt−
∑

0≤t≤∞

e−Λt

(
g1(Xt)(∆Zt)

+ + g0(Xt)(∆Zt)
−
)]

.

(4.55)

In view of (4.53)–(4.55), (4.52) implies

Ex,z

[∫ ∞

0

e−ΛtZth(Xt)dt−
∑

0≤t≤∞

e−Λt

(
g1(x

S
1)(∆Zt)

+ + g0(x
S
0)(∆Zt)

−
)]

≤ w(z, x),

(4.56)

which proves J̃S(Sx, Z) ≤ w(z, x).

To prove that ṽ(z, x) = w(z, x) for the optimal strategy proposed in the state-

ment of the theorem, let (SS
x, Z

S) ∈ Zx,z be the switching strategy considered in the

statement of the theorem. By following the arguments that lead to (4.56) we can
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see that

Ex,z

[∫ ∞

0

e−ΛtZS
t h(Xt)dt−

∑
0≤t≤∞

e−Λt

(
g1(x

S
1)(∆Z

S
t )

+ + g0(x
S
0)(∆Z

S
t )

−
)]

= w(z, x).

2

4.4.2 The case when one mode is optimal for certain values of the

state process

We now consider the case where the optimal strategy is to operate either in the

“open” mode for all x, but it is only optimal to switch from the “closed” mode to

the “open” mode for x ≥ xS
1, or, to operate in the “closed” mode for all x, but it

is only optimal to switch from the “open” mode to the “closed” mode for x ≤ xS
0.

Since the optimal strategy will not result in a reversing of the actions taken, these

cases are versions of those presented in Theorems 4.3.1 and 4.3.2.

For the case where, once in the open mode, it is never optimal to switch to the

closed mode, we look for a solution w to (4.29) that satisfies

1

2
σ2(x)wxx(1, x) + b(x)wx(1, x)− r(x)w(1, x) + h(x) = 0, for all x, (4.57)

1

2
σ2(x)wxx(0, x) + b(x)wx(0, x)− r(x)w(0, x) = 0, for x < xS

1, (4.58)

w(1, x)− w(0, x)− g1(x) = 0, for x ≥ xS
1. (4.59)

Such a solution is given by

w(1, x) = Rh(x) (4.60)

w(0, x) =

BSψ(x), if x < xS
1,

Rh(x)− g1(x), if x ≥ xS
1.

(4.61)

Noting that w(0, x), defined by (4.61), identifies with wI(x), defined by (4.16) of

Theorem 4.3.1, we can state the following theorem.
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Theorem 4.4.2 Suppose that Assumptions 2.2.1′, 2.2.2, 2.3.1′, 4.2.1, 4.2.2 and

4.2.3 hold, and consider the switching problem formulated in Section 4.2. Suppose,

in addition that

(Rh − g1) (x) > 0, for some x ∈ ]0,∞[, (4.62)

L (Rh − g1) (x)

> 0, for x < x1,

< 0, for x > x1,
x1 > 0, (4.63)

L (Rh + g0) (x) < 0, for all x. (4.64)

Then, xS
1 > 0 is the unique solution to qS

1 (x) = 0, where qS
1 is defined by

qS
1 (x) = W(c)p′c(x)

∫ x

0

L (Rh − g1) (s)ψ(s)m(ds), for all x > 0,

and BS > 0 being given by

BS =
(Rh − g1)(x

S
1)

ψ(xS
1)

=
(Rh − g1)

′(xS
1)

ψ′(xS
1)

. (4.65)

The value function ṽS identifies with w defined by (4.60)–(4.61). Furthermore,

given any initial condition x > 0 and z ∈ {0, 1}, the control strategy (SS
x, Z

S) ∈ Zx,z,

where SS
x is a weak solution to (2.2) and if z = 0 then ZS = 1 for all t ≥ τS

1 ,

τS
1 = inf{t ≥ 0 | Xt ≥ xS

1},

where as if z = 1 then ZS = 1 for all t is optimal.

Proof: The statements regarding xS
1 and BS are a consequence of Theorem 4.3.1

and (4.62)–(4.63). In addition to w, given by (4.60)–(4.61), satisfying (4.57)–(4.59),
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we need to show that that it satisfies the following inequalities

w(0, x)− w(1, x)− g0(x) ≤ 0, for all x > 0, (4.66)

w(1, x)− w(0, x)− g1(x) ≤ 0, for x < xS
1, (4.67)

1

2
σ2(x)wxx(0, x) + b(x)wx(0, x)− r(x)w(0, x) ≤ 0, for x ≥ xS

1. (4.68)

For (4.66), we have two distinct inequalities

BSψ(x)−Rh(x)− g0(x) ≤ 0, if x < xS
1, (4.69)

−
(
g0(x) + g1(x)

)
≤ 0, if x ≥ xS

1, (4.70)

and (4.70) is true given (4.14) of Assumption 4.2.3. Given that BS is defined by

(4.65), (4.69) can be written as

(Rh + g0)(x)

ψ(x)
≥ (Rh − g1)(x

S
1)

ψ(xS
1)

, for all x < xS
1,

which is true at xS
1, since g0(x) > −g1(x), for all x, by (4.14) of Assumption 4.2.3.

