
Solutions to Mathematical Techniques Exam - June 2001

1. a0 = 1
1

∫ 1
0 (1− x) dx = x− 1

2x2|10 = 1
2 .

an = 2
1

∫ 1
0 (1− x) cos(nπx) dx

= 2 [ 1
nπ (1− x) sin(nπx) |x=1

x=0 + 1
nπ

∫ 1
0 sin(nπx) dx ]

= − 2
n2π2 cos(nπx) |10 = 2

n2π2 [ 1− cos(nπ) ]

=

{
0 if n is even

4
n2π2 if n is odd.

Hence Fourier cosine series is

f(x) =
1
2

+
4
π2

[ cos(πx) +
1
9

cos(3πx) +
1
25

cos(5πx) + . . . ]

Since Fourier cosine series converges to an even function of period 2, the
series converges to the following limit on [−2, 2]

−1 1

2. (a) −y′′ = λy; 2y(0) + y′(0) = 0, y(1) = 0.
Suppose λ < 0; then we may write λ = −k2 where k > 0.
Then y′′ = k2y has general solution y = A cosh(kx) + B sinh(kx).
We have y′(x) = Ak sinh(kx) + Bk cosh(kx). Hence
2y(0) + y′(0) = 0 ⇐⇒ 2A + Bk = 0 ⇐⇒ B = − 2

kA.
Also y(1) = 0 ⇐⇒ A cosh(k) + B sinh(k) = 0.
Thus we have a solution provided A cosh(k)− 2

kA sinh(k) = 0, i.e., provided
A = 0 or tanh(k) = k

2 .

Thus we obtain a non-zero solution provided that tanh(k) = k
2 . We can see

from the diagram below that there is exactly one value of k > 0 such that
tanh(k) = k

2 .

Hence the equation has a negative eigenvalue.
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3. ux + 2uy = u ; u(x, 0) = 2x.

Characteristics are solutions of dy
dx = 2, i.e., y = 2x + c.

Let (x0, y0) ∈ R2. The characteristic through (x0, y0) is y = 2x+(y0− 2x0)
and this meets the line y = 0 where x = x0 − y0

2 , i.e., at (x0 − y0

2 , 0).
Let v(x) = u(x, y(x)) where y = y(x) is the above characteristic.
Then v(x0 − y0

2 ) = u(x0 − y0

2 , 0) = 2x0 − y0.

Also dv
dx = ux + uy

dy
dx = ux + 2uy = u = v.

But dv
dx = v =⇒ v = Kex.

Since v(x0 − y0

2 ) = 2x0 − y0, 2x0 − y0 = Kex0− y0
2 and so K = (2x0 −

y0)e
y0
2
−x0 .

Hence v(x) = Kex = (2x0 − y0)e
y0
2
−x0 ex.

Thus u(x0, y0) = v(x0) = (2x0 − y0)e
y0
2 .

Hence we have u(x, y) = (2x− y)e
y
2 .

4. urr + 1
rur + 1

r2 uθθ = 0.

θ

θ = π/2

= 0

sin cos (1, θ) =     (θ)     (θ)u

We seek solutions of the form u(r, θ) = R(r)Θ(θ).
We require Θ(0) = 0 and Θ(π

2 ) = 0.
Also we have a solution to the equation if

R′′Θ + 1
rR′Θ + 1

r2 RΘ′′ = 0
and so

r2 R′′
R + rR′

R = −Θ′′
Θ = k where k is a constant.

Thus we require
r2R′′ + rR′ − kR = 0 (1)
−Θ′′ = kΘ; Θ(0) = 0, Θ(π

2 ) = 0 (2)

(2) has non-zero solutions if and only if k = n2π2

(π/2)2
= 4n2 for n = 1, 2 . . .

with corresponding solutions sin(2nθ).
When k = 4n2, (1) becomes

r2R′′ + rR′ − 4n2R = 0 - an Euler equation
which has solutions r2n and r−2n.
Since we require solutions to be bounded at r = 0, we do not make use of
the solutions r−2n.
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Thus equation has solutions r2n sin(2nθ) for n = 1, 2, . . ..
Thus we have solution

u(r, θ) =
∞∑

n=1

Anr2n sin(2nθ)

for any choice of the coefficients An.
Since sin(θ) cos(θ) = 1

2 sin(2θ) = u(1, θ) =
∑∞

n=1 An sin(2nθ), we choose
A1 = 1

2 and An = 0 for n > 1.
Hence we have solution u(r, θ) = 1

2r2 sin(2θ).

5. utt = uxx, 0 < x < L, t > 0.
We seek solutions of the form u(x, t) = X(x)T (t).
To ensure that u(0, t) = u(L, t) = 0, we require that X(0) = 0 = X(L).
To ensure that u is a solution we require X(x)T ′′(t) = X ′′(x)T (t),
i.e., X′′

X = T ′′
T = −k where k is a constant.

Thus we require
X ′′ = −kX; X(0) = 0 = X(L) (1)
T ′′ = −kT (2)

(1) has nonzero solutions if and only if k = n2π2

L2 with corresponding solutions
sin(nπx

L ) for n = 1, 2, . . .

If k = n2π2

L2 , (2) has general solution T (t) = An cos(nπt
L ) + Bn sin(nπt

L ).
Thus we have non-zero solution

u(x, t) =
∑∞

n=1{An cos(nπt
L ) + Bn sin(nπt

L )} sin(nπx
L ).

