Solutions to Mathematical Techniques Exam - June 2002

1. aoz%foledx: 1.

an = %fol 22 cos(nmz) dz = 2 [ La?sin(nmz) |22 — 2 folxsin(mrx) dz |

= —T:l—w fol zrsin(nmz) dr = —ni [—nL cos(nmx) |y + % fol cos(nmz) dz ]

_ 4 _ 4 n

= WCOS('I’LW) = W(_l) .

Hence Fourier cosine series is
1 4
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5 — —5 [cos(mx) — 1 cos(2mx) + 9 cos(3mz) — 6 cos(4dmz) +...]
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Since Fourier cosine series converges to an even function of period 2, the
series converges to the following limit on [—3, 3]
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Hence series converges to 1 when z = 1 and so
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Hence 1 + 14+t 4 L 4. =2 2 -1
(b) By the Fourier Inversion Theorem

flo) = S [5e ot etrde

= \/%—Fffooo e~ cos(¢x) dx + \/ZQ—WISOOO e~ sin(¢x) da
_ 1 VA 1 2
= \/—27 . ﬁ e 4o — Ee 4o
U =Ugy —00<x<00; t>0; u(z,0) =g(z) —oo<z<o0.

Taking Fourier transforms with respect to = gives

4 (¢, 1) = —€2 a(€,t) and so a(€,t) = K(£)e €.

Now (€, 0) = —= [ u(e, 00 de = L [ g(a)e™ "¢ do = §(¢) and
so K() = g().

Thus (&, 8) = §(E)eE"" = §E)R(E) where k(z) = Jre~ 5 from the first

~
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part of the question.

Hence by the Convolution Theorem

)= [ g e T ds = [T g T
u\zr, = —F S)——¢€ S = s)e S.
2m —oog 2t Vart —oog

2 (@) —' =y y(0) =0, y(1)+2/(1) =0.
As we must investigate positive eigenvalues we write A\ = k? where k > 0.
Then 3" = k?y has general solution y = A cos(kx) + Bsin(kz).
y(0) =0 <= A = 0. Hence we must have y(z) = Bsin(kz).
Thus y(1) + 2y'(1) = 0 <= Bsin(k) + 2Bk cos(k) =0

<= B =0 or sin(k) + 2kcos(k) =0<= B =0 or — 2k = tan(k).
A graph shows that —2k = tan(k) has infinitely many positive solutions

ki,ko, ks, ...,

y =— 2k

=~ |

where § < k; < 37“, 37“ <ko < 57” etc. and that, for large n,
kp~ %+ (n—1)m=(n—3)m

Thus we have infinitely many positive eigenvalues A1, Ao, ...with

1
Ap = (n— 5)27r2.

(b) z?uy +yPuy, =0;  u(l,y) =v.
Characteristics are solutions of % = z—z

2
But =% — Ldy=bde—1=14+C—=uz=y+Cuy

xr2
Let (z9,%0) € R?.
The characteristic through (z¢,y) corresponds to C' satisfying o = yo +
C:I?o’yo, i.e., C= M.

ZoYo
This characteristic meets the line x = 1 when 1 =y + Cy,
: _ 1  _ 1 _ ToYo : ToYo
le,y=1g= I~ Zowtaowe’ ie., at (1, xoyo+mo—yo)‘
T0Y0

If u is the required solution and z — y(z) is a characteristic, then



2
%U($,’y($)) = Uy + Uy% = Ug + szUy = #(5132“1 + 'yQUy) = 0,

i.e., the solution is constant along characteristics.

200 ) — ToYo
? ToYo+xo—Yo ZoYo+xo—yYo "

Thus u(z,y) = ﬁi{—_y

Hence u(z,yo) = u(l

Tofor 0<z<Z

3(a) up = kugy; u(0,t) =0 = u(L, ), u(w,O):{ Ofor%<x§L

We seek solutions of the form u(z,t) = X (z) T'(¢).
To ensure that u(0,t) = 0 = u(L,t) we require that X(0) =0 = X(L).

Substituting into the equation we must have that
T'(t) X (z) = kX" (x)T(t)

Thus it is sufficient to have

X"z) 1T'(t) N
X(z) k T(t)
where X is a constant,
i.e., we require
—X"=)X, X(0)=0=X(L) (1)
T' = —kAT 2)
(1) has nonzero solutions if and only if A = "27;2 forn=1,2,...,,..., and
the corresponding eigenfunctions are sin(“7%).
o . 22
If A= ”27{2, (2) becomes T' = —k”erQT and so has solution T' = Ane_k 7zt

o —k22Te
Je " 12" satisfies

Hence any function of the form u(z,t) = >°72 A, sin(*7%
the PDE and the boundary conditions.

