
Solutions to Mathematical Techniques Exam - June 2003

1(a) Fourier sine series is

f(x) �
n=1X
n=1

bn sin(nx)

where

bn = 2
�

R �
0 x2 sin(nx) dx

= � 2
n�
x2 cos(nx)jx=�x=0 +

4
n�

R �
0 x cos(nx) dx

= �2�
n
cos(n�) + 4

n2�
x sin(nx)jx=�x=0 �

4
n2�

R �
0 sin(nx) dx

= �2�
n
cos(n�) + 0 + 4

n3�
cos(nx)jx=�x=0

= �2�
n
cos(n�) + 4

n3�
(cos(n�)� 1)

=

8><
>:
�2�

n
if n is even

2�
n
� 8

n3�
if n is odd

On [0; �] Fourier series converges to

Sum of �rst N terms of Fourier series has graph
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1(b) �y00 = �y; y(0) = 0; y(1)� �y0(1) = 0.

As we must �rst investigate positive eigenvalues we write � = k2 where

k > 0.

Then �y00 = k2y has general solution y = A cos(kx) +B sin(kx).

y(0) = 0 () A = 0. Hence we must have y(x) = B sin(kx) and so y0(x) =

Bk cos(kx)

Thus y(1)� �y0(1) = 0() B sin(k)� �kB cos(k) = 0

() B = 0 or sin(k)� �k cos(k) = 0() B = 0 or �k = tan(k).

A graph shows that �k = tan(k) has in�nitely many positive solutions

k1; k2; k3; : : : ;

Thus we have in�nitely many positive eigenvalues k21 ; k
2
2 ; k

2
3 ; : : : ;

Suppose � < 0; then we may write � = �k2 where k > 0.

Then y00 = k2y has general solution y = A cosh(kx) +B sinh(kx). Then

y(0) = 0() A = 0. Thus y(x) = B sinh(kx) and y0(x) = Bk cosh(kx).

Hence y(1)� �y0(1) = 0() B sinh (k) � �Bk cosh(k) = 0

() B = 0 or sinh (k)� �k cosh (k) = 0() B = 0 or �k = tanh (k).

Thus we have a negative eigenvalue if and only if �k = tanh(k) has a

positive solution.

The graphs below show that this occurs if and only if � < 1.
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2(a) ut � 4ux = 1; u(t; t) = t2.

Characteristics are solutions of dx
dt

= �4.

Now dx
dt

= �4 =) x = �4t+ c.

Let (t0; x0) 2 R
2.

The characteristic through (t0; x0) is x = �4t+ (x0 + 4t0) which intersects

the initial line x = t where x = �4x+ (x0 + 4t0), i.e., x = 1
5
(x0 + 4t0), i.e.,

at the point (1
5
(x0 + 4t0);

1
5
(x0 + 4t0)).

Let v(t) = u(t; x(t)) where x(t) is the characteristic above. Then

dv

dt
= ut + ux

dx

dt
= ut � 4ux = 1

and so v(t) = t+ c.

Also v(15 (x0 + 4t0)) =
�
1
5 (x0 + 4t0)

�2
and so c =

(x0+4t0)
2

25 � x0+4t0
5 ,

i.e., v(t) = t+
(x0+4t0)

2

25
� x0+4t0

5
.

Hence u(t0; x0) = v(t0) = t0 +
(x0+4t0)

2

25 � (x0+4t0)
5 .

Thus u(t; x) = t+
(x+4t)2

25 � x+4t
5 .

Consider

ut � 4ux = 1; u(t;�4t) = t2:

As above any solution of the PDE must satisfy u(t; x(t)) = t + c for some

constant c along the characteristic x = �4t. Thus we must have u(t;�4t) =
t2 and u(t;�4t) = t+ c for some constant c and this is impossible.

2(b) utt = 4uxx 0 < x < L; t > 0

We seek solutions of the form u(x; t) = X(x)T (t).

To ensure that u(0; t) = u(L; t) = 0, we require that X(0) = 0 = X(L).

Then u satis�es the equation if X(x)T 00(t) = 4X 00(x)T (t) and so if

1

4

T 00

T
=

X 00

X
= �k

where k is a constant.

Thus we require

�X 00 = kX; X(0) = 0 = X(L) (1)

�T 00 = 4kT (2)

(1) has nonzero solutions if and only if k = n2�2

L2 with corresponding solutions

sin n�x
L

for n = 1; 2; : : :

If k = n2�2

L2 , (2) has general solution T (t) = An cos
2n�t
L

+Bn sin
2n�t
L

.

