PRIMER ON INVERSE SEMIGROUPS

MARK V. LAWSON

1. INTRODUCTION

Inverse semigroups were introduced in the 1950s by Ehresmann in
France, Preston in the UK and Wagner in the Soviet Union as algebraic
analogues of pseudogroups of transformations. One of the goals of
these notes is to give some insight into inverse semigroups by showing
that they can in fact be seen as extensions of presheaves of groups by
pseudogroups of transformations.

Inverse semigroups can be viewed as generalizations of groups. Group
theory is based on the notion of a symmetry; that is, a structure-
preserving bijection. Underlying group theory is therefore the notion
of a bijection. The set of all bijections from a set X to itself forms
a group, S(X), under composition of functions called the symmetric
group. Cayley’s theorem tells us that each abstract group is isomor-
phic to a subgroup of a symmetric group. Inverse semigroup theory,
on the other hand, is based on the notion of a partial symmetry; that
is, a structure-preserving partial bijection. Underlying inverse semi-
group theory, therefore, is the notion of a partial bijection (or partial
permutation). The set of all partial bijections from X to itself forms
a semigroup, I(X), under composition of partial functions called the
symmetric inverse monoid. The Wagner-Preston representation the-
orem tells us that each abstract inverse semigroup is isomorphic to
an inverse subsemigroup of a symmetric inverse monoid. However,
symmetric inverse monoids and, by extension, inverse semigroups in
general, are endowed with extra structure, as we shall see.

To read these notes, I have assumed you are familiar with the basics
of semigroup theory such as could be gleaned from the first few sections
of Howie [6]. There is a mild use of category theory for which the
standard reference is Mac Lane [21]. There are currently two books
entirely devoted to inverse semigroup theory: Petrich’s [23] and mine
[11]. Petrich’s book is pretty comprehensive up to 1984 and is still
a useful reference. Its only drawback is the poor index which makes
finding particular topics a bit of a chore. My book is less ambitious. Its

goal is to motivate the study of inverse semigroups by concentrating on
1
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concrete examples and was completed in 1998. In writing these notes,
I have drawn mainly upon my own book but, in the case of the section
on congruence-free inverse semigroups, I have based my discussion on
Petrich with some flourishes of my own. I have only touched on the
history of inverse semigroup theory here because I did that in great
detail [11].

The first version of these notes was prepared for the Workshop on
semigroups and categories held at the University of Ottawa between
2nd and 4th May 2010. The second version was prepared for the Field’s
Institute sponsored workshop New directions in inverse semigroups to
be held between 1st and 4th June 2016 again at the University of
Ottawa. As a result of constructive laziness on the part of the author,
there is little difference between the two versions except that Section 5
has been replaced by an all-new Section 5 which is intended to smooth
the transition to the new approach to inverse semigroup theory that
has developed in the past 6 years.

2. BASIC DEFINITIONS

In this section, we shall introduce the rudiments of inverse semigroup
theory motivated by the properties of the symmetric inverse monoids.
Such monoids have not only algebraic structure but also a partial order,
a compatibility relation and an underlying groupoid structure all of
which can be defined on arbitrary inverse semigroups.

2.1. The theorem of Wagner and Preston. A semigroup S is said
to be inverse if for each s € S there exists a unique element s~! such
that

s=ss'sand st = s lssL.

Clearly all groups are inverse semigroups.

An idempotent in a semigroup is an element e such that e = e.
Idempotents play an important role in inverse semigroup because the
elements s~ 's and ss~! are both idempotents. The set of idempotents
of S is denoted by E(S). Two special idempotents are the identity
element, if it exists, and the zero element, if it exists. An inverse
semigroup with identity is called an inverse monoid and an inverse
semigroup with zero is called an inverse semigroup with zero. An in-
verse subsemigroup of an inverse semigroup is a subsemigroup that is
also closed under inverses. If S is an inverse subsemigroup of 7" and
E(S) = E(T) we say that S is a wide inverse subsemigroup of 7.

