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1 Trace class and Hilbert–Schmidt operators

Before defining the Fredholm determinant we need to review some basic spectral and

tensor algebra theory; to which this and the next sections are devoted. For this discus-

sion we suppose that H is a Cn-valued Hilbert space with the standard inner product

〈·, ·〉H; linear in the second factor and conjugate linear in the first. Most of the results

in this section are collated and extended from results in Simon [24–26] and Reed and

Simon [27,28]. We are interested in non-self adjoint trace class or Hilbert–Schmidt class

linear operators K ∈ L(H).

1.1 Absolute value and polar decomposition

Definition 1 (Positive operator) An operatorK ∈ L(H) is called positive if 〈Kϕ,ϕ〉H >
0 for all ϕ ∈ H. We write K > 0 for such an operator and, for example, K1 6 K2 if

K2 −K1 > 0.

Note that every bounded positive operator on H is self-adjoint: K∗ = K. For any

K > 0 there is a unique operator
√
K such that K = (

√
K)2. For any K ∈ L(H), note

thatK∗K > 0 since 〈K∗Kϕ,ϕ〉H = ‖Kϕ‖2H > 0. In particular, we define |K| =
√
K∗K.

Lastly note that ‖|K|ϕ‖2H = ‖Kϕ‖2H.

Theorem 1 (Polar decomposition) There exists a unique operator U so that:

1. K = U |K|; this is the polar decomposition of K;

2. ‖Uϕ‖H = ‖ϕ‖H for ϕ ∈ Ran |K| = (kerK)⊥;

3. ‖Uϕ‖H = 0 for ϕ ∈ (Ran |K|)⊥ = kerK.

Note that |K| = U∗K.

1.2 Compact operators and canonical expansion

We say that the bounded operatorK ∈ L(H) has finite rank if rank(K) = dim(RanK) <

∞. A bounded operator K is call compact if and only if it is the norm limit of finite

rank operators. More generally we have the following.

Definition 2 (Compact operators, Reed and Simon [27, p. 199]) Let X and Y be two

Banach spaces. An operator K ∈ L(X,Y) is called compact (or completely continuous)

if K takes bounded sets in X into precompact sets in Y. Equivalently, K is compact

if and only if for every bounded sequence {xn} ⊂ X, then {K xn} has a subsequence

convergent in Y.

Theorem 2 (Hilbert–Schmidt; see Reed and Simon [27, p. 203]) Let K be a self-

adjoint compact operator on H. Then there is a complete orthonormal basis {ϕm} for

H so that Kϕm = λmϕm.

We use J∞ = J∞(H) to denote the family of compact operators.

Theorem 3 (Simon [26, p. 2]) The family of compact operators J∞ is a two-sided

ideal closed under taking adjoints. In particular, K ∈ J∞ if and only if |K| ∈ J∞.
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Theorem 4 (Canonical expansion, Simon [26, p. 2]) Suppose K ∈ J∞, then K has a

norm convergent expansion, for any φ ∈ H:

K φ =

N∑
m=1

µm(K)〈ϕm, φ〉H ψm

where N = N(K) is a finite non-negative integer or infinity, {ϕm}Nm=1 and {ψm}Nm=1

are orthonormal sets and the unique positive values µ1(K) > µ2(K) > . . . are known

as the singular values of K.

1.3 Trace class and Hilbert–Schmidt ideals

Theorem 5 (Reed and Simon [27], p. 206-7) Let H be a separable Hilbert space with

orthonormal basis {ϕm}∞m=1. Then for any positive operator K ∈ L(H), we define

trK :=

∞∑
m=1

〈ϕm,Kϕm〉H.

The number trK is called the trace of K and is independent of the orthonormal basis

chosen. The trace has the following properties:

1. tr (K1 +K2) = trK1 + trK2;

2. tr (zK1) = z trK1 for all z > 0;

3. tr (UK1U
−1) = trK1 for any unitary operator U ;

4. If 0 6 K1 6 K2, then trK1 6 trK2.

Definition 3 (Trace class) An operator K ∈ L(H) is called trace class if and only if

tr |K| <∞. The family of all trace class operators is denoted J1 = J1(H).

Theorem 6 (Reed and Simon [27], p. 207) The family of trace class operators J1(H)

is a ∗-ideal in L(H), i.e.