Toforogwgé

We now choose 4, to ensure that u(z,0) = { Ofor L <z<L

Since u(xz,0) = 372 | Ay sin(%F), we choose Aj,’s as Fourier sine coefficients,
ie.,

2 % nwx 27Ty, L nrx. z=r/2 210 nmw
A, = — To sin(—— = — . — - — = —[1— —)1.
o= [ s do = S0 —cos(T) IS = =L 1—cos(50)]

Equation describes temperature u(z,t) of a metal bar, thermal diffusivity &,
lying between z = 0 and z = L with the ends of the bar maintained at 0°,
the left hand half of the bar initially at 7° and the right hand half initially
at 0°.



(b) Suppose that u satisfies
Ut = Uy ; uw(0,t) =0 =wu(l,%), wu(z,00=0 0<z <L
Let E(t) = [} v%(z,t) dz.
Clearly E(t) > 0 for all ¢ and since u(z,0) =0, E(0) = 0.
Also

dIE®)] = 2[) ulz, t)yu(z,t)de =2 [ u(z, t)ug, (z,t) de

= 2u(x, t)ug (z,1)[258 — 2 [ ud(z,t) dox = =2 [y u2(z,t) dz < 0.

x

It follows that E(t) = 0 and so u(z,t) = 0.

4.  We seek solutions of the form u(z,y) = X(2)Y (y).
Thus we require X"Y + XY"” = 0.
Hence it is sufficient to have
X"(z) _ Y'(y)
X(z) Y(y)

=k

where k is a constant.

To ensure that u(0,y) = u(2,y) = u(r,0) = 0, we require that X (0) =
X(2) =0 and Y(0) =0.

Thus it is sufficient to have

- X" =kX; X(0)=0=X(2) (1)

Y = kY Y(0) =0 2)
(1) has nonzero solutions if and only if &k = ”24“2 with corresponding solutions
X(x) = sin(25%) for n = 1,2,....

n22

If k = %=, (2) has solution Y (y) = A, sinh("5¥).

Thus equation has solution

nm

u(z,y) =Y Ay sin($) sinh(Ty)
n=1

and we must choose the A,’s to ensure that u(z, 1) = sin(nz).
Thus we require

Z Ay sin(w) sinh(ﬂ) = sin(nz)
— 2 2

1
sinh «°

and so we choose A, =0 for n # 2 and A, sinhm =1, i.e., Ay =

sin (xz) sinh (my)

sinh (x)

Thus we have solution u(z,y) =



(b) Upp + %UT + T%utgg = 0.
We seek solutions of the form u(r,0) = R(r)©(0).
Clearly © must have period 2.
Also we have a solution to the equation if

1 1
R'®©+ -R'O®+ =RO" =0
r 72

Thus it is sufficient to have that

/! RI @/I
"R + "RTTo " k
where k is a constant.
Thus we require
r?R" +rR — kR =0 (1)
—-0" = k6; © has period 2. (2)
(2) has non-zero solutions if and only if k = n? forn = 0,1,2,...; whenn = 0

eigenfunction is a constant and when n > 1, eigenfunctions are sin(nf) and
cos(nf).
When k = n?, (1) becomes

r?R"+rR —n?R =0 — an Euler equation

When n = 0, we have solutions 1 and Inr.
When n = 1, we have solutions v and r~".

Since we require solutions to be bounded at r = 0, we do not make use of

the solutions Inr or r~™.

Thus we seek a solution of the form

o
u(r,0) = Ay + Z(An cos(nb) + By, sin(nf) )r"
n=1
such that u(1,60) = cos?(6) = 1(1 + cos(26)).
Hence we choose Ag = %, Ay = % and all the other coefficients = 0.

Thus we have solution

u(r,0) = = [ 1+ cos(20)r* ].

DN | =



5.(a) 2'=3x—y, Yy =br—y; z(0)=1, y(0)=2.

Taking Laplace transforms we obtain

sT(s) — z(0) = 3T(s) —Y(s); ie, (s—=3)Z(s) +7(s) =1 (1)
sy(s) —y(0) = 5Z(s) —y(s); e, =5T(s) + (s +1)7(s) =2 (2)
5% (1) + (s —3)x(2) gives [6+ (s +1)(s —3)]7(s) =5+ 2(s — 3),

ie., (s2—25+2))7(s) =25 — 1,

_ 1 1
=2 T e

Hence y(t) = 2e! cos(t) + e’ sin(t).
(s+1)x (1) — (2) gives [(s—3)(s+ 1) +5]Z(s) =s+1—2,

ie, ZT(s) =

ie, 7(s) = (521)

s—1 _ s—1
§2—25+2 — (s—1)241"

Hence z(t) = e’ cos(t).

(b) z'=2—-3y, y =4z — 6y.