The symmetric inverse monoid really is an inverse monoid in the
terms of this definition. The only idempotents in I(X) are the identity
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functions on the subsets of X; that is, partial functions of the form 14
where A C X and 1,4 is the identity function on A.

Remark 2.1. The distinction between semigroups and monoids is not
a trivial one. A comparison with C*-algebras will make the point. Com-
mutative C*-algebras correspond to locally compact spaces whereas the
commutative C*-algebras with identity correspond to compact spaces.
See Section 5.

A semigroup S is said to be regular if for each a € S there exists an
element b such that a = aba and b = bab. The element b is said to be
an tnverse of a. Thus inverse semigroups are the regular semigroups
in which each element has a unique inverse. The following result is
elementary but fundamental. It was proved independently by Liber in
the Soviet Union, and Douglas Munn and Roger Penrose in the UK.!

Proposition 2.2. A regular semigroup is inverse if and only if its
tdempotents commute.

Proof. Let S be a regular semigroup in which the idempotents commute
and let v and v be inverses of x. Then

u = uru = u(zvr)u = (ux)(ve)u,

where both ux and vz are idempotents. Thus, since idempotents com-
mute, we have that

u = (ve)(ur)u = veu = (vev)zu = v(zv)(Tw).
Again, xv and xu are idempotents and so
u=v(zu)(rv) = v(rur)v = vev = v.

Hence u = v.

The converse is a little trickier. Observe first that in a regular semi-
group the product of two idempotents e and f has an idempotent in-
verse. To see why, let = = (ef)’ be any inverse of ef. Then the element
fxe is an idempotent inverse of ef.

Now let S be a semigroup in which every element has a unique in-
verse. We shall show that ef = fe for any idempotents e and f.
By the result above, f(ef)’e is an idempotent inverse of ef. Thus
(ef) = f(ef)'e by uniqueness of inverses, and so (ef)’ is an idempo-
tent. Every idempotent is self-inverse, but on the other hand, the in-
verse of (ef) is ef. Thus ef = (ef) by uniqueness of inverses. Hence
ef is an idempotent. We have shown that the set of idempotents is
closed under multiplication. It follows that fe is also an idempotent.

LAllegedly over lunch in St John’s College, Cambridge as graduate students.
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But ef(fe)ef = (ef)(ef) =ef, and fe(ef)fe = fesince ef and fe are

idempotents. Thus fe and ef are inverses of ef. Hence ef = fe. [

In the symmetric inverse monoid, the product of the idempotents 14
and 1g is just 14~p and so the commutativity of idempotent multipli-
cation is just a reflection of the fact that the intersection of subsets is
commutative.

Inverses in inverse semigroups behave much like inverses in groups.

Lemma 2.3.
(1) () = s,
(2) (st)™' =t71s7h

(3) If e is an idempotent then ses™!

18 an idempotent.

We now characterize the two extreme types of inverse semigroup:
those having exactly one idempotent and those consisting of nothing
but idempotents.

Proposition 2.4. All groups are inverse semigroups, and an inverse
semagroup is a group if and only if it has a unique idempotent.

Proof. Clearly, groups are inverse semigroups. Conversely, let .S be an
inverse semigroup with exactly one idempotent, e say. Then s7's =
e = ss ! for each s € S. But es = (ss7')s = s = s(s7's) = se, and so
e is the identity of S. Hence S is a group. U

Groups are therefore degenerate inverse semigroups.

Recall that a poset is called a (meet) semilattice if each pair of ele-
ments has a greatest lower bound.? The following result leads to the
set of idempotents of an inverse semigroup being referred to as its
semilattice of idempotents.

Proposition 2.5.

(1) Let S be an inverse semigroup. Then E(S) is a meet semilattice
when we definee N\ f =ef.

(2) All meet semilattices are inverse semigroups, and an inverse in
which every element is an idempotent is a meet semilattice.

Proof. (1) Define e < f by e = ef = fe. Then this is a partial order
on F(S), and with respect to this order each pair of idempotents e and
f has a greatest lower bound ef.

