Solutions to Mathematical Techniques Exam - June 2000

1.
$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 \, dx = [\frac{1}{2\pi} \cdot \frac{1}{3} x^3]_{x=-\pi}^{x=\pi} = \frac{\pi^2}{3}$$

 $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos(nx) \, dx$
 $= \frac{1}{\pi} [\frac{1}{n} x^2 \sin(nx)]_{-\pi}^{\pi} - \frac{2}{n} \int_{-\pi}^{\pi} x \sin(nx) \, dx$
 $= \frac{1}{\pi} [0 + \frac{2}{n^2} x \cos(nx)]_{-\pi}^{\pi} - \frac{2}{n^2} \int_{-\pi}^{\pi} \cos(nx) \, dx$
 $= \frac{4}{n^2} \cos(n\pi) = (-1)^n \frac{4}{n^2}.$
Also $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \sin(nx) \, dx = 0$ as integrand is odd.
Hence full range Fourier series is

$$x^{2} = \frac{\pi^{2}}{3} - 4\left[\cos(x) - \frac{1}{4}\cos(2x) + \frac{1}{9}\cos(3x) - \ldots\right]$$

Putting x = 0 we obtain

$$0 = \frac{\pi^2}{3} - 4\left[1 - \frac{1}{4} + \frac{1}{9} - \ldots\right].$$

Hence

$$1 - \frac{1}{4} + \frac{1}{9} - \ldots = \frac{\pi^2}{12}.$$

2. (a) $-y'' = \lambda y;$ y(0) = 0, y'(1) = 0.Suppose $\lambda < 0$; then we may write $\lambda = -k^2$ where k > 0.Then $y'' = k^2 y$ has general solution $y = A \cosh(kx) + B \sinh(kx).$ We have $y' = Ak \sinh(kx) + Bk \cosh(kx).$ $y(0) = 0 \iff A = 0.$ Hence $y'(1) = 0 \iff Bk \cosh(k) = 0, \text{ i.e., } B = 0.$ Thus we must have A = B = 0.Hence, if $\lambda < 0, y \equiv 0$ is the only solution, i.e., λ is not an eigenvalue.

Suppose $\lambda = 0$; then equation becomes y'' = 0 which has general solution y = Ax + B.

Now $y(0) = 0 \iff B = 0; \quad y'(1) = 0 \iff A = 0.$

Thus $y \equiv 0$ is the only solution and so $\lambda = 0$ is not an eigenvalue.

Suppose $\lambda > 0$; then we may write $\lambda = k^2$ where k > 0.

Then $y'' = -k^2 y$ has general solution $y = A\cos(kx) + B\sin(kx)$. $y(0) = 0 \iff A = 0$. Hence $y'(1) = 0 \iff kB\cos(k) = 0 \iff B = 0 \text{ or } \cos(k) = 0$ $\iff B = 0 \text{ or } k = \frac{\pi}{2} + n\pi = (n + \frac{1}{2})\pi \text{ for } n = 0, 1, 2...$ Therefore $y = \sin[(n + \frac{1}{2})\pi x]$ is a nonzero solution corresponding to $\lambda = (n + \frac{1}{2})^2 \pi^2.$ Hence eigenvalues are $\frac{\pi^2}{4}$, $\frac{9\pi^2}{4}$, $\frac{25\pi^2}{4}$, ..., $(n+\frac{1}{2})^2\pi^2$, ... corresponding to the eigenfunctions $\sin(\frac{\pi x}{2})$, $\sin(\frac{3\pi x}{2})$, $\sin(\frac{5\pi x}{2})$, ..., $\sin[(n+\frac{1}{2})\pi x]$, ... 2(b) $u_t = u_{xx};$ $u(0,t) = 0 = u_x(1,t), \quad u(x,0) = \sin(\frac{3\pi x}{2}).$ We seek solutions of the form u(x,t) = X(x)T(t).

