Solutions to Mathematical Techniques Exam - June 2001

1.
$$a_0 = \frac{1}{1} \int_0^1 (1-x) \, dx = x - \frac{1}{2} x^2 |_0^1 = \frac{1}{2}.$$

 $a_n = \frac{2}{1} \int_0^1 (1-x) \cos(n\pi x) \, dx$
 $= 2 \left[\frac{1}{n\pi} (1-x) \sin(n\pi x) |_{x=0}^{x=1} + \frac{1}{n\pi} \int_0^1 \sin(n\pi x) \, dx \right]$
 $= -\frac{2}{n^2 \pi^2} \cos(n\pi x) |_0^1 = \frac{2}{n^2 \pi^2} \left[1 - \cos(n\pi) \right]$
 $= \begin{cases} 0 \text{ if } n \text{ is even} \\ \frac{4}{n^2 \pi^2} \text{ if } n \text{ is odd.} \end{cases}$

Hence Fourier cosine series is

$$f(x) = \frac{1}{2} + \frac{4}{\pi^2} \left[\cos(\pi x) + \frac{1}{9} \cos(3\pi x) + \frac{1}{25} \cos(5\pi x) + \dots \right]$$

Since Fourier cosine series converges to an even function of period 2, the series converges to the following limit on [-2, 2]

2. (a) $-y'' = \lambda y;$ 2y(0) + y'(0) = 0, y(1) = 0.Suppose $\lambda < 0$; then we may write $\lambda = -k^2$ where k > 0.Then $y'' = k^2 y$ has general solution $y = A \cosh(kx) + B \sinh(kx).$ We have $y'(x) = Ak \sinh(kx) + Bk \cosh(kx)$. Hence $2y(0) + y'(0) = 0 \iff 2A + Bk = 0 \iff B = -\frac{2}{k}A.$ Also $y(1) = 0 \iff A \cosh(k) + B \sinh(k) = 0.$ Thus we have a solution provided $A \cosh(k) - \frac{2}{k}A \sinh(k) = 0$, i.e., provided A = 0 or $\tanh(k) = \frac{k}{2}.$

Thus we obtain a non-zero solution provided that $\tanh(k) = \frac{k}{2}$. We can see from the diagram below that there is exactly one value of k > 0 such that $\tanh(k) = \frac{k}{2}$.

Hence the equation has a negative eigenvalue.

3. $u_x + 2u_y = u$; u(x, 0) = 2x. Characteristics are solutions of $\frac{dy}{dx} = 2$, i.e., y = 2x + c. Let $(x_0, y_0) \in \mathbf{R}^2$. The characteristic through (x_0, y_0) is $y = 2x + (y_0 - 2x_0)$ and this meets the line y = 0 where $x = x_0 - \frac{y_0}{2}$, i.e., at $(x_0 - \frac{y_0}{2}, 0)$. Let v(x) = u(x, y(x)) where y = y(x) is the above characteristic. Then $v(x_0 - \frac{y_0}{2}) = u(x_0 - \frac{y_0}{2}, 0) = 2x_0 - y_0$. Also $\frac{dv}{dx} = u_x + u_y \frac{dy}{dx} = u_x + 2u_y = u = v$. But $\frac{dv}{dx} = v \Longrightarrow v = Ke^x$. Since $v(x_0 - \frac{y_0}{2}) = 2x_0 - y_0$, $2x_0 - y_0 = Ke^{x_0 - \frac{y_0}{2}}$ and so $K = (2x_0 - y_0)e^{\frac{y_0}{2} - x_0}$. Hence $v(x) = Ke^x = (2x_0 - y_0)e^{\frac{y_0}{2} - x_0}e^x$. Thus $u(x_0, y_0) = v(x_0) = (2x_0 - y_0)e^{\frac{y_0}{2}}$.

4.
$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0.$$

We seek solutions of the form $u(r, \theta) = R(r)\Theta(\theta)$. We require $\Theta(0) = 0$ and $\Theta(\frac{\pi}{2}) = 0$.

Also we have a solution to the equation if

$$R''\Theta + \frac{1}{r}R'\Theta + \frac{1}{r^2}R\Theta'' = 0$$

and so

 $r^2\frac{R''}{R}+r\frac{R'}{R}=-\frac{\Theta''}{\Theta}=k$ where k is a constant.

Thus we require

$$r^{2}R'' + rR' - kR = 0$$
(1)
- $\Theta'' = k\Theta; \quad \Theta(0) = 0, \quad \Theta(\frac{\pi}{2}) = 0$ (2)

(2) has non-zero solutions if and only if $k = \frac{n^2 \pi^2}{(\pi/2)^2} = 4n^2$ for n = 1, 2... with corresponding solutions $\sin(2n\theta)$.