(2) Let (P,A) be a meet semilattice. Then P is a commutative
semigroup in which e = e A e for each element e € P. Thus (P, A) is
an inverse semigroup in which every element is idempotent. 0

2Usually denoted by A.
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In the case of the symmetric inverse monoid I(X), result (1) above is
just the fact that the semilattice of idempotents of I(X) is isomorphic
to the Boolean algebra of all subsets of X.

The following property is often used to show that definitions involv-
ing idempotents are self-dual with respect to left and right. It is part
of the folklore of the subject but it played an interesting, and rather
unexpected role, in Girard’s work on linear logic.?

Lemma 2.6. Let S be an inverse semigroup.

(1) For each idempotent e and element s there is an idempotent f
such that es = sf.

(2) For each idempotent e and element s there is an idempotent f
such that se = fs.

Proof. We prove (1) only since the proof of (2) is similar. Put f = s 'es

an idempotent. Then sf = s(s les) = (ss71)es = e(ss™1)s = es, using
the fact that idempotents commute. O

Homomorphisms of inverse semigroups are just semigroup homo-
morphisms. The convention we shall follow is that if S and 7" are both
monoids or both inverse semigroups with zero then their homomor-
phisms will be required to be monoid homomorphisms or map zeros
to zeros, respectively. Isomorphisms of inverse semigroups are just
semigroup isomorphisms.

Lemma 2.7. Let0: S — T be a homomorphism between inverse semi-
groups.
(1) 0(s™) =0(s)~* foralls € S.
(2) If e is an idempotent then 0(e) is an idempotent.
(3) If O(s) is an idempotent then there is an idempotent e in S such
that 0(s) = 6(e).
(4) ITm 0 is an inverse subsemigroup of T
(5) If U is an inverse subsemigroup of T then =1 (U) is an inverse
subsemigroup of S.

Proof. (1) Clearly, 0(s)0(s71)0(s) = 0(s) and 0(s~1)0(s)0(s™') = 0(s7).
Thus by uniqueness of inverses we have that 0(s™!) = 6(s)~1.

(2) 6(e)* = O(e)b(e) = 0(e).

(3) If 6(s)*> = 6(s), then O(s7's) = O(s71)0(s) = O(s)710(s) =
0(s)? = 0(s).

(4) Since 6 is a semigroup homomorphism im @ is a subsemigroup of
T. By (1), im# is closed under inverses.

(5) Straightforward.

3Check out the third bullet-point on page 345 of [5].
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O

If0: S — T is a homomorphism between inverse semigroups then it
induces a homomorphism between the semilattices E(S) and E(T). If
this restricted homomorphism is injective we say that the homomor-
phism is idempotent-separating.

The following result confirms that inverse semigroups are the right
abstract counterparts of the symmetric inverse monoids.

Theorem 2.8 (Wagner-Preston representation theorem). Every in-
verse semigroup can be embedded in a symmetric inverse monoid.

Proof. Given an inverse semigroup S we shall construct an injective ho-
momorphism 0: S — I(S). For each element a € S, define §,: a~'aS —
aa™'S by 0,(z) = azx. This is well-defined because aS = aa™'S as the
following set inclusions show

aS = aa'aS C aa”'S C aS.

Also 0,-1: aa™'S — a'aS and 6,10, is the identity on a~'aS and
0,0,-1 is the identity on aa™'S. Thus 6, is a bijection and 6, = 0,-1.
Define 6: S — I(S) by 0(a) = 6,. This is well-defined by the above.
Next we show that 6,0, = 0,. If e and f are any idempotents then

eSNfS=efS.
Thus
dom@, Nimb, =ataSNbb~'S =atabb'S.
Hence
dom(0,0,) = 0, '(a"'abb™'S) = b"'a"'aS = b a"'abS
where we use the following subset inclusions
b lataS = bt taaS = b e tabb ™S C b e tabS C b taasS.

