Solutions to Mathematical Techniques Exam - June 2003

1(a) Fourier sine series is

f(z) ~ :Z by, sin(nx)
n=1

where

by = 2[5 2%sin(nz)ds

= —Z32cos(nz)|22F + = [o z cos(nz) dz

2

= —2Tcos(nm) + =3

-z sin(nz)|2Z] — -3 [¢ sin(nz) dz

= —2cos(nm) + 0+ =5 cos(nz)|2=F

= —2cos(nm) + —3=(cos(nm) — 1)

—%ﬁ if n is even

2 8 :
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On [0, 7] Fourier series converges to



1) —y"=Xy;  y(0) =0, y(1) —ay'(1) =0.
As we must first investigate positive eigenvalues we write A = k? where
k> 0.

Then —y"” = k%y has general solution y = A cos(kx) + B sin(kz).
y(0) = 0 <= A = 0. Hence we must have y(z) = Bsin(kz) and so y'(z) =
BE cos(kx)
Thus y(1) — ay’(1) = 0 <= Bsin(k) — akBcos(k) =0

<= B =0 or sin(k) — akcos(k) =0 <= B =0 or ak = tan(k).
A graph shows that ak = tan(k) has infinitely many positive solutions
ki, ko, ks, ...,

Thus we have infinitely many positive eigenvalues k2, k3, k2, ...,

Suppose A < 0; then we may write A = —k? where k& > 0.

Then 3" = k?y has general solution y = A cosh(kz) + B sinh(kz). Then
y(0) =0 <= A =0. Thus y(z) = B sinh(kz) and y'(z) = Bk cosh(kz).
Hence y(1) — ay’(1) = 0 <= B sinh (k) — aBk cosh(k) =0

<= B =0 or sinh (k) — ak cosh (k) =0<= B =0 or ak = tanh (k).
Thus we have a negative eigenvalue if and only if ak = tanh(k) has a
positive solution.

The graphs below show that this occurs if and only if a < 1.




2(a) wup —4u, =1, u(t,t) = 12
Characteristics are solutions of ‘é—f = —4.

Now ‘é—‘fz—4z>:1::—4t+c.

Let (to, o) € R2.

The characteristic through (¢, o) is x = —4t 4 (¢ + 4t¢) which intersects
the initial line z = ¢ where © = —4z + (g + 4ty), i.e., = L(zo + 4to), i.e
at the point ( (o + 4t), 5(:160 + 4tg)).

Let v(t) = u(t,z(t)) where z(t) is the characteristic above. Then

dv w4 dr
_— = Uz_ =
dt " dt

Uy —4u, =1
and so v(t) =t +c.

2
Also (5 (wo + 40)) = (%(ﬂco + 4to)) and so ¢ = (“0;;“0)2 — zotdio
ie., v(t) =1t+ (moggto)Z B ;po-g4t0‘

2
Hence u(tg, zo) = v(tg) = to + (Ioggto) _ ($04g4t0).

Thus u(t,z) =t + (f”+4t) o :E—g4t.

Consider
—duy =1;  u(t,—4t) =t

As above any solution of the PDE must satisfy u(¢, z(t)) = t + ¢ for some
constant ¢ along the characteristic z = —4¢. Thus we must have u(t, —4t) =
t? and u(t, —4t) =t + c for some constant ¢ and this is impossible.

2(b) Uy = gy O<z<L, t>0

We seek solutions of the form u(z,t) = X (z) T'(%).

To ensure that u(0,t) = u(L,t) = 0, we require that X (0) =0 = X (L).
Then u satisfies the equation if X (z)T"(t) =4 X" (x) T'(t) and so if

1T X"
iT - x  F
where k is a constant.
Thus we require
"=kX; X(0)=0=X(L) (1)
—T" = 4kT (2)

(1) has nonzero solutions if and only if & = "2752 with corresponding solutions
sin 7% forn = 1,2, ...

Ifk= "LZZ, (2) has general solution T'(t) = A,, cos 2%t + B, sin 227,

Hence any function of the form

u(z,t) = 02 {Ay cos 2L + B, sin 287L} gip 242



satisfies the PDE and the boundary conditions.

We must choose the coefficients A,, and B,, so that the initial conditions are
satisfied.

Since u(z,0) = sin 272, we require 3%, A, sin £ = sin 2%, Thus we
bl I q n=1 L L
should choose A3 =1 and A, =0 for n # 2.
_ 00 —2n7 s 2n7t 2nm 2nwt s NI
Also uy(z,0) =302, ( 2 Ay, sin 2 4 22T By, cos T) sin 7L,

Since u(x,0) = 0, we must choose B,, = 0 for all n.

Hence we have the solution u(z,t) = cos 22t sin 27%.

3(a) We seek solutions of the form u(r,) = R(r)©(#). Clearly © must
have period 2.

Also we must have that
R'©O+ 1RO+ 5RO" =0

and so it is sufficient to have

7“2% +r% = —%” = k where k is a constant.
Thus
r’R"+rR —kR=0 (1)
—-0"=k0; ©6(0)=06(2r); ©'(0)=0'(2nr) (2)

(2) has nonzero solutions if and only if £ = n? where n =0,1,2,....