When $k = 4n^2$, (1) becomes

$$r^2 R'' + r R' - 4n^2 R = 0 \quad - \quad \text{an Euler equation}$$
 which has solutions r^{2n} and
 $r^{-2n}.$

Since we require solutions to be bounded at r = 0, we do not make use of the solutions r^{-2n} .

Thus equation has solutions $r^{2n}\sin(2n\theta)$ for n = 1, 2, ...

Thus we have solution

$$u(r,\theta) = \sum_{n=1}^{\infty} A_n r^{2n} \sin(2n\theta)$$

for any choice of the coefficients A_n .

Since $\sin(\theta)\cos(\theta) = \frac{1}{2}\sin(2\theta) = u(1,\theta) = \sum_{n=1}^{\infty} A_n \sin(2n\theta)$, we choose $A_1 = \frac{1}{2}$ and $A_n = 0$ for n > 1. Hence we have solution $u(r,\theta) = \frac{1}{2}r^2\sin(2\theta)$.

5.
$$u_{tt} = u_{xx}, \quad 0 < x < L, t > 0.$$

We seek solutions of the form u(x,t) = X(x) T(t). To ensure that u(0,t) = u(L,t) = 0, we require that X(0) = 0 = X(L). To ensure that u is a solution we require X(x) T''(t) = X''(x) T(t), i.e., $\frac{X''}{X} = \frac{T''}{T} = -k$ where k is a constant. Thus we require

$$X'' = -kX;$$
 $X(0) = 0 = X(L)$ (1)
 $T'' = -kT$ (2)

(1) has nonzero solutions if and only if $k = \frac{n^2 \pi^2}{L^2}$ with corresponding solutions $\sin(\frac{n\pi x}{L})$ for n = 1, 2, ...

If $k = \frac{n^2 \pi^2}{L^2}$, (2) has general solution $T(t) = A_n \cos(\frac{n\pi t}{L}) + B_n \sin(\frac{n\pi t}{L})$. Thus we have non-zero solution

$$u(x,t) = \sum_{n=1}^{\infty} \{A_n \cos(\frac{n\pi t}{L}) + B_n \sin(\frac{n\pi t}{L})\} \sin(\frac{n\pi x}{L}).$$

To ensure that $u(x,0) = 0$ we choose $A_n = 0$ for all n .
Hence $u(x,t) = \sum_{n=1}^{\infty} B_n \sin(\frac{n\pi t}{L}) \sin(\frac{n\pi x}{L})$ and so
 $u_t(x,t) = \sum_{n=1}^{\infty} \frac{n\pi}{L} B_n \cos(\frac{n\pi t}{L}) \sin(\frac{n\pi x}{L}).$
Since $u_t(x,0) = 2$, we require $\sum_{n=1}^{\infty} \frac{n\pi}{L} B_n \sin(\frac{n\pi x}{L}) = 2$.
Hence we choose B_n so that $\frac{n\pi}{L} B_n$ are the coefficients in Fourier sin series
i.e., $\frac{n\pi}{L} B_n = \frac{2}{L} \int_0^L 2 \sin(\frac{n\pi x}{L}) dx = \frac{4}{n\pi} [1 - \cos(n\pi)]$
i.e., we choose $B_n = \begin{cases} 0 \text{ if } n \text{ is even} \\ \frac{8L}{n^2\pi^2} \text{ if } n \text{ is odd.} \end{cases}$
6. (i) $x' = 3x - y, \quad y' = 5x - y; \quad x(0) = 1, \quad y(0) = 2.$
Taking Laplace transforms we obtain
 $s\overline{x}(s) - x(0) = 3\overline{x}(s) - \overline{y}(s); \quad \text{i.e., } (s-3)\overline{x}(s) + \overline{y}(s) = 1 \quad (1)$
 $s\overline{y}(s) - y(0) = 5\overline{x}(s) - \overline{y}(s); \quad \text{i.e., } -5\overline{x}(s) + (s+1)\overline{y}(s) = 2 \quad (2)$

$$5 \times (1) + (s-3) \times (2) \text{ gives } [5 + (s+1)(s-3)] \overline{y}(s) = 5 + 2(s-3),$$