To ensure that u(x, 0) = 0 we choose An = 0 for all n.
Hence u(x, t) =

∑∞
n=1 Bn sin(nπt

L ) sin(nπx
L ) and so

ut(x, t) =
∑∞

n=1
nπ
L Bn cos(nπt

L ) sin(nπx
L ).

Since ut(x, 0) = 2, we require
∑∞

n=1
nπ
L Bn sin(nπx

L ) = 2.
Hence we choose Bn so that nπ

L Bn are the coefficients in Fourier sin series

i.e., nπ
L Bn = 2

L

∫ L
0 2 sin(nπx

L ) dx = 4
nπ [1− cos(nπ)]

i.e., we choose Bn =

{
0 if n is even
8L

n2π2 if n is odd.

6. (i) x′ = 3x− y, y′ = 5x− y ; x(0) = 1, y(0) = 2.
Taking Laplace transforms we obtain

sx(s)− x(0) = 3x(s)− y(s); i.e., (s− 3)x(s) + y(s) = 1 (1)
sy(s)− y(0) = 5x(s)− y(s); i.e., −5x(s) + (s + 1) y(s) = 2 (2)

5× (1) + (s− 3)×(2) gives [5 + (s + 1)(s− 3)] y(s) = 5 + 2(s− 3),
i.e., (s2 − 2s + 2)) y(s) = 2s− 1,
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i.e., y(s) = 2s−1
(s−1)2+1

= 2 s−1
(s−1)2+1

+ 1
(s−1)2+1

.

Hence y(t) = 2et cos(t) + et sin(t).

(s + 1)× (1) - (2) gives [(s− 3)(s + 1) + 5] x(s) = s + 1− 2,
i.e., x(s) = s−1

s2−2s+2
= s−1

(s−1)2+1
.

Hence x(t) = et cos(t).

7(a) x′ = 2x− 4y, y′ = x− 3y.

The system can be written as x′ = Ax where A =

(
2 −4
1 −3

) (
x
y

)
.

λ is an eigenvalue of A if and only if det

[
2− λ −4

1 −3− λ

]
= 0,

i.e., (2 − λ) (−3 − λ) + 4 = 0, i.e., λ2 + λ − 2 = 0, i.e., (λ + 2)(λ − 1) = 0,
i.e., λ = −2, 1.(

x
y

)
is an eigenvector corresponding to λ = −2 if and only if

2x− 4y = −2x i.e., 4x− 4y = 0.
x− 3y = −2y i.e., x− y = 0.

Thus

(
1
1

)
is an eigenvector corresponding to λ = −2.

(
x
y

)
is an eigenvector corresponding to λ = 1 if and only if

2x− 4y = x i.e., x− 4y = 0
x− 3y = y i.e., x− 4y = 0.

Thus

(
4
1

)
is an eigenvector corresponding to λ = 1.

Thus system has general solution x(t) = c1 e−2t

(
1
1

)
+ c2 et

(
4
1

)
.

The phase plane is
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7(b) x′ = ax + by, y′ = cx + dy.

The system can be written as x′ = Ax where A =

(
a b
c d

) (
x
y

)
.

λ is an eigenvalue of A if and only if det

[
a− λ b

c d− λ

]
= 0,

i.e., iff (a− λ) (d− λ)− bc = 0, i.e., λ2 − (a + d)λ + (ad− bc) = 0,

i.e., iff λ = (a+d)±
√

(a+d)2−4(ad−bc)

2 = a+d±√∆
2 = α, β(say)

(i) Suppose ∆ ≥ 0.
Then α and β are real and since ad− bc > 0, (a + d)2 > ∆.
Hence α, β = a+d±√∆

2 < 0 since a + d < 0.
Thus (0, 0) is a stable node.

(ii) Suppose ∆ < 0.
Then α and β are complex conjugates with negative real part a+d

2 .
Thus (0, 0) is a stable spiral point.

8. dx
dt = x(1− y); dy

dt = y(3− x)
Equilibrium points occur when x = 0, y = 0 and when y = 1 and x = 3.
If f(x, y) = x(1− y), ∂f

∂x (x, y) = 1− y and ∂f
∂y (x, y) = −x.

If g(x, y) = y(3− x), ∂g
∂x(x, y) = −y and ∂g

∂y (x, y) = 3− x.

Hence linearized equation at (0, 0) is x′ =
(

1 0
0 3

)
x = Ax.

Eigenvalues of A are λ = 1, 3 and so (0, 0) is an unstable node.

Linearized equation at (3, 1) is x′ =

(
0 −3
−1 0

)
x = Ax.

Eigenvalues of A satisfy λ2 − 3 = 0, i.e., λ = ±√3.
Hence (3, 1) is a saddle point.
Phase plane is
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9.(i) x′ = y3 − x3; y′ = −2xy2.

Let V (x, y) = ax2 + by2. Then
d
dt [V (x(t), y(t))] = ∂V

∂x
∂x
∂t + ∂V

∂y
∂y
∂t = 2ax(y3 − x3) + 2by . (−2xy2)

= −2ax4 + (2a− 4b)xy3.
Choosing a = 2, b = 1, we obtain V (x, y) = 2x2 + y2 and
d
dt [V (x(t), y(t))] = −4x4 ≤ 0.
Thus (0, 0) is a stable equilibrium point.

(ii) x′ = x3 − y3; y′ = −2xy2.

It is clear that the positive x-axis is a trajectory and at all points on this
trajectory y′ = 0 and x′ = x3.
Hence for this trajectory x(t) increases as t increases and so the trajectory
does not stay close to (0, 0) as t increases.
Hence (0, 0) is an unstable equilibrium point.
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