1. J1 is a vector space;

2. If K1 ∈ J1 and K2 ∈ L(H), then K1K2 ∈ J1 and K2K1 ∈ J1;

3. If K ∈ J1 then K∗ ∈ J1.

We now collect some results together from Reed and Simon [27, p. 209].

Theorem 7 We have the following results:

1. The space of operators J1 is a Banach space with norm ‖K‖J1
:= tr |K| and

‖K‖ 6 ‖K‖J1
.

2. Every K ∈ J1 is compact. A compact operator K is in J1 if and only if
∑
µm <∞

where {µm}∞m=1 are the singular values of K.

3. The finite rank operators are ‖ · ‖J1
-dense in J1.

Definition 4 (Hilbert–Schmidt) An operator K ∈ L(H) is called Hilbert–Schmidt if

and only if trK∗K < ∞. The family of Hilbert–Schmidt operators is denoted J2 =

J2(H).

Theorem 8 (Hilbert–Schmidt operators, Reed and Simon [27, p. 210]) For the family

of Hilbert–Schmidt operators, we have the following properties:
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1. The family of operators J2 is a ∗-ideal;

2. If K1,K2 ∈ J2, then for any orthonormal basis {ϕm},
∞∑
m=1

〈ϕm,K∗1K2 ϕm〉H

is absolutely summable, and its limit, denoted by 〈K1,K2〉J2
, is independent of the

orthonormal basis chosen;

3. J2 with inner product 〈·, ·〉J2
is a Hilbert space;

4. If ‖K‖J2
:=
√
〈K,K〉J2

= (trK∗K)1/2, then

‖K‖ 6 ‖K‖J2
6 ‖K‖J1

and ‖K‖J2
= ‖K∗‖J2

;

5. Every K ∈ J2 is compact and a compact operator, K, is in J2, if and only if∑
µ2m <∞, where the µm are the singular values of K;

6. The finite rank operators are ‖ · ‖J2
-dense in J2.

Theorem 9 (Reed and Simon [27, p. 210]) Let (Ω,dν) be a measure space and H =

L2(Ω,dν) The operator K ∈ L(H) is Hilbert–Schmidt if and only if there is a function

G ∈ L2(Ω ×Ω,dν ⊗ dν) with

(K U)(x) =

∫
G(x; ξ)U(ξ) dν(ξ).

Further, we have that

‖K‖2J2
=

∫∫
|G(x; ξ)|2 dν(x) dν(ξ).

Theorem 10 (Reed and Simon [27, p. 211]) If K ∈ J1 and {ϕm}∞m=1 is any orthonor-

mal basis, then trK converges absolutely and the limit is independent of the choice of

basis.

Definition 5 (Trace, Reed and Simon [27, p. 211]) The map tr : J1 → C given by∑
〈ϕm,Kϕm〉H where {ϕm} is any orthonormal basis is called the trace.

2 Multilinear algebra

2.1 Tensor product spaces

The tensor product of two vector spaces V and W over a field K is a vector space V⊗W
equipped with a bilinear map

V×W→ V⊗W, v × w 7→ v ⊗ w,

which is universal. The bilinear map is universal in the sense that for any bilinear map

β : V ×W → U to a vector space U, there is a unique linear map from V ⊗W to U
that takes v ⊗ w to β(v, w). This universality property determines the tensor product

up to a canonical isomorphism.

Given a Hilbert space H with inner product 〈·, ·〉H, we denote by H⊗m the tensor

product H⊗ · · · ⊗H (m times). It is a vector space and if H = span{ϕk} then

H⊗m = span{ϕ1 ⊗ · · · ⊗ ϕm : ϕ1, . . . , ϕm ∈ H}.
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By convention H⊗0 is the ground field K. We define an inner product on H⊗m by

〈ϕ,ψ〉H⊗m :=

m∏
i=1

〈ϕi, ψi〉H

for ϕ = ϕ1 ⊗ · · · ⊗ ϕm and ψ = ψ1 ⊗ · · · ⊗ ψm. It is easy to show that if {ϕn}n∈N
is an orthonormal basis for H then {ϕi1 ⊗ · · · ⊗ ϕim}{i1,...,im}∈Nm is an orthonormal

basis for H⊗m with respect to the inner product above. Given K ∈ L(H), there exists

a natural linear operator K⊗m ∈ L(H⊗m) given by

K⊗m : ϕ1 ⊗ · · · ⊗ ϕm 7→ Kϕ1 ⊗ · · · ⊗Kϕm.