Hence any function of the form

u(x; t) =
P1

n=1fAn cos
2n�t
L

+Bn sin
2n�t
L
g sin n�x

L
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satis�es the PDE and the boundary conditions.

We must choose the coeÆcients An and Bn so that the initial conditions are

satis�ed.

Since u(x; 0) = sin 2�x
L
, we require

P1
n=1An sin

n�x
L

= sin 2�x
L
. Thus we

should choose A2 = 1 and An = 0 for n 6= 2.

Also ut(x; 0) =
P1

n=1

�
�2n�
L

An sin 2n�t
L

+ 2n�
L

Bn cos 2n�t
L

�
sin n�x

L
.

Since ut(x; 0) = 0, we must choose Bn = 0 for all n.

Hence we have the solution u(x; t) = cos 4�t
L

sin 2�x
L
.

3(a) We seek solutions of the form u(r; �) = R(r)�(�). Clearly � must

have period 2�.

Also we must have that

R00�+ 1
r
R0�+ 1

r2
R�00 = 0

and so it is suÆcient to have

r2R
00

R
+ rR

0

R
= ��00

� = k where k is a constant.

Thus

r2R00 + rR0 � kR = 0 (1)

��00 = k�; �(0) = �(2�); �0(0) = �0(2�) (2)

(2) has nonzero solutions if and only if k = n2 where n = 0; 1; 2; : : :.

Corresponding to n = 0 we have a constant eigenfunction and for n � 1 we

have eigenfunctions sin(n�) and cos(n�).

When k = n2, (1) becomes

r2R00 + rR0 � n2R = 0 - an Euler equation.

When n = 0, we have solutions 1 and ln(r).

When n � 1, we have solutions rn and r�n.

Since we require solutions to be bounded at r = 0 we do not make use of

the solutions ln r or r�n.

Thus equation has solutions 1; rn cos(n�); rn sin(n�).

Hence any function of the form

u(r; �) = A0 +
1X
n=1

[An cos(n�) +Bn sin(n�) ] r
n

is also a solution.

Thus we require that

u(1; �) = A0 +
1X
n=1

[An cos(n�) +Bn sin(n�)] =

(
10 if 0 � � � �

0 if � � � � 2�:
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and so we choose A0; An; Bn to be the Fourier coeÆcients

A0 =
1

2�

Z �

0
10 d� = 5

An =
1

�

Z �

0
10 cos(n�) d� =

10

n�
sin(n�)j�0 = 0

Bn =
1

�

Z �

0
10 sin(n�) d� = �

10

n�
cos(n�)j�0 =

10

n�
[1�cos(n�)] =

(
0 if n is even
20
n�

if n is odd

3(b) Suppose u and v are solutions of the equation. Let w = u� v. Then

r2w(x) = r2u(x)�r2v(x) = 0 on D; w(x) = u(x)� v(x) = 0 on @D:

Hence
R
Dr

2w(x)w(x) dx =
R
D 0 : w(x) dx = 0 and so

Z
@D

@w

@n
(x)w(x) dS �

Z
D

rw(x) :rw(x) dx = 0:

Hence
R
D jrw(x)j

2 dx = 0 (as w(x) � 0 on @D) and so jrw(x)j2 � 0.

It follows that w(x) � c on D where c is a constant.

Since w(x) � 0 on @D, it follows that w(x) � 0 on D.

Thus u(x) = v(x) for all x 2 D.

4(a) ut = uxx for 0 < x < 2; t > 0; ux(0; t) = 0 = ux(2; t)

We seek solutions of the form u(x; t) = X(x) T (t).

To ensure that ux(0; t) = 0 = ux(2; t) we require that X
0(0) = 0 = X 0(2).

Substituting into the equation we must have that

T 0(t)X(x) = X 00(x)T (t)

Thus it is suÆcient to have

X 00(x)

X(x)
=

T 0(t)

T (t)
= �k

where k is a constant,

i.e., we require

�X 00 = kX; X 0(0) = 0 = X 0(2) (1)

T 0 = �kT (2)

(1) has nonzero solutions if and only if k = n2�2

4
for n = 0; 1; 2; : : : and the

corresponding eigenfunctions are 1; cos(�x
2
); cos(2�x

2
) . . .

If k = n2�2

4 , (2) becomes T 0 = �n2�2

4 T and so has solution T = Ane
�n

2
�
2
t

4 .