Thus dom(6,0,) = dom(fp). It is immediate from the definitions that
0,0, and 0, have the same effect on elements, and so # is a homomor-
phism. It remains to prove that # is injective. Suppose that 6, = 6.
Then a = ba~'a and b = ab~'b from which a = b readily follows. 0

Example 2.9. Let X be a topological space. Consider the collection
['(X) of all homeomorphisms between the open subsets of X. This
is not merely a subset of I(X) but also an inverse subsemigroup. It
is known as a pseudogroup of transformations. Admittedly, in many
applications the word ‘pseudogroup’ often implies extra properties that
will not concern us here.* Pseudogroups of smooth maps between the

4But see Section 5.
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open subsets of R™ are used to define differential manifolds. This and
similar applications led Ehresmann and Wagner to develop a general
theory of pseudogroups with a view to using them in the foundations
of differential geometry.

2.2. The natural partial order. In the previous section, we dealt
with the algebraic structures on the symmetric inverse monoid: the
product and the inverse. But the symmetric inverse monoid I(X) has
other structures in addition to its algebraic ones, and these will leave
a trace in arbitrary inverse semigroups via the Wagner-Preston repre-
sentation theorem.

There is a partial ordering on partial bijections called the restriction
ordering. Perhaps surprisingly, this order can be characterized alge-
braically: namely, f C g if and only if f = gf~!f. This motivates our
next definition.

On an inverse semigroup, define s < t iff s = ts~!s.

Lemma 2.10. The following are equivalent.
(1) s <t.
(2) s = te for some idempotent e.
(8) s = ft for some idempotent f.
(4) s = ss~1t.

Proof. (1)=>(2). This is immediate.

(2)=-(3). This is immediate by Lemma 2.6.

(3)=(4). Suppose that s = ft. Then fs = s and so fss™! = ss™'.
It follows that s = ss™'t.

(4)=(1). Suppose that s = ss7't. Then s = t(t"tss7't). Put
i = t'ss7't. Then si = s and so s™'si = s~ 's. It follows that
s =ts s giving s < t. 0

We may now establish the main properties of the relation <. They
are all straightforward to prove in the light of the above lemma.

Proposition 2.11.

(1) The relation < is a partial order.

(2) If s <t then s7t < ¢71.

(3) [f S1 S tl and S92 S tg then S$1S59 S tth.

(4) If e and f are idempotents then e < f if and only ife = ef = fe.
(5) s < e where e is an idempotent implies that e is an idempotent.

Remark 2.12. Property (1) above leads us to dub < the natural par-
tial order on S. Property (2) needs to be highlighted since readers
familiar with lattice-ordered groups might have been expecting some-
thing different. Property (3) tells us that the natural partial order is
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compatible with the multiplication. Property (4) tells us that when the
natural partial order is restricted to the semilattice of idempotents we
get back the usual ordering on the idempotents. Because the natural
partial order is defined algebraically it is preserved by homomorphisms.

Our next result tells us that the partial order encodes how far from
being a group an inverse semigroup is.

Proposition 2.13. An inverse semigroup is a group if and only if the
natural partial order is the equality relation.

Proof. Let S be an inverse semigroup in which the natural partial order
is equality. If e and f are any two idempotents then ef < e, f and so
e = f. It follows that there is exactly one idempotent and so S is a
group by Proposition 2.4. The converse is immediate. 0

In any poset (X, <), a subset Y C X is said to be an order ideal if
x <y €Y implies that x € Y. More generally, if Y is any subset of X
then define

Yt={re€ X: 2 <yforsomeycY}

This is the order ideal generated by Y. If y € X then we denote {y}+
by y* and call it the principal order ideal generated by y.

Property (5) of Proposition 2.11 tells us that the semilattice of idem-
potents is an order ideal in S with respect to the natural partial order.

Looking below an idempotent we see only idempotents, what hap-
pens if we look up? The answer is that we don’t necessarily see only
idempotents. The symmetric inverse monoid is an example.

Let (X, <) be a poset. If Y is any subset of X then define

YT'={z € X:2>yfor someyc Y}

If Y = {y} we denote {y}" by y'.

