
Solutions to Mathematical Techniques Exam - June 2000

1. a0 = 1
2π

∫ π
−π x2 dx = [ 1

2π . 1
3 x3]x=π

x=−π = π2

3

an = 1
π

∫ π
−π x2 cos(nx) dx

= 1
π [ 1

n x2 sin(nx)|π−π − 2
n

∫ π
−π x sin(nx) dx

= 1
π [ 0 + 2

n2 x cos(nx)|π−π − 2
n2

∫ π
−π cos(nx) dx

= 4
n2 cos(nπ) = (−1)n 4

n2 .

Also bn = 1
π

∫ π
−π x2 sin(nx) dx = 0 as integrand is odd.

Hence full range Fourier series is

x2 =
π2

3
− 4[ cos(x)− 1

4
cos(2x) +

1
9

cos(3x)− . . .]

Putting x = 0 we obtain

0 =
π2

3
− 4[ 1− 1

4
+

1
9
− . . .].

Hence

1− 1
4

+
1
9
− . . . =

π2

12
.

2. (a) −y′′ = λy; y(0) = 0, y′(1) = 0.
Suppose λ < 0; then we may write λ = −k2 where k > 0.
Then y′′ = k2y has general solution y = A cosh(kx) + B sinh(kx).
We have y′ = Ak sinh(kx) + Bk cosh(kx).
y(0) = 0⇐⇒ A = 0. Hence
y′(1) = 0⇐⇒ Bk cosh(k) = 0, i.e., B = 0.
Thus we must have A = B = 0.
Hence, if λ < 0, y ≡ 0 is the only solution, i.e., λ is not an eigenvalue.

Suppose λ = 0; then equation becomes y′′ = 0 which has general solution
y = Ax + B.
Now y(0) = 0⇐⇒ B = 0; y′(1) = 0⇐⇒ A = 0.
Thus y ≡ 0 is the only solution and so λ = 0 is not an eigenvalue.

Suppose λ > 0; then we may write λ = k2 where k > 0.
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Then y′′ = −k2y has general solution y = A cos(kx) + B sin(kx).
y(0) = 0⇐⇒ A = 0. Hence
y′(1) = 0⇐⇒ kB cos(k) = 0⇐⇒ B = 0 or cos(k) = 0
⇐⇒ B = 0 or k = π

2 + nπ = (n + 1
2)π for n = 0, 1, 2 . . .

Therefore y = sin[(n + 1
2)πx] is a nonzero solution corresponding to

λ = (n + 1
2)2π2.

Hence eigenvalues are π2

4 , 9π2

4 , 25π2

4 , . . . , (n+ 1
2)2π2, . . . corresponding to the

eigenfunctions sin(πx
2 ), sin(3πx

2 ), sin(5πx
2 ), . . . , sin[(n + 1

2)πx], . . .

2(b) ut = uxx ; u(0, t) = 0 = ux(1, t), u(x, 0) = sin(3πx
2 ).

We seek solutions of the form u(x, t) = X(x)T (t).
To ensure that u(0, t) = 0 = ux(1, t) we require that X(0) = 0 = X ′(1).
Then u satisfies the equation ut = uxx if T ′X = X ′′T and so if
X′′
X = T ′

T = −λ where λ is a constant,
Thus we require

−X ′′ = λX, X(0) = 0 = X ′(1) (1)
T ′ = −λT . (2)

(1) has nonzero solutions if and only if λ = π2

4 , 9π2

4 , 25π2

4 , . . . and the corre-
sponding solutions are sin(πx

2 ), sin(3πx
2 ), sin(5πx

2 ), . . .
Also (2) has general solution T (t) = Ae−λt.
Thus we have the non-zero solution

u(x, t) = Σ∞n=0An sin[(n +
1
2
)πx] e−[(n+ 1

2
)π]2t

for any choice of coefficients An.
Since u(x, 0) = Σ∞n=0An sin[(n+ 1

2)πx] = sin(3πx
2 ), it suffices to choose A1 = 1

and all the other An’s = 0.

Thus the required solution is u(x, t) = sin(3πx
2 ) e−

9π2t
4 .

3. ux + 2xuy = 1 ; u(0, y) = y.

Characteristics are solutions of dy
dx = 2x, i.e., y = x2 + c.