To ensure that $u(0,t) = 0 = u_x(1,t)$ we require that X(0) = 0 = X'(1). Then u satisfies the equation $u_t = u_{xx}$ if T'X = X''T and so if $\frac{X''}{X} = \frac{T'}{T} = -\lambda$ where λ is a constant,

$$-X'' = \lambda X, \quad X(0) = 0 = X'(1) \quad (1)$$

$$T' = -\lambda T. \quad (2)$$

(1) has nonzero solutions if and only if $\lambda = \frac{\pi^2}{4}, \frac{9\pi^2}{4}, \frac{25\pi^2}{4}, \ldots$ and the corresponding solutions are $\sin(\frac{\pi x}{2}), \sin(\frac{3\pi x}{2}), \sin(\frac{5\pi x}{2}), \ldots$

Also (2) has general solution $T(t) = Ae^{-\lambda t}$.

Thus we have the non-zero solution

$$u(x,t) = \sum_{n=0}^{\infty} A_n \sin[(n+\frac{1}{2})\pi x] e^{-[(n+\frac{1}{2})\pi]^2 t}$$

for any choice of coefficients A_n .

Since $u(x,0) = \sum_{n=0}^{\infty} A_n \sin[(n+\frac{1}{2})\pi x] = \sin(\frac{3\pi x}{2})$, it suffices to choose $A_1 = 1$ and all the other A_n 's = 0.

Thus the required solution is $u(x,t) = \sin(\frac{3\pi x}{2}) e^{-\frac{9\pi^2 t}{4}}$.

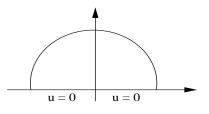
3. $u_x + 2xu_y = 1;$ u(0, y) = y.

Characteristics are solutions of $\frac{dy}{dx} = 2x$, i.e., $y = x^2 + c$.

Let $(x_0, y_0) \in \mathbf{R}^2$. The characteristic through (x_0, y_0) is $y = x^2 + (y_0 - x_0^2)$ and this characteristic meets the line x = 0 where $y = y_0 - x_0^2$, i.e., at the point $(0, y_0 - x_0^2)$.

Let v(x) = u(x, y(x)) where y is the above characteristic. Then $v(0) = u(0, y_0 - x_0^2) = y_0 - x_0^2$. Also $\frac{dv}{dx} = u_x + u_y \frac{dy}{dx} = u_x + 2xu_y = 1$. Hence v(x) = x + c for some constant c. Since $v(0) = y_0 - x_0^2$, $c = y_0 - x_0^2$ and so $v(x) = x + y_0 - x_0^2$. Hence $u(x_0, y_0) = v(x_0) = x_0 + y_0 - x_0^2$. Thus $u(x, y) = x + y - x^2$.

4.



We seek solutions of the form $u(r, \theta) = R(r)\Theta(\theta)$. We require $\Theta(0) = 0$ and $\Theta(\pi) = 0$.

Also we have a solution to the equation if

$$R''\Theta + \frac{1}{r}R'\Theta + \frac{1}{r^2}R\Theta'' = 0$$

and so

$$r^2\frac{R''}{R}+r\frac{R'}{R}=-\frac{\Theta''}{\Theta}=k$$
 where k is a constant.

Thus we require

$$r^{2}R'' + rR' - kR = 0$$
(1)

$$-\Theta'' = k\Theta; \quad \Theta(0) = 0, \quad \Theta(\pi) = 0$$
(2)

(2) has non-zero solutions if and only if $k = n^2$ for n = 1, 2, ... with corresponding eigenfunctions $\sin(n\theta)$.

When $k = n^2$, (1) becomes

$$r^2 R'' + r R' - n^2 R = 0$$
 - an Euler equation

which has solutions r^n and r^{-n} .

Since we require solutions to be bounded at r = 0, we do not make use of the solutions r^{-n} .

Thus equation has solutions $r^n \sin(n\theta)$ for n = 1, 2, ...

Hence any function of the form

$$u(r,\theta) = \sum_{n=1}^{\infty} A_n r^n \sin(n\theta)$$

is also a solution.