4 —6
- =3
4 —6-2X
e, (1—=X)(=6—X)+12=0,ie, N2 +5X+6=0,ie, (A+2)(A+3)
ie, A =—-3, —2.

The system can be written as 2’ = Az where A = ( =3 )

=0,

A is an eigenvalue of A if and only if det l L

( f; > is an eigenvector corresponding to A = —3 if and only if

z—3y=—-3z ie., 4z —3y =0.
4z — 6y = —3y ie., 4oz — 3y =0.

Thus < Z > is an eigenvector corresponding to A = —3.

( ‘; > is an eigenvector corresponding to A = —2 if and only if

r—3y=-—2x ie,3x—3y=0
der — 6y = -2y e, dx—4y=0.

Thus < 1 > is an eigenvector corresponding to A = —2.

Hence system has general solution

&(t):cle?’t(i)—i-@e?t( } )

=0,



The phase plane is

: e B o [z@®) ) e 2
Solution satisfying z(0) = 2, y(0) =2, is ( y(#) ) =2 < o2t )

6(a) o' =3z —dy+2>—9y? Y =x-—2y—9>

The corresponding linearized system at (0,0) is

!

r = 3r—4y . ' (3 —4
y = z—% 1.e.,§—A§whereA—<1 _2)>

- 4

1 —2-A
ie, (B3—=N)(-2=A)+4=0,ie, 2=21—-2=0,ie, A —2)A+1) =0,
ie, A=—1, 2.

Thus (0,0) is an unstable saddle point for the linearized system and so is
also an unstable saddle point for the original system.

A is an eigenvalue of A if and only if det

(b) 2" =z—23.

The equation may be written as the system &’ =y ; v/ = z — z°.
(z,y) is an equilibrium point if y = 0 and z — 2* = (1 — z?)
=z(1l —z)(1+2z) =0, i.e., equilibrium points are (—1,0), (0,0) and (1,0).
3

Any trajectory of the form y = y(z) must satisfy j—z = z—% ‘2—"5 = "”zf ,

ie., ydy = (zr — 2%)dz, ie., % 2 %xQ + iw‘l =c

We may write the equation of the trajectories as %yQ + f(z) = ¢ where
f(z) = 22* — 22%. Then f'(z) = 23 — z = 2(1 — 2)(1 + z) and so f has
turning points at x = —1,0, 1.



Now f(—1) = f(1) = 1 and f has graph

Consider the trajectory passing through (0,a) where a > 0, i.e., the trajec-
tory with equation 142 + f(z) = $a?

As z increases into the first quadrant from 0 to 1, f(z) decreases. Hence as
z increases from 0 to 1, 42 and so y increases.

Asz inclreases beyond 1, f(z) increases and so y? decreases until y = 0 when
f(z) = §a2.

Thus we obtain trajectories

As equations of trajectories are symmetric in x and y we have phase plane
T

—

=}

8.(a) % =zB3-y)=f(zy); ¥=y(l-y+z) =gy
Equilibrium points occur when z =0,y =0: z=0,y=1landy = 3,2 = 2,
i.e., at (0,0), (0,1), (2,3).

Since f(x,y) = x(3—y), $£(z,y) =3 —y and G (z,y) = —=.
Since g(r,y) = y(1 —y + ), 22(,y) =y and 2 (ag) =1 - 2y + .

Hence linearized equation at (z,y) is 2’ = Az where A = 3=y o .
Y 1-2y+x

Hence linearized equation at (0,0) is 2’ = ( g (1) ) = Az.

8



Eigenvalues of A are A = 3,1 and so (0,0) is an unstable node.

- 1 -1
Eigenvalues of A are A =2,—1 and so (0, 1) is a saddle point.

Linearized equation at (0,1) is z’ = ( 2.0 ) z = Az.

Linearized equation at (2,3) is z’ = ( g —2 ) =

A is an eigenvalue of A if and only if det

—3—A‘

ie., —A(=3— M+6_01eA%ﬁ»m_nle.»_*i;24:— +v15;

1.

[\eJ[e)

Hence (2,3) is a stable spiral point. Thus possible phase plane is

When z(0) = 1 and y(0) = 1 we obtain

F il ¥

il
7&3%‘ xr 9 / ¥ ‘r'ra

> »
1 +

(b) o' =2y—=zy* Y =-z—y’

Let V(z,y) = az? + by?. Then
%Uﬂﬂ&ywﬂ—%¥%+aym—2w@y—w)+2®Pw—f)
= (4a — 2b)zy — 2ax%y® — 2by*

Choosing a = 1, b= 2, we obtain V(z,y) = 2% + 2y? and
FV(2(t),y(1))] = —22%y* — 49" <0.

Thus (0,0) is a stable equilibrium point.