An inverse semigroup S is said to be E-unitary if e < s where e is an
idempotent implies that s is an idempotent. An inverse semigroup with
zero S is said to be E*-unitary if 0 # e < s where e is an idempotent
implies that s is an idempotent.

Remark 2.14. The reason for having two definitions, depending on
whether the inverse semigroup does not or does have a zero, is be-
cause an F-unitary inverse semigroup with zero has to be a semilattice
since every element is above the zero. Thus the definition of an FE-
unitary inverse semigroup in the presence of a zero is uninteresting.
This bifurcation between inverse semigroups-without-zero and inverse
semigroups-with-zero permeates the subject.



PRIMER ON INVERSE SEMIGROUPS 9

2.3. The compatibility relation. As a partially ordered set I(X)
has further properties. The meet of any two partial bijections always
exists, but joins are a different matter. Given two partial bijections
their union is not always another partial bijection; to be so the partial
bijections must satisfy a condition that forms the basis of our next
definition.

Define s ~ ¢t iff s7't,st™! € F(S). This is called the compatibility
relation. It is reflexive and symmetric but not generally transitive.

Lemma 2.15. A pair of elements bounded above is compatible.

Proof. Let s,t < u. Then s < u~'u and st~! < wu~! so that
s~ t. O

A subset of an inverse semigroup is said to be compatible if the ele-
ments are pairwise compatible. If a compatible subset has a least upper
bound it is said to have a join.

Lemma 2.16. s ~ t if and only if sAt exists and d(sAt) = d(s) Ad(t)
and r(s Nt) =r(s) Ar(t).

Proof. We prove that st~! is an idempotent if and only if the greatest
lower bound s At of s and ¢ exists and (s At)"!(sAt) = s~ st~ The
full result then follows by the dual argument. Suppose that st=! is an
idempotent. Put z = st~ 't. Then z < s and z < t, since st~! is an
idempotent. Let w < s,t. Then w™lw < t71t and so w < st™'t = 2.
Hence z = s A t. Also

2l = (st (st M) =t s st = s st

Conversely, suppose that s At exists and (s At)"H(sAt) = s~ 1st™ 1t
Put 2 = sAt. Then z = sz 'zand 2z = tz7'z. Thus sz 'z =tz7'z, and
so st~ 't = ts~'s. Hence st~ = ts~1st~!, which is an idempotent. [

Since the compatibility relation is not always transitive it is natural
to ask when it is. The answer might have been uninteresting but turns
out not to be.

Proposition 2.17. The compatibility relation is transitive if and only
if the semigroup is E-unitary.

Proof. Suppose that ~ is transitive. Let e < s, where e is an idempo-
tent. Then se™! is an idempotent because e = se = se™!, and s 'e is
an idempotent because s 'e < s7's. Thus s ~ e. Clearly e ~ s71s,
and so, by our assumption that the compatibility relation is transitive,

we have that s ~ s7's. But s(s7's)™! = s, so that s is an idempotent.
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Conversely, suppose that S is E-unitary and that s ~ ¢t and t ~ u.
Clearly (s7')(t7'u) is an idempotent and

(st u) = st Hu < s .

But S is E-unitary and so s~!u is an idempotent. Similarly, su~! is an
idempotent. Hence s ~ wu. O

An inverse semigroup is said to be a meet-semigroup or a A-semigroup
if it has all binary meets. Unlike the case with joins, there are no
preconditions to a pair of elements having a meet.

Proposition 2.18. An E*-unitary inverse semigroup is a meet-semi-
group.

Proof. Let s and t be any pair of elements. Suppose that there exists a
non-zero element v such that v < s,¢t. Then wu™!' < st~! and uu=! is
a non-zero idempotent. Thus st~! is an idempotent. Similarly s—'t is
an idempotent. It follows that s A ¢ exists by Lemma 2.16. If the only

element below s and ¢ is 0 then s At = 0. O

In an inverse semigroup with zero there is a refinement of the com-
patibility relation which is important. Define s L ¢ iff s71¢t = 0 = st~ 1.
This is the orthogonality relation. If an orthogonal subset has a least
upper bound then it is said to have an orthogonal join.

