
Solutions to Mathematical Techniques Exam - June 2002

1. a0 =
1
1

R 1
0 x

2 dx = 1
3
.

an = 2
1

R 1
0 x

2 cos(n�x) dx = 2 [ 1
n�x

2 sin(n�x) jx=1x=0 � 2
n�

R 1
0 x sin(n�x) dx ]

= � 4
n�

R 1
0 x sin(n�x) dx = � 4

n�
[� 1

n�
x cos(n�x) j10 + 1

n�

R 1
0 cos(n�x) dx ]

= 4
n2�2

cos(n�) = 4
n2�2

(�1)n.
Hence Fourier cosine series is

f(x) =
1

3
� 4

�2
[ cos(�x)� 1

4
cos(2�x) +

1

9
cos(3�x) � 1

16
cos(4�x) + : : : ]

Since Fourier cosine series converges to an even function of period 2, the

series converges to the following limit on [�3; 3]

Hence series converges to 1 when x = 1 and so

1 =
1

3
� 4

�2
[�1� 1

4
� 1

9
� 1

16
� : : : ]

Hence 1 + 1
4
+ 1

9
+ 1

16
+ : : : = �2

4
: 2
3
= �2

6
.

(b) By the Fourier Inversion Theorem

f(x) = 1p
2�

R1
�1 e���

2

ei�x d�

= 1p
2�

R1
�1 e���

2
cos(�x) dx+ ip

2�

R1
�1 e���

2
sin(�x) dx

= 1p
2�

:
p
�p
�
e�

x2

4� = 1p
2�
e�

x2

4�

ut = uxx �1 < x <1; t > 0; u(x; 0) = g(x) �1 < x <1:

Taking Fourier transforms with respect to x gives

d
dt û(�; t) = ��2 û(�; t) and so û(�; t) = K(�)e��

2t.

Now û(�; 0) = 1p
2�

R1
�1 u(x; 0)e�ix� d� = 1p

2�

R1
�1 g(x)e�ix� dx = ĝ(�) and

so K(�) = ĝ(�).

Thus û(�; t) = ĝ(�)e��
2t = ĝ(�)k̂(�) where k(x) = 1p

2t
e�

x2

4t from the �rst
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part of the question.

Hence by the Convolution Theorem

u(x; t) =
1p
2�

Z 1

�1
g(s)

1p
2t
e�

(x�s)2

4t ds =
1p
4�t

Z 1

�1
g(s)e�

(x�s)2

4t ds:

2. (a) �y00 = �y; y(0) = 0; y(1) + 2y0(1) = 0.

As we must investigate positive eigenvalues we write � = k2 where k > 0.

Then y00 = k2y has general solution y = A cos(kx) +B sin(kx).

y(0) = 0() A = 0. Hence we must have y(x) = B sin(kx).

Thus y(1) + 2y0(1) = 0() B sin(k) + 2Bk cos(k) = 0

() B = 0 or sin(k) + 2k cos(k) = 0() B = 0 or � 2k = tan(k).

A graph shows that �2k = tan(k) has in�nitely many positive solutions

k1; k2; k3; : : : ;

y = − 2k

k

y

where �
2
< k1 <

3�
2
, 3�

2
< k2 <

5�
2

etc. and that, for large n,

kn � �
2
+ (n� 1)� = (n� 1

2
)�.

Thus we have in�nitely many positive eigenvalues �1; �2; : : :with

�n � (n� 1

2
)2�2:

(b) x2ux + y2uy = 0; u(1; y) = y.

Characteristics are solutions of dy
dx

= y2

x2
.

But dy
dx = y2

x2
=) 1

y2
dy = 1

x2
dx =) 1

y = 1
x + C =) x = y + Cxy.

Let (x0; y0) 2 R2.

The characteristic through (x0; y0) corresponds to C satisfying x0 = y0 +

Cx0y0, i.e., C = x0�y0
x0y0

.

This characteristic meets the line x = 1 when 1 = y + Cy,

i.e., y = 1
1+C = 1

1+
x0�y0
x0y0

= x0y0
x0y0+x0�y0 , i.e., at (1;

x0y0
x0y0+x0�y0 ).