To see that (4.69) is true for all x < xS
1, observe that

d

dx

(
(Rh + g0)(x)

ψ(x)

)
=
p′c(x)

ψ2(x)

∫ x

0

L (Rh + g0) (s)ψ(s)m(ds)

and given L (Rh + g0) < 0 for all x, by (4.64), the condition is satisfied. Similarly,

we can write (4.67) as

(Rh − g1)(x)

ψ(x)
≤ (Rh − g1)(x

S
1)

ψ(xS
1)

, for x < xS
1.
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Consider

d

dx

(
(Rh − g1)(x)

ψ(x)

)
=

(Rh − g1)
′(x)ψ(x)− (Rh − g1)(x)ψ

′(x)

ψ2(x)

=
p′c(x)

ψ2(x)

∫ x

0

L (Rh − g1) (s)ψ(s)m(ds)

=
qS
1 (x)

ψ2(x)

and given that qS
1 (x) > 0 for x < xS

1, we have that (Rh−g1)(x)/ψ(x) is increasing for

x < xS
1 and hence (4.67) is satisfied. Recalling that, as a consequence of Theorem

4.3.1, xS
1 > x1, (4.61) satisfies (4.68) under (4.63).

Having confirmed that w, defined by (4.60) and (4.61), satisfies (4.29), we need

to confirm that the solution w equates with the value function ṽS. To do this we can

use similar arguments to those used in developing (4.56) of the proof of Theorem

4.4.1. We can show that for an arbitrary control strategy J̃S(Sx, Z) ≤ w(z, x), while

adopting the optimal strategy defined in the statement of the theorem gives w = ṽS.

2

We now consider the case where the optimal strategy is to operate in the “closed”

mode for all x, but it is only optimal to switch from the “open” mode to the “closed”

mode for x < xS
0.

Again, with reference to standard heuristic arguments that explain the structure

of (4.29), we look for a solution w to (4.29) that satisfies

1

2
σ2(x)wxx(0, x) + b(x)wx(0, x)− r(x)w(0, x) = 0, for all x > 0 (4.71)

w(0, x)− w(1, x)− g0(x) = 0, for x ≤ xS
0, (4.72)

1

2
σ2(x)wxx(1, x) + b(x)wx(1, x)− r(x)w(1, x) + h(x) = 0, for x > xS

0. (4.73)
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Such a solution is given by

w(0, x) = 0 (4.74)

and w(1, x) =

−g0(x), if x < xS
0.

Aφ(x) +Rh(x), if x ≥ xS
0.

(4.75)

Noting that w(1, x), defined by (4.75), identifies with wA(x), defined by (4.20)

of Case III in Theorem 4.3.2, and we can state the following theorem.

Theorem 4.4.3 Suppose that Assumptions 2.2.1′, 2.2.2, 2.3.1′, 4.2.1, 4.2.2 and

4.2.3 hold, and consider the switching problem formulated in Section 4.2. Suppose,

in addition that

(Rh + g0) (x) < 0, for some x ∈ ]0,∞[, (4.76)

L (Rh + g0) (x)

> 0, for x < x0,

< 0, for x > x0,
x0 > 0, (4.77)

L (Rh − g1) (x) < 0, for all x. (4.78)

Then, xS
0 > 0 is the unique solution to qS

0 (x) = 0, where qS
0 is defined by

qS
0 (x) = p′c(x)

∫ ∞

x

L (Rh + g0) (s)φ(s)m(ds), for all x > 0,

and AS > 0 being given by

−AS =
(Rh + g0)(x

S
0)

φ(xS
0)

=
(Rh + g0)

′(xS
0)

φ′(xA
0 )

. (4.79)

The value function ṽS identifies with w defined by (4.74)–(4.75). Furthermore,

given any initial condition x > 0 and z ∈ {0, 1}, the control strategy (SS
x, Z

S) ∈ Zx,z,

where SS
x is a weak solution to (2.2) and if z = 1 then ZS = 0 for all t ≥ τS

0 ,

τS
0 = inf{t ≥ 0 | Xt ≤ xS

0},
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where as if z = 0 then ZS = 0 for all t is optimal.