In the symmetric inverse monoid the union of compatible partial
bijections is another partial bijection and the union of an orthogonal
pair of partial bijections is another partial bijection which is a disjoint
union.

Inverse semigroups generalize groups: the single identity of a group
is expanded into a semilattice of idempotents. It is possible to go in
the opposite direction and contract an inverse semigroup to a group.
On an inverse semigroup S define the relation o by

sot< Ju < st
for all s,t € S.

Theorem 2.19. Let S be an inverse semigroup.

(1) o is the smallest congruence on S containing the compatibility
relation.

(2) S/o is a group.

(3) If p is any congruence on S such that S/p is a group then o C p.

Proof. (1) We begin by showing that o is an equivalence relation.
Reflexivity and symmetry are immediate. To prove transitivity, let
(a,b), (b,c) € o. Then there exist elements u,v € S such that u < a,b
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and v < b,c. Thus u,v < b. The set b* is a compatible subset and so
u A v exists by Lemma 2.15 and Lemma 2.16. But u A v < a, c and so
(a,c) € o. The fact that o is a congruence follows from the fact that
the natural partial order is compatible with the multiplication. If s ~ ¢
then by Lemma 2.16, the meet sAt exists. Thus sot. It follows that the
compatibility relation is contained in the minimum group congruence.

Let p be any congruence containing ~, and let (a,b) € 0. Then z <
a, b for some z. Thus z ~ a and z ~ b. By assumption (z,a), (z,b) € p.
But p is an equivalence and so (a,b) € p. Thus ¢ C p. This shows that
o is the minimum group congruence.

(2) Clearly, all idempotents are contained in a single o-class (possi-
bly with non-idempotent elements). Consequently, S/o is an inverse
semigroup with a single idempotent. Thus S/o is a group by Proposi-
tion 2.4.

(3) Let p be any congruence such that S/p is a group. Let (a,b) € o.
Then z < a,b for some z. Hence p(z) < p(a), p(b). But S/p is a group
and so its natural partial order is equality. Hence p(a) = p(b). O

The congruence o is called the minimum group congruence and the
group S/c the mazimum group image of S. The properties of this
congruence lead naturally to the following result on the category of
inverse semigroups.

Theorem 2.20. The category of groups is a reflective subcategory of
the category of inverse semigroups.

Proof. Let S be an inverse semigroup and ¢: S — S/o the natural ho-
momorphism. Let #: S — G be a homomorphism to a group GG. Then
ker 6 is a group congruence on S and so ¢ C kerf by Theorem 2.19.

Thus by standard semigroup theory there is a unique homomorphism
0* from S/o to G such that 6 = 6*o?. O

It follows by standard category theory, such as Chapter IV, Section 3
of [21], that there is a functor from the category of inverse semigroups to
the category of groups which takes each inverse semigroup S to S/o. If
f: S — T is a homomorphism of inverse semigroups then the function
Y: S/o — T/o defined by ¢(o(s)) = o(f(s)) is the corresponding
group homomorphism (this can be checked directly).

For inverse semigroups with zero the minimum group congruence is
not very interesting since the group degenerates to the trivial group.
In this case, replacements have to be found.

Remark 2.21. Constructing groups from inverse semigroups might
seem a retrograde step but some important groups arise most naturally
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as maximum group images of inverse semigroups. However, over the
past few years it has become apparent that it is the group of units of
an inverse monoid that is also of interest. The group of units U(S) of
the inverse monoid S is defined to be the set of all elements s such that
s71's =1 = ss~'. That is, the elements which are ‘invertible’ in the
old-fashioned sense.

