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A propos

Boolean inverse semigroups are outré algebraic

objects which are currently à la mode with

some cachet. The theory being developed rep-

resents a rapprochement between pseudogroups

of transformations and inverse semigroup the-

ory. The key aperçu is that Boolean inverse

monoids are closely related to C∗-algebras of

real rank zero. Semigroups are often viewed as

déclassé but if you believe in étale groupoids

then you are forced by duality to believe in in-

verse semigroups.
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Mise en scéne

The goal of this talk is to describe aspects

of the theory, applications and examples of

Boolean inverse semigroups.

Some of the results were inspired by the work

of Hiroki Matui on étale groupoids whose cal-

culations frequently take place in the Boolean

inverse monoid associated with the étale groupoid

that is his main interest.
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1. Previously

Commutative Non-commutative

frame pseudogroup

dist. lattice dist. inverse semigroup

Boolean algebra Boolean inverse semigroup

Non-commutative Groupoids

pseudogroup étale

spatial pseudogroup sober étale

dist. inverse semigroup spectral étale

fundamental dist. inverse semigroup effective spectral étale

Boolean inverse semigroups Boolean étale

Algebra Topology

Semigroup Locally compact

Monoid Compact

Meet-semigroup Hausdorff

4



Theorem [Non-commutative Stone duality]

1. If G is a Boolean groupoid then the set of

all compact-open local bisections KB(G) is

a Boolean inverse semigroup; it is a monoid

if the space of identities of G is compact.

2. If S is a Boolean inverse semigroup then

the set of prime filters (= ultrafilters) GP (S)

is a Boolean groupoid; the space of iden-

tities of this groupoid is compact if S is a

monoid.

3. S is a meet-semigroup if and only if GP (S)

is Hausdorff.

4. S is fundamental if and only if GP (S) is

effective.
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Boolean inverse semigroups are non-commutative

generalizations of Boolean algebras.

Example Finite Boolean algebras are isomor-

phic to power sets of finite sets whereas finite

Boolean inverse semigroups are isomorphic to

all local bisections of finite discrete groupoids.
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2. Simplicity

Let S be an inverse semigroup. An ideal I in

S is a non-empty subset such that SIS ⊆ I.

Now let S be a Boolean inverse semigroup. A

∨-ideal I in S is an ideal with the additional

property that it is closed under finite compat-

ible joins.

A Boolean inverse semigroup is said to be 0-

simplifying if it has no non-trivial ∨-ideals.

Key definition A Boolean inverse semigroup

that is both fundamental and 0-simplifying is

said to be simple.
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Recall that every groupoid is a union of its

connected components.

A subset of a groupoid that is a union of con-

nected components is said to be invariant.

An étale groupoid is said to be minimal if there

are no non-trivial open invariant subsets.

Theorem Under non-commutative Stone du-

ality, 0-simplifying Boolean inverse semigroups

correspond to minimal Boolean groupoids.
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A non-zero idempotent e is said to be properly

infinite if we may find a pair of elements x, y ∈
S such that e

x→ i < e and e
y→ j < e and i ⊥ j.

An inverse monoid is said to be purely infinite if

every non-zero idempotent is properly infinite.

Theorem For an atomless Boolean inverse semi-

group S the following are equivalent.

1. S is 0-simple.

2. S is 0-simplifying and purely infinite.
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An inverse semigroup is said to be 0-simple if

it has no non-trivial ideals.

Thus 0-simple is stronger than 0-simplifying.

The following is a version of a classical theo-

rem.

Theorem A Boolean inverse semigroup has

no non-trivial (semigroup) congruences if and

only if it is 0-simple and fundamental.

Definition A Boolean inverse semigroup that

is both fundamental and 0-simple is said to be

strongly simple.
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A non-zero element a in an inverse semigroup
is said to be an infinitesimal if a2 = 0. The
following result explains why infinitesimals are
important.

Proposition Let S be a Boolean inverse monoid
and let a be an infinitesimal. Then

a ∨ a−1 ∨ (a−1a ∨ aa−1)

is an involution.