Thus we require that $10 = u(1, \theta) = \sum_{n=1}^{\infty} A_n \sin(n\theta)$ for $0 \le \theta \le \pi$ and so we choose the coefficients A_n to be the appropriate Fourier sine coefficients, i.e,

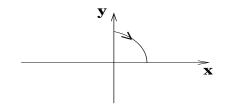
$$A_n = \frac{20}{\pi} \int_0^{\pi} \sin(n\theta) \, d\theta = \frac{20}{\pi} \cdot \left(-\frac{1}{n} \cos(n\theta) \right)_{\theta=0}^{\theta=\pi} = \frac{20}{n\pi} [1 - \cos(n\pi)] = \begin{cases} \frac{40}{n\pi} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even.} \end{cases}$$

10

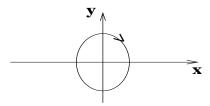
 $u_t = u_{xx}$ for $-\infty < x < \infty, t > 0$. 5. Taking Fourier transforms with respect to x, we obtain $\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}u_t(x,t)e^{-ix\xi}\,dx = -\xi^2\hat{u}(\xi,t),$ i.e., $\frac{d}{dt}\hat{u}(\xi,t) = -\xi^2 \hat{u}(\xi,t)$ and so $\hat{u}(\xi,t) = K(\xi)e^{-\xi^2 t}$. Now $\hat{u}(\xi, 0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(x, 0) e^{-ix\xi} d\xi = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{4}} e^{-ix\xi} dx$ $= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{4}} \cos(x\xi) \, dx = \frac{2\sqrt{\pi}}{\sqrt{2\pi}} e^{-\xi^2} = \sqrt{2}e^{-\xi^2}.$ Hence $K(\xi) = \sqrt{2}e^{-\xi^2}$ and so $\hat{u}(\xi, t) = \sqrt{2}e^{-\xi^2(t+1)}$. Thus $u(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{u}(\xi,t) e^{ix\xi} d\xi = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\xi^2(t+1)} e^{ix\xi} d\xi$ $= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\xi^2(t+1)} \cos(x\xi) d\xi = \frac{1}{\sqrt{\pi}} \frac{\sqrt{\pi}}{\sqrt{t+1}} e^{-\frac{x^2}{4(t+1)}} = \frac{1}{\sqrt{t+1}} e^{-\frac{x^2}{4(t+1)}}.$ 6. (i) x' = 5x - 3y, y' = 6x - 4y; $x(0) = 0, \quad y(0) = 1.$ Taking Laplace transforms we obtain i.e., $(s-5)\overline{x}(s) + 3\overline{y}(s) = 0$ $s\overline{x}(s) - x(0) = 5\overline{x}(s) - 3\overline{y}(s);$ (1) $s\overline{y}(s) - y(0) = 6\overline{x}(s) - 4\overline{y}(s);$ i.e., $-6\overline{x}(s) + (s+4)\overline{y}(s) = 1$ (2) $(s+4) \times (1) - 3 \times (2)$ gives $[18 + (s-5)(s+4)] \overline{x}(s) = -3$, i.e., $(s^2 - s - 2)\overline{x}(s) = -3$, i.e., $\overline{x}(s) = \frac{-3}{(s-2)(s+1)} = -\frac{1}{s-2} + \frac{1}{s+1}$. Hence $x(t) = -e^{-2t} + e^{-t}$. $6 \times (1) + (s-5) \times (2)$ gives $[18 + (s-5)(s+4)] \overline{y}(s) = s-5$. i.e., $(s^2 - s - 2)\overline{y}(s) = s - 5$, i.e., $\overline{y}(s) = \frac{s - 5}{(s - 2)(s + 1)}$. If $\frac{s-5}{(s-2)(s+1)} = \frac{A}{s-2} + \frac{B}{s+1}$, then A(s+1) + B(s-2) = s-5.

