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MV-algebras

An MV-algebra (A,�,¬,0) is a set A equipped
with a binary operation �, a unary operation
¬ and a constant 0 such that the following
axioms hold.

(MV1) x � (y � z) = (x � y) � z.

(MV2) x � y = y � x.

(MV3) x � 0 = x.

(MV4) ¬¬x = x.

(MV5) x � ¬0 = ¬0. Define 1 = ¬0.

(MV6) ¬(¬x � y) � y = ¬(¬y � x) � x.
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Examples

1. Every Boolean algebra is an MV-algebra
when ∨ is interpreted as � and ¯ as ¬.

2. The real closed interval [0,1] equipped with
the operations x � y = min(1, x + y) and
¬x = 1− x is an MV-algebra.

3. For each n ≥ 2 define

Ln =
{

0,
1

n− 1
,

2

n− 1
, . . . ,

n− 2

n− 1
,1

}
equipped with the operations � and ¬ as in
(2). These are called  Lukasiewicz chains.

4. MV-algebras arise as Lindenbaum algebras
of many-valued logic in the same way that
Boolean algebras arise as Lindenbaum al-
gebras of classical, two-valued logic.
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Theorems

1. The idempotents of an MV-algebra form

a Boolean algebra. Thus MV-algebras are

‘non-idempotent Boolean algebras’.

2. The finite MV-algebras are finite direct prod-

ucts of MV-algebras of the form Ln.

3. Let G be a lattice-ordered abelian group.

Let u ≥ 0 be an order-unit in G — thus

for each x ∈ G we have that x ≤ nu for

some natural number n. Then [0, u] is an

MV-algebra where x � y = u ∧ (x + y) and

¬x = u−x. Every MV-algebra arises in this

way.
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Further reading

Daniele Mundici, Logic of infinite quantum sys-

tems, Int. J. Theor. Phys. 32 (1993), 1941–

1955.

Daniele Mundici, MV-algebras: A short tuto-

rial, May 26, 2007.
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Boolean algebras as partial algebras

In Boole’s original work on Boolean algebras

the operation �, that is ∨, was a partial op-

eration defined only between orthogonal ele-

ments.

Here is an axiomatization of Boolean algebras

in these terms due to Foulis and Bennett.

Let (B,⊕,0,1) be a set B equipped with a par-

tial binary operation ⊕ and two constants 0 and

1 such that the following axioms hold.

6



(PB1) p ⊕ q is defined if and only if q ⊕ p is
defined, and when both are defined they
are equal.

(PB2) If q⊕r is defined and p⊕(q⊕r) is defined
then p⊕q is defined and (p⊕q)⊕r is defined
and p⊕ (q ⊕ r) = (p⊕ q)⊕ r.

(PB3) For each p there is a unique q such that
p⊕ q = 1.

(PB4) If 1⊕ p is defined then p = 0.

(PB5) If p ⊕ q and p ⊕ r and q ⊕ r are defined
then (p⊕ q)⊕ r is defined.

(PB6) Given p and q there exist a, b, c such that
b⊕c and a⊕(b⊕c) are defined and p = a⊕c
and q = b⊕ c.
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MV-algebras as partial algebras

Let (B,⊕,0,1) be a set B equipped with a par-
tial binary operation ⊕ and two constants 0 and
1. It is called an effect algebra if the following
axioms hold.

(EA1) p ⊕ q is defined if and only if q ⊕ p is
defined, and when both are defined they
are equal.

(EA2) If q⊕r is defined and p⊕(q⊕r) is defined
then p⊕q is defined and (p⊕q)⊕r is defined
and p⊕ (q ⊕ r) = (p⊕ q)⊕ r.

(EA3) For each p there is a unique p′ such that
p⊕ p′ = 1.

(EA4) 1⊕ p is defined if and only if p = 0.
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Define p ≤ q if and only if p⊕ r = q for some r.

The refinement property is defined as follows.

If a1 ⊕ a2 = b1 ⊕ b2 then there exist elements

c11, c12, c21, c22 such that a1 = c11 ⊕ c12 and

a2 = c21 ⊕ c22, and b1 = c11 ⊕ c21 and b2 =

c12 ⊕ c22.

b1 b2
a1 c11 c12
a2 c21 c22

Theorem An effect algebra which is a lattice

with respect to ≤ and satisfies the refinement

property is an MV-algebra when we define

a � b = a⊕ (a′ ∧ b)

and every MV-algebra arises in this way.
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Further reading

D. J. Foulis and M. K. Bennett, Effect algebras

and unsharp quantum logics, Found. Phys., 24

(1994), 1331–1352.

M. K. Bennett and D. J. Foulis, Phi-symmetric

effect algebras, Found. Phys., 25 (1995), 1699–

1722.

D. J. Foulis, MV and Heyting effect algebras,

Found. Phys., 30 (2000), 1687–1706.
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Boolean inverse monoids

An inverse monoid is said to be Boolean if

all binary compatible joins exist, multiplication

distributes over any such binary joins, and the

semilattice of idempotents forms a Boolean al-

gebra with respect to the natural partial order.

Symmetric inverse monoids are Boolean. The

symmetric inverse monoid on n letters is de-

noted by In.

Boolean inverse monoids should be viewed as

non-commutative generalizations of Boolean

algebras.

This raises the question of how Boolean in-

verse monoids are related to MV-algebras.
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Let S be an arbitrary Boolean inverse monoid.

Put

E(S) = E(S)/D .

We denote the D-class containing the idempo-

tent e by [e].