There are two natural subspaces of H⊗m namely, AltmH or H∧m, the vector subspace

of exterior (or alternating) powers, and SymmH, the vector subspace of symmetric pow-

ers. We briefly review these algebras here; we have mainly used Fulton and Harris [10,

Appendix B] as a reference.

2.2 Alternating algebra

The exterior powers H∧m of H come equipped with an alternating multilinear map

H×m → H∧m, ϕ1 × · · · × ϕm 7→ ϕ1 ∧ . . . ∧ ϕm,

that is universal. This means that for any alternating multilinear map β : H×m → U to

a vector space U, there is a unique linear map from H×m to U which takes ϕ1∧. . .∧ϕm
to β(ϕ1, . . . , ϕm). A multilinear map is alternating if β(ϕ1, . . . , ϕm) = 0 when any two

arguments are equal. This is equivalent to the condition that β(ϕ1, . . . , ϕm) changes

sign whenever two arguments are interchanged. Hence we have, for any σ ∈ Sm:

β(ϕσ(1), . . . , ϕσ(m)) = sgn(σ)β(ϕ1, . . . , ϕm).

We can construct H∧m as the quotient space of H⊗m by the subspace generated by

all ϕ1 ⊗ · · · ⊗ ϕm with two of the components equal. We let

π : H⊗m → H∧m, π : ϕ1 ⊗ · · · ⊗ ϕm 7→ ϕ1 ∧ . . . ∧ ϕm,

denote the projection. If {ϕn} is a basis for H, then {ϕi1 ∧ . . . ∧ ϕim : i1 < · · · < im},
is a basis for H∧m. There is a natural embedding H∧m ↪→ H⊗m defined by

ϕ1 ∧ . . . ∧ ϕm 7→
1√
m!

∑
σ∈Sm

sgn(σ)ϕσ(1) ⊗ · · · ⊗ ϕσ(m).

The image of this embedding is the space of anti-invariants of the right action of Sm
on H⊗m.

Proposition 1 The inner product in H∧m generates a determinant:

〈ϕ1 ∧ . . . ∧ ϕm, ψ1 ∧ . . . ∧ ψm〉H⊗m = det
[
〈ϕi, ψj〉H

]
.
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Proof By direct computation, utilizing the natural embedding into H⊗m and the bi-

linearity properties of the inner product, we have

〈ϕ1∧ . . . ∧ ϕm, ψ1 ∧ . . . ∧ ψm〉H⊗m

=
1

m!

∑
σ,π∈Sm

sgn(σ) sgn(π) 〈ϕσ(1) ⊗ . . .⊗ ϕσ(m), ψπ(1) ⊗ . . .⊗ ψπ(m)〉H⊗m

=
1

m!

∑
σ,π∈Sm

sgn(σ) sgn(π)

m∏
i=1

〈ϕσ(i), ψπ(i)〉H

=
1

m!

∑
σ∈Sm

sgn(σ) det
[
〈ϕσ(i), ψj〉H

]
= det

[
〈ϕi, ψj〉H

]
.

ut

Further note that K⊗m leaves the subspace H∧m of H⊗m invariant. We define

K∧m to be the restriction of K⊗m to H∧m.

2.3 Symmetric algebra

The symmetic powers SymmH of H comes with a universal symmetric multilinear map

H×m → SymmH, ϕ1 × · · · × ϕm 7→ ϕ1 · . . . · ϕm.

A multilinear map β : H×m → U is symmetric if it is unchanged when any two argu-

ments are interchanged. Hence we have, for any σ ∈ Sm:

β(ϕσ(1), . . . , ϕσ(m)) = β(ϕ1, . . . , ϕm).

We can construct SymmH as the quotient space of H⊗m by the subspace generated by

all ϕ1⊗· · ·⊗ϕm−ϕσ(1)⊗· · ·⊗ϕσ(m), or by those in which σ permutes two successive

factors. We let

π : H⊗m → SymmH, π : ϕ1 ⊗ · · · ⊗ ϕm 7→ ϕ1 · . . . · ϕm,

denote the projection. If {ϕn} is a basis for H, then {ϕi1 · . . . · ϕim : i1 6 · · · 6 im}, is

a basis for SymmH. There is a natural embedding SymmH ↪→ H⊗m defined by

ϕ1 · . . . · ϕm 7→
1√
m!