Corresponding to n = 0 we have a constant eigenfunction and for n > 1 we
have eigenfunctions sin(né) and cos(nf).

When k = n?, (1) becomes

r?R"+rR' —n’?R=0 - an Euler equation.
When n = 0, we have solutions 1 and In(r).
n

When n > 1, we have solutions r™ and r~ ™.

Since we require solutions to be bounded at r = 0 we do not make use of
the solutions Inr or r=".
Thus equation has solutions 1, 7™ cos(nf), r™ sin(n#).

Hence any function of the form
o
u(r,0) = Ay + Z[An cos(nf) + By, sin(nf)]r"
n=1

is also a solution.

Thus we require that

u(1,0) = Ag + i[An cos(n) + By, sin(nf)] =

n=1

10if0<o<n
0if r <0 <2m.



and so we choose Ay, A,, B, to be the Fourier coefficients

1 e
Aoz—/ 10d0 = 5
21 Jo

/ 10 cos(nf) df = —0 sm(n0)| =0

0 if n is even

10
/ 10sin(n0) df = ——cos(n9)| mr[l—cos(mr)] = { 20 i is odd
nm

3(b) Suppose u and v are solutions of the equation. Let w = u — v. Then
V2w(z) = Viu(z) — VZ(z) =0on D;  w(z) = u(z) —v(z) = 0 on dD.

Hence [, V2w(z)w(z)dz = [50.w(z)dz =0 and so

/aa“’()(ds /Vw Vu(z)dz = 0.

D On

Hence [}, IV (z)|* dz = 0 (as w(z) =0 on D) and so |Vuw(z)|* = 0.
It follows that w(z) = ¢ on D where ¢ is a constant.

Since w(z) = 0 on 9D, it follows that w(z) =0 on D.

Thus u(z) = v(z) for all z € D.

4(a) up = ugy for 0 <z <2, > 0; uz(0,1) =0 = ugz(2,1)
We seek solutions of the form u(z,t) = X (z) T'(¢).
To ensure that u,(0,t) = 0 = u,(2,t) we require that X’(0) =0 = X'(2).

Substituting into the equation we must have that
T' ()X (z) = X"(2)T(¢)

Thus it is sufficient to have

where k is a constant,
i.e., we require

—X"=kX, X'(0)=0=X'(2) (1)

T = —kT 2)
(1) has nonzero solutions if and only if k£ = ”24“2 for n=10,1,2,... and the
corresponding eigenfunctions are 1, cos(%), cos(252) ...
Ifk = "24”2, (2) becomes T" = —"T”T and so has solution T' = Ape” e
2 2

Hence any function of the form wu(z,t) = Ag + Y02, Ay cos("5%)e
satisfies the PDE and the boundary conditions.



We now choose A, to ensure that u(z,0) = cos?(rz) = 3(cos(2mrz) + 1).

Thus we choose AO = l Ay = % and A,, = 0 otherwise.

Hence u(z,t) = 1 + 5 cos(27z)e —4n®t,

4(b) wp =uzy for 0 <z <00, t>0; u(0,t)=0, wu(z,0)=e "

Taking Fourier sine transforms in x, we obtain
4F(u ) = /2 €u(0,1) — € F(u(, 1))(©),

Le., %fs( (:f:,t))(f) = —&Fs(u(z,1))(6).
Hence F,(u(z,t))(€) = A(¢)e ¢t Also

Fs(u \/7/ x0s1nac£dx—\/7/ 51nm£dx—\/glf§2

Thus A(¢) = \/glf‘g? and so Fs(u(z,t))(¢) = \/glfgg e &t

Hence
2 [ ¢ ey
(z,1) \/7/ \/71_*_52 e Sln(wf) d¢ = ;/0 e e ¢ tsin(xz€)de.
5(a) ¥=2-2y, Yy =x+3y; z(0) =2, y(0)=1.
Taking Laplace transforms we obtain
sZ(s) — z(0) = Z(s) — 27(s); 5 (s =1)Z(s) +2y(s) = 2 (1)
sy(s) —y(0) = T(s) + 3y(s); —z(s) + (s =3)y(s) =1 (2)

(1) + (5 = 1)x(@) gives 2+ (5 — D5 — H]7(s) =2 +5- 1,

ie., (2 —45+5)7(s) =s+1,

: = _ +1 _ —2 3
Le., y(S) - (sj2)2+1 - (sj2)2+1 + (572)2+1'

Hence y(t) = € cos(t) + 3! sin(t).

(s —3)x(1)—2x(2) gives [(s —3)(s — 1) + 2] Z(s) = 2(s — 3) —

ie, ZT(s) = G 25) 8 — 2( 53§+1 - (3_24)2_4_1.

Hence z(t) = 22! cos(t) — 4! sin(t).

5.(00) #'=z-2y, 1y =2x—3y.