Hence any function of the form u(x; t) = A0 +
P1

n=1An cos(
n�x
2
)e�

n
2
�
2
t

4

satis�es the PDE and the boundary conditions.

5



We now choose An to ensure that u(x; 0) = cos2(�x) = 1
2(cos(2�x) + 1).

Thus we choose A0 =
1
2 , A4 =

1
2 and An = 0 otherwise.

Hence u(x; t) = 1
2
+ 1

2
cos(2�x)e�4�

2t.

4(b) ut = uxx for 0 < x <1; t > 0; u(0; t) = 0 , u(x; 0) = e�x.

Taking Fourier sine transforms in x, we obtain

d
dt
Fs(u(x; t))(�) =

q
2
�
� u(0; t)� �2Fs(u(x; t))(�),

i.e., d
dt
Fs(u(x; t))(�) = ��

2Fs(u(x; t))(�).

Hence Fs(u(x; t))(�) = A(�)e��
2t: Also

Fs(u(x; 0))(�) =

r
2

�

Z 1

0
u(x; 0) sin(x�) dx =

r
2

�

Z 1

0
e�x sin(x�) dx =

r
2

�

�

1 + �2

Thus A(�) =
q

2
�

�

1+�2
and so Fs(u(x; t))(�) =

q
2
�

�

1+�2
e��

2t.

Hence

u(x; t) =

r
2

�

Z 1

0

r
2

�

�

1 + �2
e��

2t sin(x�)d� =
2

�

Z 1

0

�

1 + �2
e��

2t sin(x�)d�:

5(a) x0 = x� 2y; y0 = x+ 3y ; x(0) = 2; y(0) = 1.

Taking Laplace transforms we obtain

sx(s)� x(0) = x(s)� 2y(s); i.e., (s� 1)x(s) + 2y(s) = 2 (1)

sy(s)� y(0) = x(s) + 3y(s); i.e., �x(s) + (s� 3) y(s) = 1 (2)

(1) + (s� 1)�(2) gives [2 + (s� 1)(s� 3)] y(s) = 2 + s� 1,

i.e., (s2 � 4s+ 5) y(s) = s+ 1,

i.e., y(s) = s+1
(s�2)2+1 =

s�2
(s�2)2+1 +

3
(s�2)2+1 :

Hence y(t) = e2t cos(t) + 3e2t sin(t).

(s� 3)�(1)�2�(2) gives [(s� 3)(s� 1) + 2]x(s) = 2(s� 3)� 2,

i.e., x(s) = 2s�8
(s�2)2+1 = 2 s�2

(s�2)2+1 �
4

(s�2)2+1 .

Hence x(t) = 2e2t cos(t)� 4e2t sin(t).

5.(b) x0 = x� 2y; y0 = 2x� 3y.

The system can be written as x0 = Ax where A =

 
1 �2
2 �3

!
.

� is an eigenvalue of A if and only if det

"
1� � �2
2 �3� �

#
= 0,

i.e., (1� �) (�3� �) + 4 = 0, i.e., �2 + 2�+ 1 = 0, i.e., (�+ 1)2 = 0,

i.e., � = �1.
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x

y

!
is an eigenvector corresponding to � = �1 if and only if

x� 2y = �x i.e., 2x� 2y = 0.

2x� 3y = �y i.e., 2x� 2y = 0

Hence all eigenvectors corresponding to � = �1 are multiples of

 
1

1

!
= �.

We seek a second solution of the form x(t) = te�t� + e�t�.

Thus we require e�t� � te�t� � e�t� = te�tA� + e�tA� = �te�t� + e�tA�,

i.e., (A+ I)� = �.

Thus, if � =

 
x

y

!
, we require

2x� 2y = 1

2x� 2y = 1
.

Thus we may choose x = 1
2
, y = 0.

Thus we have solution x(t) = e�t[t

 
1

1

!
+

 
1
2

0

!
].

Hence we have general solution

x(t) = e�t
"
c1

 
1

1

!
+ c2

 
t+ 1

2

t

!#
= e�t

" 
c1 +

1
2
c2

c1

!
+ c2t

 
1

1

!#

As t! +1, trajectory approaches (0; 0) tangentially to

 
1

1

!
.

As t! �1, trajectory approaches 1 in direction of

 
1

1

!
.

At (0; 1), dx
dt

< 0 and dy
dt

< 0

Hence phase plane is

6(a) x00 = �x3.