∑
σ∈Sm

ϕσ(1) ⊗ · · · ⊗ ϕσ(m).

For more details on symmetric functions see Macdonald [20].
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2.4 Hodge duality

Let H∧m denote the m-fold exterior product of the vector space H, with inner product

as given in Proposition 1 above. If ϕ1, . . . , ϕN denote an orthonormal basis of H, then

as we have already seen,{
ϕi1 ∧ . . . ∧ ϕim : 1 6 i1 < · · · < im 6 N

}
constitutes an orthonormal basis of H∧m. We define the Hodge linear star operator

? : H∧m → H∧(N−m) by

? : ϕi1 ∧ . . . ∧ ϕim 7→ ϕj1 ∧ . . . ∧ ϕjN−m

where 0 6 m 6 N , and j1, . . . , jN−m are selected so that ϕi1 , . . . , ϕim , ϕj1 , . . . , ϕjN−m

constitute a basis for H; see for example Jost [18, pp. 87–9]. Note in particular we have

? : 1 7→ ϕ1 ∧ . . . ∧ ϕN ,
? : ϕ1 ∧ . . . ∧ ϕN 7→ 1.

Further the following properties naturally follow: ?? = (−1)m(N−m) : H∧m → H∧m;

and ?(Kψ1∧ . . .∧Kψm) = det(K)?(ψ1∧ . . .∧ψm) for any ψ1, . . . , ψm ∈ H and N×N
matrix K. The following result can also be found in Jost [18, p. 88].

Lemma 1 For any φ, ψ ∈ H∧m we have

〈φ, ψ〉H∧m = ?(φ ∧ ?ψ) = ?(ψ ∧ ?φ).

Remark 1 Note that we have (φ∧?ψ) = det([φ] [?ψ]) where, if φ = φ1∧ . . .∧φm, then

[φ] denotes the matrix whose columns are φ1, . . . , φm. This latter result for the Evans

function determinant was espoused by Bridges and Derks [5].

3 Fredholm determinant for trace class operators

3.1 Motivation and definition

Before we define the Fredholm determinant properly let us motivate our definition; see

Reed and Simon [28, pp. 322-3] for more details. Suppose K ∈ J1 and also suppose H
is finite dimensional, i.e. dim(H) = N < ∞. Let λ1, . . . , λN be the eigenvalues for K

and suppose ϕ1, . . . , ϕN are a Schur basis (orthogonal eigenbasis) for H. Then we see

that

det(id +K) =

N∏
i=1

(1 + λi) =
〈
ϕ1 ∧ . . . ∧ ϕN , (id +K)ϕ1 ∧ . . . ∧ (id +K)ϕN

〉
H∧N .

We also see that for any m 6 N :

tr
(
K∧m

)
=

∑
i1<···<im

〈
ϕi1 ∧ . . . ∧ ϕim , (K

∧m)(ϕi1 ∧ . . . ∧ ϕim)
〉
H∧m

=
∑

i1<···<im

〈ϕi1 ∧ . . . ∧ ϕim ,Kϕi1 ∧ . . . ∧Kϕim〉H∧m

=
∑

i1<···<im

λi1 · · ·λim ,
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where i1, . . . , im ∈ {1, . . . , N}. Hence we observe that

det(id +K) =

N∑
m=0

tr
(
K∧m

)
.

When H is an arbitrary separable Hilbert space (i.e. possibly infinite dimensional) we

define det(id +K) precisely in this way.

Definition 6 (Fredholm determinant, Grothendiek [14]) Let K ∈ J1, then det(id+K)

is defined by

det(id +K) :=

∞∑
m=0

tr
(
K∧m

)
.

3.2 Equivalent definitions

Note that if K ∈ J1(H) then K∧m ∈ J1(H∧m) for all m. There are several equivalent

definitions for det(id +K) for K ∈ J1. For example for any z ∈ C we have

det(id + zK) =

N(K)∏
m=1

(
1 + zλm(K)

)
or

det(id + zK) = exp
(
tr log(id + zK)

)
.

