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PLAN

@ PART I: Locales

e Point-free topology as commutative algebra: sup-lattices ( “abelian
groups”), locales (“commutative rings")
e Relation to pointset topology

e PART II: Groupoids
e Groupoids and inverse semigroups as noncommutative algebra:

quantales ( “noncommutative rings")
e Relation to topological groupoids
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SUP-LATTICES

Sup-lattices (aka complete lattices) are the “abelian groups” of point-free
topology.

a+b becomes aV b and there are sum-operations of unbounded arity:
Vai
i

Homomorphisms: [ (\/;a;) = V,f(a;).
Direct sum L& M (= cartesian product) is both a product and a
coproduct.

Tensor product = image of universal “bilinear” map:

('x7.)’)}—>"x:Q§.)y
LEM ———— LM
. f
\\ J
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Locales are sup-lattices satisfying the following distributivity property:
XA \/}’i = \/x NYi
i i
Motivating example: the topology Q(S) of a space S.
A locale X is a commutative (and idempotent) “ring”:

XX (x,x ) xx!

X®X

y \

X




LOCALES

A locale homomorphism ¢ : X — Y (= “ring homomorphism”) is a
sup-lattice homomorphism such that:

P(x1Ax2) = @(x1)AP(x2)
p(lx) = ly

Motivating example: a continuous map of topological spaces f: S — T
yields a homomorphism

1 (T) — Q(S) .
DEFINITION
Category Loc:
@ Objects: locales

@ Arrows: a “continuous map” f:X — Y is a homomorphism
ffYy—X.

The assignments S +— Q(S) and f — f~! define a functor Q : Top — Loc.
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LOCALES

Homeomorphism = isomorphism f in Loc — i.e. f* has an inverse.

Sublocale s : S — X = surjective locale homomorphism s*: X — S (up to
an isomorphism).

Restriction of f: X — Y to a sublocale s: S — X is

S>> X—">Y

~_ 7

“fls"=fos

Image of f : X — Y = sublocale of Y defined by f*: Y — f*(Y).

Open sublocales are of the form s, = (—) Ax: X — |(x) ~ "subspace x
with relative topology” .

f:X — 7Y is a local homeomorphism <= 3 family (x;) in X such that
V;xi =1 (an “open cover of X") and each restriction f os,, defines a
homeomorphism of locales whose image is an open sublocale of Y.
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Coproduct of locales X +Y = direct sum X& Y.

Product of locales X x Y = tensor product as sup-lattices X® Y:

X il XxY 2
T (x)=x®1 A 3 (y)=1®y




LOCALES

Consider the following maps in Loc:

N

Z

For topological spaces the pullback (aka fibered product) X xz Y would
be the subspace of the product space X x Y consisting of those pairs (x,y)
such that f(x) = g(y).

For locales the pullback is a sublocale of X ® Y. Algebraically it is a
quotient.

The homomorphisms f*:Z — X and g*: Z — Y turn both X and Y into
Z-modules, by change of "base ring”:

zx:=f"(2) Ax 2 y:=g(2) Ny

The pullback coincides with X ®, Y (= sup-lattice quotient determined by
the relations z- x®y=x®z-y).
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LOCALES VERSUS TOPOLOGY

The “locale with one point” is

A point of a locale X isamapp:2— X.
Let &2 = {points of X}.
For each x € X define U, = {p € & | p*(x) = 1}.

The spectrum of X is the topological space £(X) := (£,7) whose
topology is .7 = {U; | x € X}.

This defines a functor ¥ : Loc — Top, where for each map f: X — Y the
continuous map X(f) : X(X) — X(Y) is defined by

X(f)p) =fep.
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LOCALES VERSUS TOPOLOGY

Q
So we have two functors: Top : Loc .

T
The assignment x — U, is a surjective homomorphism X — Q(X(X)).

DEFINITION ’

X is spatial if this is an isomorphism.

There are also continuous maps S — £(Q(S)) given by:
s+—35, where3(U)=1IiffseU.
DEFINITION ’

S is sober if s — § is a homeomorphism.

Important example: Hausdorff spaces are sober.

Y is right adjoint to Q and the adjunction restricts to an equivalence of
categories between spatial locales and sober spaces.
= X preserves limits: e.g., (X ®zY) = E(X) xy(z) Z(Y).
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LOCALES VERSUS TOPOLOGY

The Locale of Real Numbers
Generators: symbols (g,e0) and (eo,g) with g € Q
Relations:

1 = \/(q7°°)

q

() < (g,) forallg<q
(¢,2) < V(g
q9<q
(g,2) N (=,q) < 0
1 < (g,00)V(oo,r) forallg<r

v
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LOCALES VERSUS TOPOLOGY

Not all locales are spatial! pullback % 1

v
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LOCALES VERSUS TOPOLOGY

A localic group G with multiplication

m:GRG— G

yields a topological group X£(G) with multiplication
2(G) x 2(G) = £(G26) ™ 2(G) .

In general the converse, even for sober spaces, is not true because the
product of spatial locales may fail to be spatial (e.g.

Q(Q) ®Q(Q) 2 Q(Q?).
But a locally compact Hausdorff group is always a localic group
because if either S or T is a locally compact space we have

QS T) = Q(S)@Q(T) .

v
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LOCALES VERSUS TOPOLOGY

THEOREM
Localic Tychonoff theorem: [], Xy is compact if Xy is compact for all .

(Axiom of choice not needed!)
An important fact that depends on the axiom of choice:

THEOREM

Any coherent locale (= ideal completion of bounded distributive lattice)
is spatial.