If u is the required solution and x! y(x) is a characteristic, then
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d
dx
u(x; y(x)) = ux + uy

dy
dx

= ux +
y2

x2
uy =

1
x2
(x2ux + y2uy) = 0,

i.e., the solution is constant along characteristics.

Hence u(x0; y0) = u(1; x0y0
x0y0+x0�y0 ) =

x0y0
x0y0+x0�y0 .

Thus u(x; y) = xy
xy+x�y .

3 (a) ut = kuxx ; u(0; t) = 0 = u(L; t); u(x; 0) =

(
T0 for 0 � x � L

2

0 for L
2
< x � L

.

We seek solutions of the form u(x; t) = X(x) T (t).

To ensure that u(0; t) = 0 = u(L; t) we require that X(0) = 0 = X(L).

Substituting into the equation we must have that

T 0(t)X(x) = kX 00(x)T (t)

Thus it is suÆcient to have

X 00(x)
X(x)

=
1

k

T 0(t)
T (t)

= ��

where � is a constant,

i.e., we require

�X 00 = �X; X(0) = 0 = X(L) (1)

T 0 = �k�T (2)

(1) has nonzero solutions if and only if � = n2�2

L2 for n = 1; 2; : : : ; ; : : : ; and

the corresponding eigenfunctions are sin(n�x
L

).

If � = n2�2

L2 , (2) becomes T 0 = �k n2�2

L2 T and so has solution T = Ane
�k n2�2

L2
t

Hence any function of the form u(x; t) =
P1

n=1An sin(
n�x
L

)e
�k n2�2

L2
t
satis�es

the PDE and the boundary conditions.

We now choose An to ensure that u(x; 0) =

(
T0 for 0 � x � L

2

0 for L
2
< x � L

.

Since u(x; 0) =
P1

n=1An sin(
n�x
L ), we choose An's as Fourier sine coeÆcients,

i.e.,

An =
2

L

Z L
2

0

T0 sin(
n�x

L
) dx =

2T0

L
:
L

n�
�cos(n�x

L
)jx=L=2x=0 =

2T0

n�
[ 1�cos(n�

2
) ]:

Equation describes temperature u(x; t) of a metal bar, thermal di�usivity k,

lying between x = 0 and x = L with the ends of the bar maintained at 0Æ,
the left hand half of the bar initially at T Æ and the right hand half initially

at 0Æ.
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(b) Suppose that u satis�es

ut = uxx ; u(0; t) = 0 = u(1; t); u(x; 0) = 0 0 � x � 1:

Let E(t) =
R 1
0 u

2(x; t) dx.

Clearly E(t) � 0 for all t and since u(x; 0) � 0, E(0) = 0.

Also

d
dt
[E(t) ] = 2

R 1
0 u(x; t)ut(x; t) dx = 2

R 1
0 u(x; t)uxx(x; t) dx

= 2u(x; t)ux(x; t)jx=1x=0 � 2
R 1
0 u

2
x(x; t) dx = �2 R 10 u2x(x; t) dx � 0:

It follows that E(t) � 0 and so u(x; t) � 0.

4. We seek solutions of the form u(x; y) = X(x)Y (y).

Thus we require X 00Y +XY 00 = 0.

Hence it is suÆcient to have

X 00(x)
X(x)

= �Y
00(y)
Y (y)

= �k

where k is a constant.

To ensure that u(0; y) = u(2; y) = u(x; 0) = 0, we require that X(0) =

X(2) = 0 and Y (0) = 0.

Thus it is suÆcient to have

�X 00 = kX; X(0) = 0 = X(2) (1)

Y 00 = kY ; Y (0) = 0 (2)

(1) has nonzero solutions if and only if k = n2�2

4
with corresponding solutions

X(x) = sin(n�x
2
) for n = 1; 2; : : : :

If k = n2�2

4
, (2) has solution Y (y) = An sinh(n�y

2
).

Thus equation has solution

u(x; y) =
1X
n=1

An sin(
n�x

2
) sinh(

n�y

2
)

and we must choose the An's to ensure that u(x; 1) = sin(�x).