The latter definition is only determined modulo 2πi and it leads to the small z expan-

sion known as Plemelj’s formula:

det(id + zK) = exp

(∑
(−1)m−1zm tr

(
Km)/m),

which converges if tr |K| < 1. The equivalence of these three definitions is established

through Lidskii’s theorem:

trK =

N(K)∑
m=1

λm(K).

There are two important properties of the determinant so defined. First the multipli-

cation formula

det(id +K1 +K2 +K1K2) = det(id +K1) · det(id +K2)

holds for all K1,K2 ∈ J1. Second, the characterization of invertibility: det(id+K) 6= 0

if and only if (id +K)−1 exists.

Remark 2 Note also that in the context of the exterior algebra of trace class operators,

we can also think of the Fredholm determinant as

det(id +K) := tr
(

(id−K)∧(−1)
)
.

Further we can also comfortably make equivalent statements in terms of the convolution

algebra of the Green’s kernels G.
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3.3 Fredholm determinant series expansion

Here we suppose H = L2(R;Cn), the usual Hilbert space of Lebesgue square-integrable

Cn-valued functions on R; the ground field K = R.

Proposition 2 If K ∈ J1 so that trK :=
∑
〈ϕm,Kϕm〉H <∞ for any basis {ϕm}∞m=1,

and the Green’s integral kernel G (associated with K) is continuous on R2, then

trK =

∫
R

trG(x;x) dx.

Remark 3 A proof for n = 1 is given in Simon [26, p. 35], and for n > 1 in Gohberg,

Goldberg and Krupnik [13].

Proposition 3 (Fredholm series expansion) If K ∈ J1(H) and its associated Green’s

kernel G is continuous, then we have that

det(id +K) :=

∞∑
m=0

tr
(
K∧m

)
,

where explicitly

tr
(
K∧m

)
=

1

m!

n∑
`1,...,`m=1

∫
Rm

det
[
G`i,`j (ξi, ξj)

]
i,j=1,...,m

dξ1 . . .dξm.

Remark 4 This is Fredholm’s original formula and this result essentially establishes the

equivalence of this with Grothendiek’s form for det(id+K) for trace class operators with

continuous integral kernels. For more details, see Gohberg, Goldberg and Krupnik [13]

and Bornemann [3].

4 Determinant for Hilbert–Schmidt operators

Hilbert [17] showed how it was possible to extend Fredholm’s theory to a wider class

of operators than trace class, in particular to what are now known as Hilbert–Schmidt

operators. In particular Hilbert developed a determinant series expansion much like

the Fredholm determinant series expansion valid for Hilbert–Schmidt operators, where

all the Green’s kernel terms evaluated at the diagonal ‘G(x, x)’ are set to zero. When

the operator K is of trace class so that tr |K| < ∞ then Hilbert’s determinant ‘det2’

and Fredholm’s determinant, say ‘det1’ from the last section, are related by

det2(id +K) = det1(id +K) · exp(−trK).

Let us begin the exposition in this section by establishing some properties of

Hilbert–Schmidt operators; here we mainly follow Bornemann [3]. Note that the prod-

uct of two Hilbert–Schmidt operators is of trace class:

‖K1K2‖J1
6 ‖K1‖J2

‖K2‖J2
.

For a Hilbert–Schmidt operator K ∈ J2(H) we have that

trK2 =

N(K)∑
m=1

(
λm(K)

)2
<∞ and |trK2| 6

N(K)∑
m=1

∣∣λm(K)
∣∣2 6 ‖K‖2J2

.
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For a general Hilbert–Schmidt operator we only know the convergence of
∑(

λm(K)
)2

but not of
∑
λm(K). Hence the Fredholm determinants defined in the last section do

not converge in general. For K ∈ J2(H) we define

det2(id + z K) :=

N(K)∏
m=1

(
1 + z λm(K)

)
exp(−zλm(K))

which possesses zeros at zm = −1/λm(K), counting multiplicity. Plemelj’s formula

now has the form

det2(id + z K) = exp

(
−
∞∑
m=2

(z)m

m
trKm

)
,

for |z| < 1/|λ1(K)|. Note that K2, K3, . . . are trace class if K ∈ J2. Further, if

K ∈ J2(H) then (id + z K) exp(−z K)− id ∈ J1(H) and we have

det2(id + z K) = det1

(
id +

(
(id + z K) exp(−z K)− id

))
.