Let (x0, y0) ∈ R2. The characteristic through (x0, y0) is y = x2 + (y0 − x2
0)

and this characteristic meets the line x = 0 where y = y0 − x2
0, i.e., at the

point (0, y0 − x2
0).
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Let v(x) = u(x, y(x)) where y is the above characteristic.
Then v(0) = u(0, y0 − x2

0) = y0 − x2
0.

Also dv
dx = ux + uy

dy
dx = ux + 2xuy = 1.

Hence v(x) = x + c for some constant c.
Since v(0) = y0 − x2

0, c = y0 − x2
0 and so v(x) = x + y0 − x2

0.
Hence u(x0, y0) = v(x0) = x0 + y0 − x2

0.

Thus u(x, y) = x + y − x2.

4.

u = 0 u = 0

We seek solutions of the form u(r, θ) = R(r)Θ(θ).
We require Θ(0) = 0 and Θ(π) = 0.

Also we have a solution to the equation if

R′′Θ + 1
rR′Θ + 1

r2 RΘ′′ = 0
and so

r2 R′′
R + rR′

R = −Θ′′
Θ = k where k is a constant.

Thus we require
r2R′′ + rR′ − kR = 0 (1)
−Θ′′ = kΘ; Θ(0) = 0, Θ(π) = 0 (2)

(2) has non-zero solutions if and only if k = n2 for n = 1, 2, . . . with corre-
sponding eigenfunctions sin(nθ).
When k = n2, (1) becomes

r2R′′ + rR′ − n2R = 0 - an Euler equation
which has solutions rn and r−n.
Since we require solutions to be bounded at r = 0, we do not make use of
the solutions r−n.
Thus equation has solutions rn sin(nθ) for n = 1, 2, . . ..
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Hence any function of the form

u(r, θ) =
∞∑

n=1

Anrn sin(nθ)

is also a solution.
Thus we require that 10 = u(1, θ) =

∑∞
n=1 An sin(nθ) for 0 ≤ θ ≤ π and so

we choose the coefficients An to be the appropriate Fourier sine coefficients,
i.e,

An = 20
π

∫ π
0 sin(nθ) dθ = 20

π . (− 1
n cos(nθ)|θ=π

θ=0 = 20
nπ [1−cos(nπ)] =

{
40
nπ if n is odd
0 if n is even.

.

5. ut = uxx for −∞ < x <∞, t > 0.
Taking Fourier transforms with respect to x, we obtain

1√
2π

∫∞
−∞ ut(x, t)e−ixξ dx = −ξ2û(ξ, t),

i.e., d
dt û(ξ, t) = −ξ2û(ξ, t) and so û(ξ, t) = K(ξ)e−ξ2t.

Now û(ξ, 0) = 1√
2π

∫∞
−∞ u(x, 0)e−ixξ dξ = 1√

2π

∫∞
−∞ e−

x2

4 e−ixξ dx

= 1√
2π

∫∞
−∞ e−

x2

4 cos(xξ) dx = 2
√

π√
2π

e−ξ2
=
√

2e−ξ2
.

Hence K(ξ) =
√

2e−ξ2
and so û(ξ, t) =

√
2e−ξ2(t+1).

Thus
u(x, t) = 1√

2π

∫∞
−∞ û(ξ, t)eixξ dξ = 1√

π

∫∞
−∞ e−ξ2(t+1)eixξ dξ

= 1√
π

∫∞
−∞ e−ξ2(t+1) cos(xξ) dξ = 1√

π

√
π√

t+1
e
− x2

4(t+1) = 1√
t+1

e
− x2

4(t+1) .

6. (i) x′ = 5x− 3y, y′ = 6x− 4y ; x(0) = 0, y(0) = 1.
Taking Laplace transforms we obtain
sx(s)− x(0) = 5x(s)− 3y(s); i.e., (s− 5)x(s) + 3y(s) = 0 (1)
sy(s)− y(0) = 6x(s)− 4y(s); i.e., −6x(s) + (s + 4) y(s) = 1 (2)
(s + 4)× (1) − 3×(2) gives [18 + (s− 5)(s + 4)] x(s) = −3,
i.e., (s2 − s− 2)x(s) = −3, i.e., x(s) = −3

(s−2)(s+1) = − 1
s−2 + 1

s+1 .