The proof needs Zorn's Lemma in order to show that if two ideals I and J
of a bounded distributive lattice D are related by

I1¢J
then there exists a prime ideal P of D such that
JCP and I¢P.
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LOCALES VERSUS TOPOLOGY

Points as filters:

@ Universal property:

@ The point p can be identified with f~!(1), a prime filter of D.
o If M is a meet-semilattice, .Z/(M) is a locale whose points can be
identified with filters of M.

@ If S is a complete infinitely distributive inverse semigroup, £V (S) is a
locale whose points are the “compatibly prime filters” of S (=
germs = groupoid arrows).

v,
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GROUPOIDS and
QUANTALES
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GROUPOIDS

In a category with “enough” pullbacks, a groupoid consists of objects Gy,
G1 and G, equipped with structure morphisms as follows,
i
O

_—
G u Gy
_—

d

G

where G, = G| X, Gy is the pullback of d and r, satisfying the usual
axioms of an internal category (associativity of multiplication, etc.) plus
those asserting that i is an inversion operation.

@ Topological groupoids: the underlying category is Top.

@ Lie groupoids: the underlying category is that of smooth manifolds;
and d and r are required to be submersions (so that the needed
pullbacks exist).

© Localic groupoids: the underlying category is Loc.

v
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LOCALIC GROUPOIDS

Let the following be a localic groupoid G:

i
'

‘O r
Gy = G ®g, Gy = Gy U Go
d

One of the axioms states that d ou = idg, — this makes u is a sublocale.

G is étale if d is a local homeomorphism (= all the maps are local
homeomorphisms and u is an open sublocale).
Since X preserves limits we immediately obtain a topological groupoid
Y(G) (étale if G is) whose structure maps are as follows:
(i)

() =0
Z(Gl) <—2X(u)

Z(d)

E(G1) Xx(6y) £(G1) —= X(Ga) %(Go)

multiplication map
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QUANTALES

By an involutive quantale is meant a sup-lattice Q equipped with an
associative multiplication (a,b) — ab and an involution a — a* satisfying:

a(V;bj)) = V,ab; a* = a
(Viai)b = V;aib (ab)* = b*a*
(\/iai)* = Viq;

The name “quantale” was coined by Mulvey in 1983, standing for
“quantum locale”, in the context of C*-algebras.

A x-homomorphism of involutive quantales 4 : Q — R is a homomorphism
of involutive semigroups that preserves \/.

Q is unital is it has a semigroup unit e.

P(S x S) for any set S (unital and involutive).

P(G) for any group G (unital and involutive).
Q

P.

(G) for any locally compact group G (involutive).
R
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QUANTALES

(Continued)
@ P(C)) for any small category C (unital).
@ Suby(A) for any k-algebra A (unital if A is).

@ Max(A) for any C*-algebra A (involutive; unital if A is):
A= B < Max(A) = Max(B) [Kruml-R 2004].

e Q(Gy) for a topological étale groupoid G (unital and involutive).

e Z(S) for an inverse semigroup S (unital and involutive).

e £V (S) for an abstract complete pseudogroup S (unital and
involutive).
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QUANTALES

DEFINITION

By an inverse quantal frame is meant a locale Q equipped with the
additional structure of a unital involutive quantale such that, defining for
allae QO

Ggla) = alne
Q) = {seQ|ss*"<e, s's<e}

the following three conditions are satisfied for all a € Q:

gla) < aa
a < ¢(a)a
VI =1
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QUANTALES

Fact 1: if Q is an inverse quantal frame .#(Q) is an abstract complete
pseudogroup.

Fact 2: if Q is an inverse quantal frame we have a surjective
homomorphism of unital involutive quantales

e : Z(JS(Q) - @

K — VK
Fact 3: ¢ is an isomorphism.

Fact 4: S 7(£V(S)) for every abstract complete pseudogroup S.
THEOREM (R 2007)

The category of inverse quantal frames (with homomorphisms of unital
involutive quantales as arrows) is equivalent to the category of abstract
complete pseudogroups (with monoid homomorphisms that preserve joins
of compatible subsets).
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THE GROUPOID OF AN INVERSE QUANTAL FRAME

Let O be an inverse quantal frame. Its groupoid ¢(Q) is the localic
groupoid

i

m r

G u Gy

B S ——
d

G

defined by, for all @ € Q and all b € |(e):
e G| = Q (as locales)
Go=|(e)
i*(a) =a*
u(a)=ale
d*(b) =bl1 (right adjoint to g: Q — [(e))

m*(a) = V,yeaX®Y (= Vier0s®s'a [R2012])

THEOREM (R 2007)
9(Q) is a localic étale groupoid.
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THE QUANTALE OF A LOCALIC ETALE GROUPOID

Let G be the localic groupoid _
l

m r

G, n G —— Gy

_— >

The inverse quantal frame Q = €/(G) is defined by:
e O =G (as locales)
@ a*=i"(a) forallac Q
@ ab=m(a®Db) for all a,b € Q, where m, is the left adjoint of m* (m,
exists because G is étale)

THEOREM (R 2007)

O (Q) is an inverse quantal frame.

THEOREM

G étale groupoid = G=%(0(G))
Q inverse quantal frame = Q=0(9(Q))
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CONCLUSION

Open groupoids [Protin—R 2012]

Groupoid sheaves as modules on inverse quantal frames [R 2012]
Topos theoretic applications

Functoriality [Kudryavtseva, Lawson, Lenz]

Applications to logic [Marcelino-R 2008]

Applications to C*-algebras stemming from [Kruml-R 2004],
[Mulvey—Pelletier 2001]
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