If H = L2(R;Cn) then Hilbert–Schmidt operators are exactly given by integral

operators with a square integrable kernel. In other words there is one-to-one corre-

spondence between K ∈ J2(H) and G ∈ L2(R2;Cn×n) given by

(K U)(x) =

∫
R
G(x; ξ)U(ξ) dξ.

Indeed we have ‖K‖J2
= ‖G‖L2 so that J2(H) and L2(R2;Cn×n) are isometrically

isomorphic. Further we have the expansion (for the scalar case with n = 1) that

det2(id + zK) is given by

∞∑
m=0

zm

m!

∫
Rm

det


0 G(x1;x2) · · · G(x1;xm)

G(x2;x1) 0 · · · G(x2;xm)
...

...
. . .

...

G(xm;x1) G(xm;x2) · · · 0

 dx1 . . . dxm

Proof See Simon [26, Theorem 9.4].

Remark 5 If K 6∈ J1(H) then
∫
G(x;x) dx 6= trK; because trK is not well defined.

Remark 6 Some more details in Fredholm Theory can be found in Chapter 5 of Simon’s

Trace ideals and their applications book [26]. In particular the following useful between

the Fredholm determinant of K, the resolvent operator (id +K)−1 and the derivative

Df of the map f : K 7→ det(id +K) is proved:

Df(K) = (id +K)−1 det(id +K).

This result for example, implies that

(id + zK)−1 = 1 +
zDf(zK)

det(id + zK)
.
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Further, for any K ∈ J1, we have the Plemelj–Smithies formulae, det(id + zK) =∑
m>0 z

mαmK/m! and D(zK) =
∑
m>0 z

m+1βmK/m!, where

αm(K) = det


trK m− 1 · · · 0

trK2 trK · · · 0
...

...
. . .

...

trKm trKm−1 · · · trK


and

βm(K) = det


K m 0 · · ·
K2 trK m− 1 · · ·

...
...

. . .
...

Km+1 trKm · · · trKm−1

 .

5 Fredholm determinant construction

How would we actually use Fredholm theory to solve the original eigenvalue problem

Lu = λu ⇔ L(λ)u = 0

for a given linear operator L or equivalently L(λ) := L−λ id? Throughout this section,

we suppose H = L2(R;Cn) and λ is the spectral parameter. We could attempt to

directly invert L(λ) but the usual strategy, as advocated by Simon [26], is as follows.

Suppose that we can decompose L(λ) as

L(λ) = L0(λ) + L̂

where we suppose the linear operator L̂ contains the potential term and is such that

L̂ → 0 as x → −∞ (this choice as opposed to x → +∞ is arbitrary for the moment).

Then in some sense L0(λ) is the operator associated with the base background state,

i.e. for which their is no potential or it is zero (we will be more precise presently).

Importantly L0(λ) is a constant coefficient differential operator and we can write down

an explicit analytical solution to the partial differential equations for the Green’s kernel

corresponding to K0(λ) = L−10 (λ). Hence we rewrite the eigenvalue problem above as

(L0(λ) + L̂)u = 0 ⇔
(
id +K0(λ) ◦ L̂

)
u = 0.

The idea now would be to compute the [Fredholm] determinant

det
(
id +K0(λ) ◦ L̂

)
.

Note that often L̂ is simply a bounded linear operator (though not always—when it is a

lower order differential operator we can integrate by parts). To compute this Fredholm

determinant, one option is to compute the terms in the Fredholm determinant series

up to a certain order, or for example to use Bornemann’s numerical approach [3].
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6 Green’s integral kernels

6.1 Classical theory

We suppose now that H is the Hilbert space L2(Ω;Cn) of Cn-valued functions on the

domain Ω ⊆ Rd. Let L denote a general linear differential operator from dom(L) ⊆ H
to H. If 〈 · , · 〉H denotes the inner product, then we classically define the adjoint operator

L∗ through the relation

〈L∗u, v〉H = 〈u,Lv〉H
for all u, v ∈ H for which each side is meaningful. Let K be a Hilbert–Schmidt operator.

We know from Theorem 9 above that there exists a function G ∈ L2(Ω × Ω;Cn×n)

such that

K : U 7→
∫
Ω

G( · ; ξ)U(ξ) dξ.

We seek the integral operator K such that

L ◦K = K ◦ L = id

holds in J2, i.e. that K is the formal inverse operator of L. Indeed, suppose the corre-

sponding Green’s kernel G (to K) satisfies the pair of partial differential equations

LxG(x; ξ) = δ(x− ξ) idn,

L∗ξ G(x; ξ) = δ(x− ξ) idn.