2.4. The underlying groupoid. The product we have defined on the
symmetric inverse monoid /(X) is not the only one nor perhaps even
the most obvious. Given partial bijections f and g we might also want
to define fg only when the domain of f is equal to the range of g.
When we do this we are regarding f and g as being functions rather
than partial functions. With respect to this restricted product I(X)
becomes a groupoid. A groupoid is a (small) category in which every
arrow is an isomorphism. Groupoids can be viewed as generalizations
of both groups and equivalence relations. We now review the basics of
groupoid theory we shall need.

Categories are usually regarded as categories of structures with mor-
phisms. But they can also be regarded as algebraic structures no dif-
ferent from groups, rings and fields except that the binary operation is
only partially defined. We define categories from this purely algebraic
point of view.

Let C' be a set equipped with a partial binary operation which we
shall denote by - or by concatenation. If x,y € C' and the product z -y
is defined we write dz - y. An element e € C' is called an identity if
Je - x implies e - x = x and Jx - e implies x - e = x. The set of identities
of C'is denoted C,; the subscript ‘o’ stands for ‘object’. The pair (C, -)
is said to be a category if the following axioms hold:

(C1): z - (y- 2) exists if and only if (z - y) - z exists, in which case
they are equal.

(C2): z - (y - z) exists if and only if x - y and y - z exist.

(C3): For each x € C there exist identities e and f such that 3z -e
and 3f - .

From axiom (C3), it follows that the identities e and f are uniquely
determined by xz. We write e = d(z) and f = r(z), where d(x) is the
domain identity and r(z) is the range identity. Observe that Jz - y if
and only if d(x) = r(y).

The elements of a category are called arrows. If C'is a category and
e and f identities in C' then we put

hom(e, f) ={x € C: d(z) = e and r(z) = [},
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the set of arrows from e to f. Subsets of C' of the form hom(e, f) are
called hom-sets. We also put end(e) = hom(e, e), the local monoid at
e. A category C' is said to be a groupoid if for each z € C there is an
element r~! such that 7'z = d(x) and zz~! = r(x). The element z~*
is unique with these properties. Two elements x and y of a groupoid are
said to be connected if there is an element starting at d(z) and ending
at d(y). This is an equivalence relation whose equivalence classes are
called the connected components of the groupoid. A groupoid with one
connected component is said to be connected.

Motivated by the symmetric inverse monoid, define the restricted
product in an inverse semigroup by s-t = st if s7's = t¢~! and undefined
otherwise.

Proposition 2.22. Every inverse semigroup S is a groupoid with re-
spect to its restricted product.

Proof. We begin by showing that all idempotents of .S are identities of
(S,-). Let e € S be an idempotent and suppose that e - x is defined.
Then e = zz~! and e-z = ex. But ex = (zz~')z = z. Similarly, if z-e
is defined then it is equal to z. We now check that the axioms (C1),
(C2) and (C3) hold.

Axiom (C1) holds: suppose that z - (y - z) is defined. Then

vl =(y-2)(y-2)tand y ly =2zt

But
(y-2)y-2) =y =gy

Hence z7'x = yy !, and so x - y is defined. Also (zy) '(zy) =y 'y =
zz7t. Thus (z -y) - z is defined. It is clear that = - (y - 2) is equal to
(x-y)-z. A similar argument shows that if (z-y)- z exists then z- (y- 2)
exists and they are equal.

Axiom (C2) holds: suppose that = -y and y - z are defined. We show
that o - (y - 2) is defined. We have that z7 'z = yy=! and y 'y = 2271
Now

(2)(yz) ' =ylzz Yy =yly Yy =gy =17

Thus z - (y - z) is defined. The proof of the converse is straightforward.
Axiom (C3) holds: for each element z we have that = - (z7'x) is
defined, and we have seen that idempotents of S are identities. Thus
we put d(z) = z7'z. Similarly, we put zz=! = r(z). It is now clear
that (.S, -) is a category. The fact that it is a groupoid is immediate. [
We call (S, ) the underlying groupoid of S. The above result leads

to the following pictorial representation of the elements of an inverse
semigroup. Recall that d(s) = s~ 's, which we now call the domain
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idempotent of s, and that r(s) = ss~!, which we now call the range

tdempotent of s. We can regard s as an arrow
r(s) =<————d(s)

In the following result, if you draw a picture and imagine the elements
are partial bijections you will see exactly what is going on.