Proof: The statements regarding xS
0 and AS are a consequence of Case III in

Theorem 4.3.2 and (4.76)–(4.77). In addition to w, given by (4.74)–(4.75), satisfying

(4.71)–(4.73), we need to show that that it satisfies the following inequalities

w(1, x)− w(0, x)− g1(x) ≤ 0, for all x > 0, (4.80)

1

2
σ2(x)wxx(1, x) + b(x)wx(1, x)− r(x)w(1, x) + h1(x) ≤ 0, for x ≥ x∗0, (4.81)

w(0, x)− w(1, x)− g0(x) ≤ 0, for x > x∗0. (4.82)

For (4.80), we have two distinct inequalities

−
(
g0(x) + g1(x)

)
≤ 0, if x < xS

0, (4.83)

ASφ(x) +Rh(x)− g1(x) ≤ 0, if x ≥ xS
0, (4.84)

and (4.83) is true given (4.14) of Assumption 4.2.3. Given that AS is defined by

(4.79), (4.84) can be written as

−(Rh + g0)(x
S
0)

φ(xS
0)

≤ −(Rh − g1)(x)

φ(x)
, for all x ≥ xS

0,

which is true, noting that g1(x
S
0) > −g0(x

S
0) by (4.14) of Assumption 4.2.3. Noting

d

dx

(
(Rh − g1)(x)

φ(x)

)
=
p′c(x)

φ2(x)

∫ x

0

L (Rh − g1) (s)φ(s)m(ds)

and given L (Rh − g1) < 0 for all x, by (4.78), this ensures the condition is satisfied.

Similarly, we can write (4.82) as

(Rh + g0)(x
S
0)

φ(xS
0)

≤(Rh + g0)(x)

φ(x)
, for x > xS

0.



The Optimal Timing of Investment Decisions 92

Consider

d

dx

(
(Rh + g0)(x)

φ(x)

)
=

(Rh + g0)
′(x)φ(x)− (Rh + g0)(x)φ

′(x)

φ2(x)

=
p′c(x)

φ2(x)

∫ x

0

L (Rh + g0) (s)φ(s)m(ds)

= − qS
0 (x)

φ2(x)

and given that qS
0 (x) < 0 for x > xS

0, we have that (Rh+g0)(x)/φ(x) is increasing for

x > xS
0 and hence (4.82) is satisfied. Recalling that, as a consequence of Theorem

4.3.1, xS
0 < x0, (4.75) satisfies (4.81) under (4.77).

Having confirmed that w, defined by (4.74) and (4.75), satisfies (4.29), we need to

confirm that the solution w equates with the value function ṽS. To do this we again

use similar arguments to those used in developing (4.56) of the proof of Theorem

4.4.1. We can show that for an arbitrary control strategy J̃S(Sx, Z) ≤ w(z, x), while

adopting the optimal strategy defined in the statement of the theorem yields w = ṽS.

2

4.4.3 The case when one mode is optimal for all values of the state

process

We consider two cases, where it is always optimal for the system to be operated in

the “open” mode for all values of the state process, or, it is optimal to always have

the system operated in the “closed” mode.

In the case where it is always optimal to operate in the open mode (Zt = 1 for

all t), we look for a solution w to (4.29) that satisfies

1

2
σ2(x)wxx(1, x) + b(x)wx(1, x)− r(x)w(1, x) + h(x) = 0, for all x > 0, (4.85)

w(1, x)− w(0, x)− g1(x) = 0, for all x > 0. (4.86)
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Such a solution is given by

w(1, x) = Rh(x) (4.87)

w(0, x) = w(1, x)− g1(x). (4.88)

Theorem 4.4.4 Suppose that Assumptions 2.2.1′, 2.2.2, 2.3.1′, 4.2.1, 4.2.2 and

4.2.3 hold, and consider the switching problem formulated in Section 4.2. Suppose,

in addition that

L (g1 −Rh) (x) > 0, for all x > 0. (4.89)

The value function ṽS identifies with w defined by (4.87)–(4.88). Furthermore, given

any initial condition x > 0 and z ∈ {0, 1}, the control strategy (SS
x, Z

S) ∈ Zx,z, where

SS
x is a weak solution to (2.2) and ZS = 1 for all t > 0, is optimal.

Proof: We start by confirming that w, defined by (4.87) and (4.88), satisfies the

HJB equation (4.29). In addition to (4.85)–(4.86) they also need to satisfy the

following inequalities

1

2
σ2(x)wxx(0, x) + b(x)wx(0, x)− r(x)w(0, x) ≤ 0, for all x > 0, (4.90)

w(0, x)− w(1, x)− g0(x) ≤ 0, for all x > 0. (4.91)

Noting that w(0, x) = Rh(x) − g1(x), simple substitution of (4.89) into (4.90) and

(4.14) of Assumption 4.2.3 into (4.91) show that these are satisfied.