Then by direct computation and the properties of the Dirac delta function δ we see

that (
L ◦K

)
(U)(x) = Lx ◦

∫
Ω

G(x; ξ)U(ξ) dξ =

∫
Ω

δ(x− ξ)U(ξ) dξ = U(x),

and (
K ◦ L

)
(U)(x) =

∫
Ω

G(x; ξ)LξU(ξ) dξ =

∫
Ω

(
L∗ξG(x; ξ)

)
U(ξ) dξ = U(x),

which proves the result. Note that in particular, the Green’s kernel corresponding to

K = id is G(x; ξ) = δ(x− ξ) idn.

In the rest of this section we consider the case of general linear operators on Ω = R
for which we can explicitly compute important results (the restriction to any finite or

semi-infinite subdomain of R is straightforward).

6.2 Green’s function construction

Consider the following nth order operator on L2(R;Cn):

DA : U 7→ ∂xU −AU.

Indeed we see that DA : H1(R;Cn) → L2(R;Cn), since dom(DA) ⊆ H1(R;Cn). Here

A = A(x;λ) ∈ Cn×n depends on a (eigenvalue) parameter λ. Our first goal is to

establish the existence of the inverse operator KA : L2(R;Cn)→ L2(R;Cn) of DA. To
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this end we determine the vector subspaces of solutions ker(DA) ∩ L2(R−;Cn) and

ker(DA) ∩ L2(R+;Cn). We assume there exists some 1 6 k 6 n for which

ker(DA) ∩ L2(R−;Cn) ⊆ L2(R−;V(n, k)
)

and

ker(DA) ∩ L2(R+;Cn) ⊆ L2(R+;V(n, n− k)
)
.

Here V(n, k) respresents the Stiefel manifold of k-frames in Cn, centred at the origin.

Implicitly we are assuming that n > 2 (and hereafter).

The adjoint operator D∗A and is defined as the operator D∗A : H1
(
R;Cn

)
→ L2

(
R;Cn

)
:

D∗A : Z∗ 7→ −∂xZ∗ − Z∗A∗.

The cokernel of DA is coker(DA) = ker(D∗A). Note that the dimensions of ker(DA) and

coker(DA) on R thus match, both are equal to k. Hence the Fredholm index given by

dim
(
ker(DA)

)
− dim

(
coker(DA)

)
is thus zero under the assumptions above.

We establish here the existence of the inverse operator KA of DA. We assume that

we can express KA : L2(R;Cn)→ L2(R;Cn) in the form

KA : U 7→
∫
R
G( · ; ξ)U(ξ) dξ,

where G ∈ L2(R2;Cn×n) is a Green’s integral kernel function.

Remark 7 (Important warning.) For any general nth order operator of the form DA,

the integral kernel G = G(x; ξ) will not be continuous on R2. Indeed let ∆− denote the

simplex or half-plane below the forty-five degree line, ξ < x, and ∆+ the simplex above

it, ξ > x. Then G will be discontinuous exactly along the boundary denoting the border

between ∆− and ∆+, and smooth elsewhere. However, suppose that we obtained DA
through prolongation. By this we mean that we defined additional variables so that we

obtained a system of 2n first order linear operators DA from a system of, say, n second

order operators L. Two important observations are crucial here. First that we could in

principle invert the operator L directly to obtain K which will have an n × n matrix

valued kernel G. The kernel G will be trace class and in particular continuous. This

is because we have integrated the system of second order partial differential equations

for G, as described above, twice. Indeed, an important strategy is to pursue this ap-

proach when applying Bornemann’s numerical approach to computing the Fredholm

determinant. Note further that if we invert the operator DA, the corresponding 2n×2n

Green’s kernel should of course generate the same Fredholm determinant!

Following the classical theory above, suppose the Green’s integral kernel G ∈
L2(R2;Cn×n) satisfies the partial differential equations:

DAG(x; ·) = δ(x− ξ) idn ⇔ ∂xG(x; ξ)−A(x)G(x; ξ) = δ(x− ξ) idn

and

D∗AG(·; ξ) = δ(x− ξ) idn ⇔ −∂ξG(x; ξ)−G(x; ξ)A∗(ξ) = δ(x− ξ) idn.
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Then the integral kernel G is the classical Green’s kernel for KA. Indeed KA exists and

we have KA ◦DA = DA ◦KA = id.