Hence x(t) = −e−2t + e−t.
6× (1) +(s− 5)× (2) gives [18 + (s− 5)(s + 4)] y(s) = s− 5,
i.e., (s2 − s− 2) y(s) = s− 5, i.e., y(s) = s−5

(s−2)(s+1) .

If s−5
(s−2)(s+1) = A

s−2 + B
s+1 , then A(s + 1) + B(s− 2) = s− 5.
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Then s = −1 =⇒ −3B = −6, i.e., B = 2.
Also s = 2 =⇒ 3A = −3, i.e., A = −1.
Thus y(s) = − 1

s−2 + 2
s+1 .

Hence y(t) = −e2t + 2e−t.

6. (ii) x′ = 5x− 3y, y′ = 6x− 4y.

The system can be written as x′ = Ax where A =

(
5 −3
6 −4

) (
x
y

)
.

λ is an eigenvalue of A if and only if det

[
5− λ −3

6 −4− λ

]
= 0,

i.e., (5− λ) (−4− λ) + 18 = 0, i.e., λ2 − λ− 2 = 0, i.e., (λ− 2)(λ + 1) = 0,
i.e., λ = 2, −1.(

x
y

)
is an eigenvector corresponding to λ = 2 if and only if

5x− 3y = 2x i.e., 3x− 3y = 0.
6x− 4y = 2y i.e., 6x− 6y = 0.

Thus

(
1
1

)
is an eigenvector corresponding to λ = 2.

(
x
y

)
is an eigenvector corresponding to λ = −1 if and only if

5x− 3y = −x i.e., 6x− 3y = 0
6x− 4y = −y i.e., 6x− 3y = 0.

Thus

(
1
2

)
is an eigenvector corresponding to λ = −1.

Thus system has general solution x(t) = c1 e2t

(
1
1

)
+ c2 e−t

(
1
2

)
.

7. x′′ = −x3.
The equation may be written as the system x′ = y ; y′ = −x3.
Thus any trajectory of the form y = y(x) must satisfy dy

dx = dy
dt /

dx
dt = −x3

y ,
i.e., y dy = −x3 dx, i.e., y2 + 1

2x4 = c.

Clearly (0, 0) is the only equilibrium point of the system.
Consider the trajectory passing through (0, a), i.e., y2 + 1

2x4 = a2.
As x increases into the first quadrant y decreases until y = 0 when 1

2x4 = a2,
i.e., x = (2a2)

1
4 . Thus we have the trajectory
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>

x

y

and since the equation of the trajectory is symmetric in x and y, reflecting
in the x and y axes we obtain

x

y

>

Thus we have phase plane

x

y

>
>

>

8. dx
dt = x(4− x− 2y); dy

dt = y(7− 3x− y).
(x, y) is an equilibrium point iff

x(4− x− 2y) = 0
y(7− 3x− y) = 0

.

Hence equilibrium points occur at (0, 0), (0, 7), (4, 0) and (x, y) where

x + 2y = 4
3x + y = 7

,

i.e., where (x, y) = (2, 1).
If f(x, y) = x(4− x− 2y), ∂f

∂x (x, y) = 4− 2x− 2y and ∂f
∂y (x, y) = −2x.

If g(x, y) = y(7− 3x− y), ∂g
∂x(x, y) = −3y and ∂g

∂y (x, y) = 7− 3x− 2y.
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Hence linearized equation at (0, 0) is x′ =
(

4 0
0 7

)
x = Ax.

Eigenvalues of A are λ = 4, 7 and so (0, 0) is an unstable node.

Linearized equation at (0, 7) is x′ =

(
−10 0
−21 −7

)
x = Ax.

Eigenvalues of A are λ = −10, −7 and so (0, 7) is an asymptotically stable
node.

Linearized equation at (4, 0) is x′ =

(
−4 −8

0 −5

)
x = Ax.

Eigenvalues of A are λ = −4, −5 and so (4, 0) is an asymptotically stable
node.

Linearized equation at (2, 1) is x′ =

(
−2 −4
−3 −1

)
x = Ax.

λ is an eigenvalue of A iff (−2− λ)(−1− λ)− 12 = 0, i.e., λ2 + 3λ− 10 = 0,
i.e., (λ + 5)(λ− 2) = 0, i.e., λ = −5, 2.
Hence (2, 1) is a saddle point.
Thus phase plane is

x

y

>

>
> >

>

> >

>
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