We call an involution that arises in this way a
transposition.

A Boolean inverse semigroup is said to be basic
if each element is a finite join of infinitesimals
or idempotents. A groupoid is principal if it
comes from an equivalence relation.

Theorem Under non-commutative Stone du-
ality basic Boolean inverse semigroups corre-
spond to principal Boolean groupoids.
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Summary

Inverse monoid Etale groupoid

fundamental effective
0-simplifying minimal

0-simple purely infinite and minimal
basic principal
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3. Groups, inverse semigroups and

groupoids

Idea The groups of units of simple Boolean

inverse monoids should be regarded as gener-

alizations of finite symmetric groups.

Theorem [The simple alternative] A simple

Boolean inverse monoid is either isomorphic to

a finite symmetric inverse monoid or atomless.

Under classical Stone duality, the Cantor space

corresponds to the (unique) countable atom-

less Boolean algebra; it is convenient to give

this a name and we shall refer to it as the

Tarski algebra.

Corollary A simple countable Boolean inverse

monoid has the Tarski algebra as its set of

idempotents.
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Definition Denote by Homeo(S ) the group of

homeomorphisms of the Boolean space S . By

a Boolean full group, we mean a subgroup G of

Homeo(S ) satisfying the following condition:

let {e1, . . . , en} be a finite partition of S by

clopen sets and let g1, . . . , gn be a finite subset

of G such that {g1e1, . . . , gnen} is a partition

of S also by clopen sets. Then the union of

the partial bijections (g1 | e1), . . . , (gn | en) is

an element of G. We call this property fullness

and term full those subgroups of Homeo(S )

that satisfy this property.
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Theorem The following three classes of struc-

ture are equivalent.

1. Minimal Boolean full groups.

2. Simple Boolean inverse monoids

3. Minimal, effective Boolean groupoids.
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Let S be a compact Hausdorff space. If α ∈
Homeo(S ), define

supp(α) = cl{x ∈ S : α(x) 6= x}

the support of α.

Theorem The following three classes of struc-

ture are equivalent.

1. Minimal Boolean full groups in which each

element has clopen support.

2. Simple Boolean inverse meet-monoids

3. Minimal, effective, Hausdorff Boolean groupoids.
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Theorem The following three classes of struc-

ture are equivalent.

1. Minimal Boolean full groups in which each

element has a clopen fixed-point set.

2. Simple basic Boolean inverse meet-monoids

3. Minimal, effective, Hausdorff, principal Boolean

groupoids.
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Let S be a Boolean inverse monoid. Denote

by Sym(S) the subgroup of the group of units

of S generated by transpositions.

Let a and b be infinitesimals and put c = (ba)−1

as in the following diagram

e2
b
||

e3 c
// e1

abb

where the idempotents e1, e2, e3 are mutually

orthogonal. Put e = e1∨e2∨e3. Then a∨b∨c∨ē
is a unit called a 3-cycle.

Denote by Alt(S) the subgroup of the group of

units of S generated by 3-cycles.

Theorem [Nekrashevych] Let S be a simple

Boolean inverse monoid. Then Alt(S) is simple.
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4. Examples

The first example was in fact the first one I
constructed and motivated the whole theory.
The starting point was a paper by J.-C. Birget
in 2004.

Example 1

There is a family C2, C3, . . . of strongly simple,
countable atomless Boolean inverse monoids,
the Cuntz inverse monoids, whose groups of
units are the Thompson groups V2, V3, . . ., re-
spectively.

The groupoid associated with Cn is the same
as the groupoid associated with the Cuntz C∗-
algebra On.

Representations of the inverse monoids Cn are
(unknowingly) the subject of Iterated function
systems and permutation representations of the
Cuntz algebra by O. Bratteli and P. E. T. Jor-
gensen, AMS, 1999.
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Example 2

The AF monoids are a class of fundamental

Boolean inverse monoids defined to be direct

limits lim−→Si where the inverse semigroups Si
are finite direct products of finite symmetric

inverse monoids and the maps between them

preserve joins.