We can in fact be much more explicit about the form of G. Indeed we can identify

ker(DA)∩L2(R−;Cn) precisely—computing it either analytically or numerically as the

solution of the homogeneous ordinary differential system generated by DA. We label the

solution manifold by Y − ∈ L2(R−;V(n, k)). Similarly, let Y + ∈ L2(R+;V(n, n − k))

be the solution manifold for ker(DA) ∩ L2(R+;Cn). Further, let Z− and Z+ be the

solution manifolds, respectively, of ker(D∗A)∩L2(R−;Cn) and ker(D∗A)∩L2(R+;Cn).

Definition 7 (Green’s integral kernel) We define the Green’s integral kernel function

G associated with KA to be the map

G : ∆± →
{

ker(DA) ∩ L2(R∓;Cn)
}
×
{

ker(D∗A) ∩ L2(R±;Cn)
} ∼= Cn×n

given by

G : (x; ξ) 7→

{
−Y −(x)

(
Z+(ξ)

)∗
, ξ > x,

+Y +(x)
(
Z−(ξ)

)∗
, ξ < x.

An important property is that the functions Y ±j and Z±i which lie in the kernels

of DA and D∗A, respectively, satisfy the constraint

d

dx
〈Z+
i , Y

−
j 〉Cn =

d

dx
〈Z−i , Y

+
j 〉Cn = 0.

This follows by direct computation (and can be interpreted in terms of the definition of

the adjoint operator D∗A). We can in fact normalize Y ±j and Z±i to obtain the following.

Lemma 2 The kernels of DA and D∗A form orthonormal sets on R, i.e. we have

〈Z+
i , Y

−
j 〉Cn = 〈Z−i , Y

+
j 〉Cn = δij ,

where for Y −j and Z−i , i, j ∈ {1, . . . , k}, while for Y +
j and Z+

i , i, j ∈ {1, . . . , n− k}.

Remark 8 The Green’s integral kernel just defined satisfies the partial differential equa-

tions of the classical theory. The compatability condition—that there is a unit jump in

the solution due to the delta function along ξ = x—is equivalent to the requirement

that Y +(x)
(
Z−(x)

)∗
+ Y −(x)

(
Z+(x)

)∗
= idn for all x ∈ R. It can also be expressed

as the condition for all x ∈ R:
(
Y −(x) Y +(x)

) (
Z+(x) Z−(x)

)∗
= idn. The integral

operator KA has the appropriate properties as an inverse of DA if and only if the

compatability condition is satisfied. There are several perspectives we can bring to this.

Note that both matrices on the left are n × n. Hence the compatability condition is

equivalent to the requirement that Z+(x) and Z−(x) are generated by the inverse of(
Y −(x) Y +(x)

)
. The inverse exists if and only if det

(
Y −(x) Y +(x)

)
6= 0. Note that

det
(
Y −(x) Y +(x)

)
is the usual Evans function. Our original eigenvalue problem is

generated by the operator DA := ∂x − A on L2(R;Cn), where A = A(x;λ) ∈ Cn×n.

Hence if det
(
Y −(x)Y +(x)

)
6= 0, then the inverse KA exists, and any solution is trivial.

Nontrivial solutions correspond to det
(
Y −(x) Y +(x)

)
= 0.
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Hence suppose we rewrite our spectral problem for L(λ) in the form(
∂x −A(x;λ)

)
Y = 0 ⇔ DA(x;λ)Y = 0.

We follow the strategy we outlined at the end of the last section, but for DA(x;λ)

instead of L(λ). The key is to decompose the coefficient matrix A(x;λ) as follows:

A(x;λ) = A0(λ) +A1(x)

where A0(λ) is constant and A1 → O as x → −∞. We form the corresponding nth

order operator

DA0(λ) := ∂x −A0(λ).

Our original eigenvalue problem can now be expressed in the form

DA0(λ)Y = A1Y ⇔
(
id−KA0(λ) ◦A1

)
Y = O,

where KA0(λ) is the integral operator that is the inverse of DA0(λ). We are thus now

interested in computing the Fredholm determinant

detF

(
id−KA0(λ) ◦A1

)
.
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