. 1 -2
The system can be written as 2’ = Az where A = ( 9 _3 )

- -2
2 —-3-A

ie, (1-=XN)(=3-XN)+4=0,ie, N2 +22+1=0,ie, (AN +1)2=0,

A is an eigenvalue of A if and only if det l ! =0,




( f; > is an eigenvector corresponding to A = —1 if and only if

T—2y=—zx ie., 2x —2y =0.
2z — 3y = —y ie, 2z —-2y=0

Hence all eigenvectors corresponding to A = —1 are multiples of < 1 > =¢.
We seek a second solution of the form z(t) = te™'¢ +e~*

Thus we require e*t§ — te*tg —elp= te*tA§ + e*tAQ
ie, (A+1I)n=¢.

<

—te t¢ + et An,

R . 2x—-2y =1
Thus,lfﬂ—<y>,werequ1re dw—2y = 1°

Thus we may choose = = %, y = 0.

1
Thus we have solution z(t) = e [t < 1 > + ( 6 )]

Hence we have general solution

e o (Ve () = (2 Yo 1)

1
As t — +o0, trajectory approaches (0,0) tangentially to ( ) )

. .. . 1
As t — —o0, trajectory approaches oo in direction of < 1 >

At (0,1), ¥ <pand % <0

Hence phase plane is

e = ,?r
6(a) z"=—23
The equation may be written as the system 2’ = y; ¢/ = —23.
Clearly (0,0) is the only equilibrium point of the system.
Any trajectory of the form y = y(z) must satisfy Z—Z = % ‘fi—‘f = —Tﬁ’

ie., ydy = —z3dzx, ie., %yQ + %x‘* =c ie, 2yl +2'=c
Consider the trajectory passing through (0,a) where a > 0, i.e., the trajec-
tory with equation 2y? + z* = 24



Aszx 1ncreases into the first quadrant, y decreases until y = 0 when z* = 242,

ie. x—24\/_

Thus we obtain trajectories

=

— i

As equations of trajectories are symmetric in x and y we have phase plane

.ﬁ-
= [' _L ”'“-L— *
I‘ .

e -y
I

(b) 2" =23

Arguing as above equation of trajectories is 2y> — z* = c.

Consider the trajectory passing through (0,a) where a > 0, i.e., the trajec-
tory with equation 2y® — z* = 2a2.

As z increases into the first quadrant, y increases - roughly speaking y =

%xQ for large z and y. Hence we obtain the trajectory

Consider the trajectory passing through (a,0) where a > 0, i.e., 2y — 2% =
—a*.
As y increases into the first quadrant, = increases - again y = %aﬁ for large

z and y.



Hence we obtain the trajectory

' -

As equations of trajectories are symmetric in x and y we have phase plane

() a'=z-y; Yy =22-2

Equilibrium points occur when z — y = 0 and so the set of all equilibrium
points consists of the line y = z.

Any trajectory of the form y = y(x) must satisfy g—g = 'fi—?t//‘fl—f = 2§:zy =2.

Hence trajectories are lines of the form y = 2z + ¢

Hence we have phase plane

Note that ‘fi—f < 0 and ’;—3{ < 0 when y > .

Ta) L=zB-2-y) =Ff(z,y); %=y®-3z-2y) =g(zy)

Equilibrium points occur when £ =0,y =0: z=0,y=4: x=3,y=0
and where
S—w—y = 0y =S oy =1

8§—3z—-2y = 0 3r+2y = 8



Since f(z,y) =z(3 —x —y), %(w,y) =3—2r—yand %(w,y) = —7.
Since g(z,y) = y(8 — 3z — 2y), %(w,y) = —3y and g—g(w,y) =8 — 3z — 4y.

3—2z—y —x )

. . . o _
Hence linearized equation at (z,y) isz’ = Az where A = ( 3y § — 3z — dy

Hence linearized equation at (0,0) is 2’ = ?) g Tz = Az.

Eigenvalues of A are A = 3,8 and so (0,0) is an unstable node.
. . . . -1 0

Linearized equation at (0,4) is z’' = 19 _g |Z= Az.

Eigenvalues of A are A = —1,—8 and so (0,4) is an asymptotically stable
node.

Linearized equation at (3,0) is 2’ = -3 =3 ) z=A

=

0 -1
Eigenvalues of A are A = —3,—1 and so (3,0) is an asymptotically stable
node.

. . . . -2 =2
Linearized equation at (2,1) is 2’ = ( 3 9 )g = Ag.

—2-X -2
-3 —2-2

ie, (—2—=A(=2—=X)—6=0,ie, (A+2)2=6,ie, \=—-2+6.
Hence (2,1) is a saddle point.

A is an eigenvalue of A if and only if det =0,

Thus possible phase plane is

(b) o' =2 -3 o = 2xy® + 42y + 295

Let V(z,y) = az? 4+ by?. Then if 2(¢) and y(t) are solutions of the system
LWV (), y)] = 55 5+ % G = 2an(2® —y®) + 2by 2y + da?y + 2y°)
= 2az* + (—2a + 4b)zy® + 8bxy? + 4by*

Choosing a = 2, b= 1, we have V(z,y) = 222 + y? and

%[V(x(t),y(t))] = 42t + 822y + 4yt = 4(2% + y?)? > 0.

Thus (0,0) is an unstable equilibrium point.
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