Then $s = -1 \Longrightarrow -3B = -6$, i.e., B = 2. Also $s = 2 \Longrightarrow 3A = -3$, i.e., A = -1. Thus $\overline{y}(s) = -\frac{1}{s-2} + \frac{2}{s+1}$. Hence $y(t) = -e^{2t} + 2e^{-t}$. 6. (ii) x' = 5x - 3y, y' = 6x - 4y. The system can be written as $\underline{x}' = A\underline{x}$ where $A = \begin{pmatrix} 5 & -3 \\ 6 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. λ is an eigenvalue of A if and only if det $\begin{vmatrix} 5-\lambda & -3\\ 6 & -4-\lambda \end{vmatrix} = 0$, i.e., $(5 - \lambda)(-4 - \lambda) + 18 = 0$, i.e., $\lambda^2 - \lambda - 2 = 0$, i.e., $(\lambda - 2)(\lambda + 1) = 0$, i.e., $\lambda = 2, -1$. $\begin{pmatrix} x \\ y \end{pmatrix}$ is an eigenvector corresponding to $\lambda = 2$ if and only if $5x - 3y = 2x \qquad \text{i.e., } 3x - 3y = 0.$ $6x - 4y = 2y \qquad \text{i.e., } 6x - 6y = 0.$ Thus $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector corresponding to $\lambda = 2.$ $\begin{pmatrix} x \\ y \end{pmatrix}$ is an eigenvector corresponding to $\lambda = -1$ if and only if 5x - 3y = -x i.e., 6x - 3y = 06x - 4y = -y i.e., 6x - 3y = 0. Thus $\begin{pmatrix} 1\\2 \end{pmatrix}$ is an eigenvector corresponding to $\lambda = -1$. Thus system has general solution $\underline{x}(t) = c_1 e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. 7. $x'' = -x^3$. The equation may be written as the system x' = y; $y' = -x^3$. Thus any trajectory of the form y = y(x) must satisfy $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt} = \frac{-x^3}{y}$, i.e., $y \, dy = -x^3 \, dx$, i.e., $y^2 + \frac{1}{2}x^4 = c$. Clearly (0,0) is the only equilibrium point of the system. Consider the trajectory passing through (0, a), i.e., $y^2 + \frac{1}{2}x^4 = a^2$.

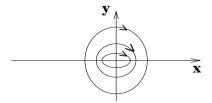
As x increases into the first quadrant y decreases until y = 0 when $\frac{1}{2}x^4 = a^2$, i.e., $x = (2a^2)^{\frac{1}{4}}$. Thus we have the trajectory



and since the equation of the trajectory is symmetric in x and y, reflecting in the x and y axes we obtain



Thus we have phase plane



8. $\frac{dx}{dt} = x(4 - x - 2y); \quad \frac{dy}{dt} = y(7 - 3x - y).$ (x, y) is an equilibrium point iff

$$\begin{array}{l} x(4 - x - 2y) &= 0 \\ y(7 - 3x - y) &= 0 \end{array}$$

.

Hence equilibrium points occur at (0,0), (0,7), (4,0) and (x,y) where

$$\begin{array}{ll} x+2y &=4\\ 3x+y &=7 \end{array},$$

i.e., where (x, y) = (2, 1).

If f(x,y) = x(4-x-2y), $\frac{\partial f}{\partial x}(x,y) = 4-2x-2y$ and $\frac{\partial f}{\partial y}(x,y) = -2x$. If g(x,y) = y(7-3x-y), $\frac{\partial g}{\partial x}(x,y) = -3y$ and $\frac{\partial g}{\partial y}(x,y) = 7-3x-2y$. Hence linearized equation at (0,0) is $\underline{x}' = \begin{pmatrix} 4 & 0 \\ 0 & 7 \end{pmatrix} \underline{x} = A\underline{x}.$

Eigenvalues of A are $\lambda = 4$, 7 and so (0,0) is an unstable node.

Linearized equation at (0,7) is $\underline{x}' = \begin{pmatrix} -10 & 0 \\ -21 & -7 \end{pmatrix} \underline{x} = A\underline{x}.$

Eigenvalues of A are $\lambda = -10, -7$ and so (0,7) is an asymptotically stable node.

Linearized equation at (4,0) is $\underline{x}' = \begin{pmatrix} -4 & -8 \\ 0 & -5 \end{pmatrix} \underline{x} = A\underline{x}.$

Eigenvalues of A are $\lambda = -4, -5$ and so (4, 0) is an asymptotically stable node.

Linearized equation at (2,1) is $\underline{x}' = \begin{pmatrix} -2 & -4 \\ -3 & -1 \end{pmatrix} \underline{x} = A\underline{x}.$

 λ is an eigenvalue of A iff $(-2-\lambda)(-1-\lambda)-12=0,$ i.e., $\lambda^2+3\lambda-10=0,$ i.e., $(\lambda+5)(\lambda-2)=0,$ i.e., $\lambda=-5,2.$

Hence (2,1) is a saddle point.

Thus phase plane is

