1. Find the Fourier cosine series for the function f(x) = 1 - x valid for 0 < x < 1.

Sketch the graph of the function to which the series converges over the range -2 < x < 2. [8 marks]

2. Show that the boundary value problem

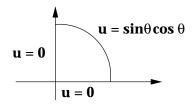
$$-y'' = \lambda y; \quad 2y(0) + y'(0) = 0, \quad y(1) = 0$$

has a negative eigenvalue.

3. Solve the following PDE

$$u_x + 2u_y = u;$$
 $u(x, 0) = 2x.$ [9 marks]

4. The steady state temperature $u(r,\theta)$ of a plate in the shape of the quarter circle $\{(r,\theta) : 0 \le r \le 1 \text{ and } 0 \le \theta \le \frac{\pi}{2}\}$



satisfies the equation

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$

where (r, θ) denotes plane polar co-ordinates.

If the steady state solution satisfies the boundary conditions that u = 0on both the x and y-axes axis and $u(1, \theta) = \sin \theta \cos \theta$ for $0 < \theta < \frac{\pi}{2}$, find $u(r, \theta)$. [13 marks]

5. A string of length L is fixed at its ends at x = 0 and x = L which lie on the same horizontal level. When the string vibrates, its displacement from the horizontal satisfies the equation

$$u_{tt} = u_{xx}$$
; $0 < x < L$, $t > 0$.

If the string has zero initial displacement, i.e., u(x, 0) = 0 for $0 \le x \le L$ and has initial velocity $u_t(x, 0) = 2$ for $0 \le x \le L$, determine u(x, t).

[16 marks]

continued overleaf

[8 marks]

6. By taking Laplace transforms, solve the initial value problem

$$x'(t) = 3x(t) - y(t);$$
 $y'(t) = 5x(t) - y(t);$ $x(0) = 1;$ $y(0) = 2.$

[8 marks]

7.(i) By considering the eigenvalues and eigenvectors of an appropriate matrix, find the general solution of the system of equations

$$x'(t) = 2x(t) - 4y(t); \quad y'(t) = x(t) - 3y(t).$$

Hence sketch the phase plane for the system. [11 marks]

(ii) Show that all solutions of the system

$$x' = ax + by \quad y' = cx + dy$$

where a, b, c and d are constants approach zero as $t \to \infty$ if a + d < 0 and ad - bc > 0. [8 marks]

8. Find all equilibrium points for the system

$$x' = x(1-y);$$
 $y' = y(3-x)$

and determine the nature of each.

Hence sketch the phase plane for the system in the first quadrant.

[10 marks]

9.(i) By considering a Lyapunov function of the form $V(x, y) = ax^2 + by^2$ for an appropriate choice of a and b, show that (0, 0) is a stable equilibrium point for the system

$$x' = y^3 - x^3;$$
 $y' = -2xy^2.$ [6 marks]

(ii) Show that (0,0) is an unstable equilibrium point for the system

$$x' = x^3 - y^3;$$
 $y' = -2xy^2.$ [3 marks]

END OF PAPER