Thus we require

1X
n=1

An sin(
n�x

2
) sinh(

n�

2
) = sin(�x)

and so we choose An = 0 for n 6= 2 and A2 sinh� = 1, i.e., A2 =
1

sinh �
.

Thus we have solution u(x; y) =
sin (�x) sinh (�y)

sinh (�)
.
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(b) urr +
1
rur +

1
r2
u�� = 0.

We seek solutions of the form u(r; �) = R(r)�(�).

Clearly � must have period 2�.

Also we have a solution to the equation if

R00�+
1

r
R0�+

1

r2
R�00 = 0

Thus it is suÆcient to have that

r2
R00

R
+ r

R0

R
= ��00

�
= k

where k is a constant.

Thus we require

r2R00 + rR0 � kR = 0 (1)

��00 = k�; � has period 2�. (2)

(2) has non-zero solutions if and only if k = n2 for n = 0; 1; 2; : : :; when n = 0

eigenfunction is a constant and when n � 1, eigenfunctions are sin(n�) and

cos(n�).

When k = n2, (1) becomes

r2R00 + rR0 � n2R = 0 � an Euler equation

When n = 0, we have solutions 1 and ln r.

When n = 1, we have solutions rn and r�n.

Since we require solutions to be bounded at r = 0, we do not make use of

the solutions ln r or r�n.

Thus we seek a solution of the form

u(r; �) = A0 +
1X
n=1

(An cos(n�) +Bn sin(n�) )r
n

such that u(1; �) = cos2(�) = 1
2
(1 + cos(2�)).

Hence we choose A0 =
1
2
, A2 =

1
2
and all the other coeÆcients = 0.

Thus we have solution

u(r; �) =
1

2
[ 1 + cos(2�)r2 ]:
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5.(a) x0 = 3x� y; y0 = 5x� y ; x(0) = 1; y(0) = 2.

Taking Laplace transforms we obtain

sx(s)� x(0) = 3x(s)� y(s); i.e., (s� 3)x(s) + y(s) = 1 (1)

sy(s)� y(0) = 5x(s)� y(s); i.e., �5x(s) + (s+ 1) y(s) = 2 (2)

5� (1) + (s� 3)�(2) gives [5 + (s+ 1)(s� 3)] y(s) = 5 + 2(s� 3),

i.e., (s2 � 2s+ 2)) y(s) = 2s� 1,

i.e., y(s) = 2s�1
(s�1)2+1 = 2 s�1

(s�1)2+1 +
1

(s�1)2+1 :

Hence y(t) = 2et cos(t) + et sin(t).

(s+ 1)� (1) � (2) gives [(s� 3)(s+ 1) + 5]x(s) = s+ 1� 2,

i.e., x(s) = s�1
s2�2s+2 = s�1

(s�1)2+1 .

Hence x(t) = et cos(t).

(b) x0 = x� 3y; y0 = 4x� 6y.

The system can be written as x0 = Ax where A =

 
1 �3
4 �6

!
.

� is an eigenvalue of A if and only if det

"
1� � �3
4 �6� �

#
= 0,

i.e., (1� �) (�6� �) + 12 = 0, i.e., �2 + 5�+ 6 = 0, i.e., (�+ 2)(�+ 3) = 0,

i.e., � = �3; �2. 
x

y

!
is an eigenvector corresponding to � = �3 if and only if

x� 3y = �3x i.e., 4x� 3y = 0.

4x� 6y = �3y i.e., 4x� 3y = 0.

Thus

 
3

4

!
is an eigenvector corresponding to � = �3.

 
x

y

!
is an eigenvector corresponding to � = �2 if and only if

x� 3y = �2x i.e., 3x� 3y = 0

4x� 6y = �2y i.e., 4x� 4y = 0.

Thus

 
1

1

!
is an eigenvector corresponding to � = �2.

Hence system has general solution

x(t) = c1 e
�3t

 
3

4

!
+ c2 e

�2t
 

1

1

!
:
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The phase plane is

Solution satisfying x(0) = 2; y(0) = 2, is

 
x(t)

y(t)

!
= 2

 
e�2t

e�2t

!
.