i.e., $(s^2 - 2s + 2)) \overline{y}(s) = 2s - 1,$

i.e., $\overline{y}(s) = \frac{2s-1}{(s-1)^2+1} = 2\frac{s-1}{(s-1)^2+1} + \frac{1}{(s-1)^2+1}$. Hence $y(t) = 2e^t \cos(t) + e^t \sin(t)$. $(s+1) \times (1)$ - (2) gives $[(s-3)(s+1)+5] \overline{x}(s) = s+1-2$, i.e., $\overline{x}(s) = \frac{s-1}{s^2-2s+2} = \frac{s-1}{(s-1)^2+1}$. Hence $x(t) = e^t \cos(t)$. 7(a) x' = 2x - 4y, y' = x - 3y. The system can be written as $\underline{x}' = A\underline{x}$ where $A = \begin{pmatrix} 2 & -4 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. λ is an eigenvalue of A if and only if det $\begin{bmatrix} 2-\lambda & -4\\ 1 & -3-\lambda \end{bmatrix} = 0$, i.e., $(2 - \lambda)(-3 - \lambda) + 4 = 0$, i.e., $\lambda^2 + \lambda - 2 = 0$, i.e., $(\lambda + 2)(\lambda - 1) = 0$, i.e., $\lambda = -2, 1$. $\begin{pmatrix} x \\ y \end{pmatrix}$ is an eigenvector corresponding to $\lambda = -2$ if and only if 2x - 4y = -2x i.e., 4x - 4y = 0. x - 3y = -2y i.e., x - y = 0. Thus $\begin{pmatrix} 1\\1 \end{pmatrix}$ is an eigenvector corresponding to $\lambda = -2$. $\begin{pmatrix} x \\ y \end{pmatrix}$ is an eigenvector corresponding to $\lambda = 1$ if and only if 2x - 4y = x i.e., x - 4y = 0x - 3y = y i.e., x - 4y = 0. Thus $\begin{pmatrix} 4\\1 \end{pmatrix}$ is an eigenvector corresponding to $\lambda = 1$. Thus system has general solution $\underline{x}(t) = c_1 e^{-2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^t \begin{pmatrix} 4 \\ 1 \end{pmatrix}$.

The phase plane is

7(b) $x' = ax + by, \quad y' = cx + dy.$

The system can be written as $\underline{x}' = A\underline{x}$ where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. λ is an eigenvalue of A if and only if det $\begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = 0$, i.e., iff $(a - \lambda) (d - \lambda) - bc = 0$, i.e., $\lambda^2 - (a + d)\lambda + (ad - bc) = 0$, i.e., iff $\lambda = \frac{(a+d)\pm\sqrt{(a+d)^2-4(ad-bc)}}{2} = \frac{a+d\pm\sqrt{\Delta}}{2} = \alpha, \beta$ (say) (i) Suppose $\Delta \ge 0$. Then α and β are real and since ad - bc > 0, $(a + d)^2 > \Delta$. Hence $\alpha, \beta = \frac{a+d\pm\sqrt{\Delta}}{2} < 0$ since a + d < 0. Thus (0,0) is a stable node.

(ii) Suppose $\Delta < 0$. Then α and β are complex conjugates with negative real part $\frac{a+d}{2}$. Thus (0,0) is a stable spiral point.

8. $\frac{dx}{dt} = x(1-y); \quad \frac{dy}{dt} = y(3-x)$ Equilibrium points occur when x = 0, y = 0 and when y = 1 and x = 3. If $f(x,y) = x(1-y), \frac{\partial f}{\partial x}(x,y) = 1-y$ and $\frac{\partial f}{\partial y}(x,y) = -x$. If $g(x,y) = y(3-x), \frac{\partial g}{\partial x}(x,y) = -y$ and $\frac{\partial g}{\partial y}(x,y) = 3-x$. Hence linearized equation at (0,0) is $\underline{x}' = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \underline{x} = A\underline{x}$. Eigenvalues of A are $\lambda = 1, 3$ and so (0,0) is an unstable node. Linearized equation at (3,1) is $\underline{x}' = \begin{pmatrix} 0 & -3 \\ -1 & 0 \end{pmatrix} \underline{x} = A\underline{x}$. Eigenvalues of A satisfy $\lambda^2 - 3 = 0$, i.e., $\lambda = \pm \sqrt{3}$.

Hence (3,1) is a saddle point.

Phase plane is

9.(i) $x' = y^3 - x^3$; $y' = -2xy^2$. Let $V(x, y) = ax^2 + by^2$. Then $\frac{d}{dt} [V(x(t), y(t))] = \frac{\partial V}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial V}{\partial y} \frac{\partial y}{\partial t} = 2ax(y^3 - x^3) + 2by \cdot (-2xy^2)$ $= -2ax^4 + (2a - 4b)xy^3$. Choosing a = 2, b = 1, we obtain $V(x, y) = 2x^2 + y^2$ and $\frac{d}{dt} [V(x(t), y(t))] = -4x^4 \le 0$. Thus (0, 0) is a stable equilibrium point.

(ii) $x' = x^3 - y^3; \quad y' = -2xy^2.$

It is clear that the positive x-axis is a trajectory and at all points on this trajectory y' = 0 and $x' = x^3$.

Hence for this trajectory x(t) increases as t increases and so the trajectory does not stay close to (0,0) as t increases.

Hence (0,0) is an unstable equilibrium point.