Having confirmed that w, defined by (4.87) and (4.88), satisfy (4.29), we can use

similar arguments to those used in developing (4.56) of the proof of Theorem 4.4.1

to show that for an arbitrary control strategy J̃S(Sx, Z) ≤ w(z, x), while adopting

the optimal strategy defined in the statement of the theorem we have w = ṽS. 2

Similarly, in the case where it is always optimal to operate in the closed mode
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(Z = 0 for all t), we look for a solution w to (4.29) that satisfies

1

2
σ2(x)wxx(0, x) + b(x)wx(0, x)− r(x)w(0, x) = 0, for all x > 0, (4.92)

w(0, x)− w(1, x)− g0(x) = 0, for all x > 0. (4.93)

Such a solution is given by

w(0, x) = 0 (4.94)

w(1, x) = w(0, x)− g0(x). (4.95)

Theorem 4.4.5 Suppose that Assumptions 2.2.1′, 2.2.2, 2.3.1′, 4.2.1, 4.2.2 and

4.2.3 hold, and consider the switching problem formulated in Section 4.2. Suppose,

in addition that

L(Rh + g0)(x) ≥ 0, for all x > 0. (4.96)

The value function ṽS identifies with w defined by (4.94)–(4.95). Furthermore, given

any initial condition x > 0 and z ∈ {0, 1}, the control strategy (SS
x, Z

S) ∈ Zx,z, where

SS
x is a weak solution to (2.2) and ZS = 0 for all t > 0, is optimal.

Proof: For (4.94) and (4.95) to satisfy (4.29) they also need to satisfy the following

inequalities.

1

2
σ2(x)wxx(1, x) + b(x)wx(1, x)− r(x)w(1, x) + h(x) ≤ 0, for all x > 0, (4.97)

w(1, x)− w(0, x)− g1(x) ≤ 0, for all x > 0. (4.98)

Substitution of (4.96) into (4.97) and (4.14) of Assumption 4.2.3 into (4.98) show

that these are satisfied.

Similar arguments used in developing (4.56) of the proof of Theorem 4.4.1 show

that for an arbitrary control strategy J̃S(Sx, Z) ≤ w(z, x), while adopting the opti-

mal strategy defined in the statement of the theorem we have w = ṽS. 2
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[IM74] K. Itô and H.P. McKean. Diffusion Processes and their Sample Paths.

Springer-Verlag, 1974.

[KMZ98] T.S Knudsen, B Meister, and M. Zervos. Valuation of investments in real

assets with implications for the stock prices. SIAM Journal on Control

and Optimization, 36(6):2082–2102, 1998.



The Optimal Timing of Investment Decisions 97

[Kry80] N.V. Krylov. Controlled diffusion processes. Springer-Verlag, 1980.

[KS91] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus.

Springer-Verlag, 1991.

[KT81] S. Karlin and H.M. Taylor. A Second Course in Stochastic Processes.

Academic Press, 1981.

[LZ01] R. Lumley and M. Zervos. A model for investments in the natural re-

source industry with switching costs. Mathematics of Operations Research,

26(4):637–653, 2001.

[Man68] P. Mandl. Analytical treatment of one-dimensional Markov processes.

Springer-Verlag, 1968.

[McK65] H. P. McKean. Appendix: A free boundary problem for the heat equation

arising from a problem in mathematical economics. Industrial Manage-

ment Review, 6:32–39, 1965.

[MH95] G.E. Metcalf and K.A. Hassett. Investment under alternative return as-

sumptions comparing random walks and mean reversion. Journal of Eco-

nomic Dynamics and Control, 19(8):1471–1488, 1995.

[MOS66] W. Magnus, F. Oberhettinger, and R. P. Soni. Formulas and Theorems

for the Special Functions of Mathematical Physics. Springer-Verlag, third

edition, 1966.

[MS86] R. McDonald and D. Seigel. The Value of Waiting to Invest. Quarterly

Journal of Economics, 101(4):707–728, 1986.

[NS04] A. Novikov and A. Shiryaev. On an effective solution to the optimal

stopping problem for random walks. Research Paper Series, Quantitative

Finance Research Centre, University of Technology Sydney, (131), 2004.

[ØR98] B. Øksendahl and K. Reikvam. Viscosity solutions of optimal stopping

problems. Stochastics and Stochastics Reports, 1998.



The Optimal Timing of Investment Decisions 98

[Pha] H. Pham. On the smooth-fit property for one-dimensional optimal switch-

ing problem.

[PSS88] J. Paddock, D. Siegel, and J. Smith. Options Valuation of Claims on

Real Assets: The Case of Offshore Petroleum Leases. Quarterly J. of

Economics, 103(3):479–508, 1988.

[RW94] L.C.G. Rogers and D. Williams. Diffusions, Markov Processes and Mar-
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