6(a) x0 = 3x� 4y + x2 � y2; y0 = x� 2y � y3.

The corresponding linearized system at (0; 0) is

x0 = 3x� 4y

y0 = x� 2y
i.e., x0 = Ax where A =

 
3 �4
1 �2)

!

� is an eigenvalue of A if and only if det

����� 3� � �4
1 �2� �

����� = 0,

i.e., (3 � �) (�2 � �) + 4 = 0, i.e., �2 � � � 2 = 0, i.e., (� � 2)(� + 1) = 0,

i.e., � = �1; 2.
Thus (0; 0) is an unstable saddle point for the linearized system and so is

also an unstable saddle point for the original system.

(b) x00 = x� x3.

The equation may be written as the system x0 = y ; y0 = x� x3.

(x; y) is an equilibrium point if y = 0 and x� x3 = x(1� x2)

= x(1� x)(1 + x) = 0, i.e., equilibrium points are (�1; 0); (0; 0) and (1; 0).

Any trajectory of the form y = y(x) must satisfy dy
dx

= dy
dt
=dx
dt

= x�x3
y

,

i.e., y dy = (x� x3) dx, i.e., 1
2
y2 � 1

2
x2 + 1

4
x4 = c.

We may write the equation of the trajectories as 1
2
y2 + f(x) = c where

f(x) = 1
4
x4 � 1

2
x2. Then f 0(x) = x3 � x = x(1 � x)(1 + x) and so f has

turning points at x = �1; 0; 1.
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Now f(�1) = f(1) = 1
4
and f has graph

Consider the trajectory passing through (0; a) where a � 0, i.e., the trajec-

tory with equation 1
2
y2 + f(x) = 1

2
a2

As x increases into the �rst quadrant from 0 to 1, f(x) decreases. Hence as

x increases from 0 to 1, y2 and so y increases.

As x increases beyond 1, f(x) increases and so y2 decreases until y = 0 when

f(x) = 1
2
a2.

Thus we obtain trajectories

As equations of trajectories are symmetric in x and y we have phase plane

8.(a) dx
dt

= x(3� y) = f(x; y); dy
dt

= y(1� y + x) = g(x; y)

Equilibrium points occur when x = 0; y = 0: x = 0; y = 1 and y = 3; x = 2,

i.e., at (0; 0); (0; 1); (2; 3).

Since f(x; y) = x(3� y), @f
@x
(x; y) = 3� y and @f

@y
(x; y) = �x.

Since g(x; y) = y(1� y + x), @g
@x
(x; y) = y and @g

@y
(x; y) = 1� 2y + x.

Hence linearized equation at (x; y) is x0 = Ax whereA =

 
3� y �x
y 1� 2y + x

!
.

Hence linearized equation at (0; 0) is x0 =

 
3 0

0 1

!
x = Ax.
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Eigenvalues of A are � = 3; 1 and so (0; 0) is an unstable node.

Linearized equation at (0; 1) is x0 =

 
2 0

1 �1

!
x = Ax.

Eigenvalues of A are � = 2;�1 and so (0; 1) is a saddle point.

Linearized equation at (2; 3) is x0 =

 
0 �2
3 �3

!
x = Ax.

� is an eigenvalue of A if and only if det

����� �� �2
3 �3� �

����� = 0,

i.e., �� (�3��)+6 = 0, i.e., �2+3�+6 = 0, i.e., � = �3�p9�24
2

= �3
2
�
p
15
2
i.

Hence (2; 3) is a stable spiral point. Thus possible phase plane is

When x(0) = 1 and y(0) = 1 we obtain

(b) x0 = 2y � xy2; y0 = �x� y3:

Let V (x; y) = ax2 + by2. Then
d
dt [V (x(t); y(t))] = @V

@x
@x
@t +

@V
@y

@y
@t = 2ax(2y � xy2) + 2by(�x� y3)

= (4a� 2b)xy � 2ax2y2 � 2by4

Choosing a = 1; b = 2, we obtain V (x; y) = x2 + 2y2 and
d
dt
[V (x(t); y(t))] = �2x2y2 � 4y4 � 0.

Thus (0; 0) is a stable equilibrium point.
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