Define [e]⊕ [f ] as follows. If we can find idem-

potents e′ ∈ [e] and f ′ ∈ [f ] such that e′ and f ′

are orthogonal then define [e] ⊕ [f ] = [e′ ∨ f ′],
otherwise, the operation ⊕ is undefined. Put

0 = [0] and 1 = [1].

An inverse monoid is factorizable if each ele-

ment is beneath an element of the group of

units.

Theorem Let S be a Boolean inverse monoid.

Then (E(S),⊕, 0, 1) is an effect algebra (satis-

fying the refinement property) if and only if S

is factorizable.
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Proposition Let S be a Boolean inverse monoid.

1. S is factorizable if and only if D preserves

complementation.

2. If S is factorizable then D = J .

3. If S is factorizable then E(S)/D can be re-

placed by S/J .

A factorizable Boolean inverse monoid is called

a Foulis monoid. An inverse monoid S in which

S/J is a lattice is said to satisfy the lattice

condition.

Theorem Let S be a Foulis monoid satisfying

the lattice condition. Then E(S) is an MV-

algebra.
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Co-ordinatizations

We say that an MV-algebra A can be co-ordin-
atized if there is a Foulis monoid S satisfying
the lattice condition such that E(S) is isomor-
phic to A.

Theorem 1 [Lawson, Scott, 2014] Every count-
able MV-algebra can be co-ordinatized.

Theorem 2 [Wehrung, 2015] Every MV-algebra
can be co-ordinatized.

M. V. Lawson, P. Scott, AF inverse monoids
and the structure of countable MV-algebras,
arXiv:1408.1231v2.

F. Wehrung, Refinement monoids, equidecom-
posability types, and Boolean inverse semigroups,
205pp, 2015, <hal-01197354>.
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Autour de Théorème 1

We can easily prove that finite MV-algebras

can be co-ordinatized.

Theorem The finite, fundamental Boolean in-

verse monoids are precisely the finite direct

products of finite symmetric inverse monoids.

Finite, fundamental Boolean inverse monoids

are said to be semisimple.

Theorem The finite MV-algebras are co-ordin-

atized by the semisimple monoids.
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An inverse monoid is a meet-monoid if all bi-

nary meets exist.

Lemma Finite Boolean inverse monoids are

meet-monoids.

A morphism between Boolean inverse meet-

monoids is a monoid homomorphism that maps

zero to zero, preserves all compatible binary

joins and all binary meets.

Proposition A morphism between Boolean in-

verse meet-monoids is injective if and only if

its kernel is zero.
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Proposition Let

S0
τ0→ S1

τ1→ S2
τ2→ . . .

be a sequence of Boolean inverse meet-monoids

and injective morphisms. Then the direct limit

lim−→Si is a Boolean inverse meet-monoid. In

addition, we have the following.

1. If all the Si are fundamental then lim−→Si is

fundamental.

2. If all the Si are factorizable then lim−→Si is

factorizable.

3. The group of units of lim−→Si is the direct

limit of the groups of units of the Si.
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An AF inverse monoid is an inverse monoid iso-

morphic to a direct limit of semisimple monoids.

They are fundamental, factorizable Boolean

inverse meet-monoids.

In particular, AF inverse monoids are Foulis

monoids.
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The theorem we actually proved is the follow-

ing.

Theorem Every countably infinite MV-algebra

is co-ordinatized by an AF inverse monoid.

Example The dyadic inverse monoid Ad2 is

the direct limit of the sequence

I1 → I2 → I4 → I8 → . . .

Recall that a non-negative rational number is

said to be dyadic if it can be written in the

form a
2b

for some natural numbers a and b. The

dyadic rationals in the closed unit interval [0,1]

form an MV-algebra that is co-ordinatized by

Ad2.

Daniele Mundici, Interpretations of AF C∗-algebras

in Lukasiewicz sentential calculus, J. Funct.

Anal. 65 (1986), 15–63.
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Idea of the proof

Proposition

1. There is a morphism from Im to In if and
only if m | n.

2. If m | n then there is exactly one morphism
from Im to In up to isomorphism.

This enables us to use arguments from C∗-
algebra theory in classifying morphisms between
semisimple monoids. See Chapters 16 and 17
of the following.

K. R. Goodearl, Notes on real and complex C∗-
algebras, Shiva Publishing Limited, 1982.

In particular, AF inverse monoids can be de-
scribed in terms of Bratteli diagrams.
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• Each countable MV-algebra is isomorphic
to an interval [0, u] in a countable lattice-
ordered abelian group G.

• Countable lattice-ordered groups are dimen-
sion groups.

• Dimension groups are direct limits of groups
of the form Zr where the morphisms are
encoded by a Bratteli diagram.

• The order-unit u arises from

n = (n(1), . . . , n(r)) ∈ Zr

being positive integers.

• We use n to construct the semisimple monoid
In(1)×. . .×In(r) and the Bratteli diagram to
encode the morphisms between the semisim-
ple monoids.
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The AF inverse monoid S that arises in this

way is such that S/J is isomorphic to [0, u].

Remarks

1. This work is further evidence of the close

connectin between Boolean inverse monoids

and C∗-algebras.

2. MV-algebras can be regarded as being in-

variants.

3. The two theorems suggest trying to trans-

late theorems between Foulis monoids sat-

isfying the lattice condition and MV-algebras.

For example, is every such monoid a sub-

direct product of Foulis monoids in which

the lattice of principal ideals is linearly or-

dered?
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