Their groups of units are direct limits of finite

direct products of finite symmetric groups with

morphisms being by means of diagonal embed-

dings.

AF monoids can be used to co-ordinatize MV

algebras.

End of lecture. The following material is

additional.
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5. Constructing Boolean inverse

semigroups

The first theorem tells us that if we are inter-

ested in inverse semigroups embedded (nicely)

in C∗-algebras then we might as well assume

that the inverse semigroup is Boolean.

Theorem [Paterson, Wehrung] Let S be an in-

verse subsemigroup of the multiplicative semi-

group of a C∗-algebra R in such as way that

the inverse in S is the involution of R. Then

there is a Boolean inverse semigroup B such

that S ⊆ B ⊆ R such that the inverse in B is

the involution in R.

21



There are two ways of constructing a Boolean

inverse semigroup from a (distributive) inverse

semigroup: off-the-peg (which is easy) and be-

spoke (which is more delicate).

To describe the off-the-peg method, it is con-

venient to restrict to distributive inverse semi-

groups. This is actually no restriction by the

following result.

Theorem Let S be an inverse semigroup with

zero. Then there is a distributive inverse semi-

group D(S) and an embedding δ : S → D(S)

universal for maps from S to distributive in-

verse semigroups.
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The following generalizes Grätzer and Schmidt

(1958) by way of results by Kellendonk, Pater-

son, Lenz, and Lawson, Margolis & Steinberg.

Theorem [The enveloping Boolean inverse semi-

group] Let S be a distributive inverse semi-

group. Then there is a Boolean inverse semi-

group BS(S) and an embedding β : S → BS(S)

such that each element of BS(S) can be written

in the form
m∨
i=1

β(si) \ β(ti)

where ti ≤ si.

The bespoke method is part of the theory of

coverages on inverse semigroups.

The most important such coverage is the tight

coverage. The term ‘tight’ come from the

work of Ruy Exel but there were related no-

tion in work by Lenz and Lawson.
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Let S be an inverse semigroup. Let a ∈ S. A

tight cover of a is a finite subset X ⊆ a↓ such

that for each 0 6= b ≤ a there exists x ∈ X such

that there is a 0 6= z where z ≤ b, x.

For each a ∈ S define T (a) to be the set of

tight covers of a.

Let D be a distributive inverse semigroup. A

morphism θ : S → D is said to be a cover-to-

join map if X ∈ T (a) implies that a =
∨
θ(X).
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Theorem Let S be an inverse semigroup. Then

there is a universal cover-to-join map δt : S →
Dt(S).

A filter A is said to be tight if a ∈ A and X ∈
T (a) implies that X ∩A 6= ∅.

The following is a version of a theorem by Exel.

Theorem The distributive inverse semigroup

Dt(S) is Boolean if and only if every tight filter

in S is an ultrafilter.

The étale groupoid associated with BS(Dt(S))

is Exel’s tight groupoid.
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6. Research directions

• Fred Wehrung has shown that Boolean in-

verse semigroups form a variety. What do

the free Boolean inverse semigroups look

like? How does the theory of subvarieties

of simple Boolean inverse monoids mesh

with the behavio(u)r of their groups of units?

• Matui’s work has highlighted the impor-

tance of the (integer) homology groups of

Boolean étale groupoids. But in fact many

of his calculations dealing with these groups

take place within the associated Boolean

inverse monoid. Investigate the connec-

tion between the structure of the Boolean

inverse monoid and the structure of the

homology groups.
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• Peter Hines investigated the connections

between inverse semigroups and linear logic

(‘geometry of interaction’). Does the the-

ory of Boolean inverse monoids shed any

light on these connections? (there are hints

that they might do.)

• A Tarski inverse monoid is a countable,

atomless Boolean inverse monoid. ‘Clas-

sify’ the simple Tarski inverse monoids.

• Formalize the connection netween Boolean

inverse monoids and C∗-algebras of real rank

zero.

• What can be said about the Boolean in-

verse monoids associated with aperiodic tilings

à la Kellendonk and, specifically, their groups

of units?
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