The equation may be written as the system x0 = y ; y0 = �x3.

Clearly (0; 0) is the only equilibrium point of the system.

Any trajectory of the form y = y(x) must satisfy dy
dx

= dy
dt
=dx
dt

= �x3

y
,

i.e., y dy = �x3 dx, i.e., 1
2y

2 + 1
4x

4 = c i.e., 2y2 + x4 = c.

Consider the trajectory passing through (0; a) where a > 0, i.e., the trajec-

tory with equation 2y2 + x4 = 2a2

7



As x increases into the �rst quadrant, y decreases until y = 0 when x4 = 2a2,

i.e., x = 2
1

4

p
a.

Thus we obtain trajectories

As equations of trajectories are symmetric in x and y we have phase plane

(b) x00 = �x3.

Arguing as above equation of trajectories is 2y2 � x4 = c:

Consider the trajectory passing through (0; a) where a � 0, i.e., the trajec-

tory with equation 2y2 � x4 = 2a2.

As x increases into the �rst quadrant, y increases - roughly speaking y �
1p
2
x2 for large x and y. Hence we obtain the trajectory

Consider the trajectory passing through (a; 0) where a � 0, i.e., 2y2 � x4 =

�a4.

As y increases into the �rst quadrant, x increases - again y � 1p
2
x2 for large

x and y.
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Hence we obtain the trajectory

As equations of trajectories are symmetric in x and y we have phase plane

(c) x0 = x� y; y0 = 2x� 2y

Equilibrium points occur when x � y = 0 and so the set of all equilibrium

points consists of the line y = x.

Any trajectory of the form y = y(x) must satisfy dy
dx

= dy
dt
=dx
dt

= 2x�2y
x�y = 2.

Hence trajectories are lines of the form y = 2x+ c

Hence we have phase plane

Note that dx
dt

< 0 and dy
dt
< 0 when y > x.

7(a) dx
dt

= x(3� x� y) = f(x; y); dy
dt

= y(8� 3x� 2y) = g(x; y)

Equilibrium points occur when x = 0; y = 0: x = 0; y = 4 : x = 3; y = 0

and where

3� x� y = 0

8� 3x� 2y = 0
i.e.,

x+ y = 3

3x+ 2y = 8
i.e., x = 2; y = 1:
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Since f(x; y) = x(3� x� y), @f
@x
(x; y) = 3� 2x� y and @f

@y
(x; y) = �x.

Since g(x; y) = y(8� 3x� 2y), @g
@x
(x; y) = �3y and @g

@y
(x; y) = 8� 3x� 4y.

Hence linearized equation at (x; y) is x0 = Ax whereA =

 
3� 2x� y �x
�3y 8� 3x� 4y

!
.

Hence linearized equation at (0; 0) is x0 =

 
3 0

0 8

!
x = Ax.

Eigenvalues of A are � = 3; 8 and so (0; 0) is an unstable node.

Linearized equation at (0; 4) is x0 =

 
�1 0

�12 �8

!
x = Ax.

Eigenvalues of A are � = �1;�8 and so (0; 4) is an asymptotically stable

node.

Linearized equation at (3; 0) is x0 =

 
�3 �3
0 �1

!
x = Ax.

Eigenvalues of A are � = �3;�1 and so (3; 0) is an asymptotically stable

node.

Linearized equation at (2; 1) is x0 =

 
�2 �2
�3 �2

!
x = Ax.

� is an eigenvalue of A if and only if det

����� �2� � �2
�3 �2� �

����� = 0,

i.e., (�2� � (�2� �)� 6 = 0, i.e., (�+ 2)2 = 6, i.e., � = �2�
p
6.

Hence (2; 1) is a saddle point.

Thus possible phase plane is

(b) x0 = x3 � y3; y0 = 2xy2 + 4x2y + 2y3:

Let V (x; y) = ax2 + by2. Then if x(t) and y(t) are solutions of the system
d
dt
[V (x(t); y(t))] = @V

@x
@x
@t

+ @V
@y

@y
@t

= 2ax(x3 � y3) + 2by(2xy2+4x2y+2y3)

= 2ax4 + (�2a+ 4b)xy3 + 8bx2y2 + 4by4

Choosing a = 2; b = 1, we have V (x; y) = 2x2 + y2 and
d
dt
[V (x(t); y(t))] = 4x4 + 8x2y2 + 4y4 = 4(x2 + y2)2 > 0.

Thus (0; 0) is an unstable equilibrium point.
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