Proposition 2.23. Let S be an inverse semigroup. Then for any s,t €
S there exist elements s’ and t' such that st = s’ - t' where the product
on the right is the restricted product.

Proof. Put e = d(s)r(t) and define " = se and ¢’ = et. Observe that
d(s') = e and r(t') = e and that st = s't’. O

At this point, it is natural to define some relations, called Green’s re-
lations, which can be defined in any semigroup but assume particularly
simple forms in inverse semigroups. We define s.Zt iff d(s) = d(t); sZt
iff r(s) =r(t); and S = £ NZ which corresponds to the hom-sets of
the underlying groupoid. We define sZt iff s and ¢ belong to the same
connected component of the underlying groupoid. If J# is any one of
Green’s relation then K, denotes the % -class containing s.

Lemma 2.24.

(1) If s <t and either s.Lt or s#t then s =t.
(2) If s ~ t and either s.Lt or s#t then s =t.
(3) If s ~t and either d(s) < d(t) orr(s) < r(t) then s <t.

Proof. (1) Suppose that s < ¢ and d(s) = d(¢). Then s = ts™'s =
=t

(2) Suppose that s ~ ¢ and d(s) = d(¢). Then s At exists and
d(s At) = d(s) by Lemma 2.16. By (1) above s A\t =sand sAt =1
and so s = t.

(3) Suppose that s ~ t and d(s) < d(¢). Then s At exists and
d(s At) =d(s) by Lemma 2.16. Thus s At = s and so s < t. O

If6: S — T then for each element s € S the map # induces a function
from L, to Lg(s) by restriction. If all these restricted maps are injective
(respectively, surjective) we say that 6 is star injective (respectively,
star surjective). In the literature, star injective homomorphisms are
also referred to as idempotent-pure maps on the strength of the follow-
ing lemma. We shall use this term when referring to congruences.

Lemma 2.25. Let 0: S — T be a homomorphism between inverse
semigroups. The following are equivalent

(1) 0 is is star injective
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(2) Whenever 0(s) is an idempotent then s is an idempotent.
(3) The kernel of 0 is contained in the compatibility relation.

Proof. (1)=(2). Let 6 be star injective and suppose that 6(s) is an
idempotent. Then 6(s™!s) = 6(s) since idempotents are self-inverse.
But 6 is star injective and so s7's = s.

(2)=(3). Let 6(s) = 0(t). Then O(s's) = 6(s~'t) and so s~'t is an
idempotent. By symmetry st~! is an idempotent and so s and ¢ are
compatible.

(3)=(1). Let O(s) = 0(t) and s.£t. Then s ~ t and so s = t by
Lemma 2.24. U

The E-unitary inverse semigroups also arise naturally in the context
of star injective homomorphisms.

Theorem 2.26. Let S be an inverse semigroup. Then the following
conditions are equivalent:

(1) S is E-unitary.

(2) ~=o0.

(3) o is idempotent pure.

(4) o(e) = E(S) for any idempotent e.

Proof. (1)=(2). We have already used the fact that the compatibility
relation is contained in o. Let (a,b) € 0. Then z < a, b for some z. It
follows that 27 'z < a='b and 22! < ab™!. But S is E-unitary and so
a~'b and ab~! are both idempotents. Hence a ~ b.

(2)=(3). By Lemma 2.25 a congruence is idempotent pure precisely
when it is contained in the compatibility relation.

(3) = (4). This is immediate from the definition of an idempotent
pure congruence.

(4) = (1) Suppose that e < a where e is an idempotent. Then
(e,a) € 0. But by (4), the element a is an idempotent. O

The way in which the class of E-unitary inverse semigroups recurs
is a reflection of the importance of this class of inverse semigroups in
the history of the subject.

In addition to the underlying groupoid, we may sometimes be able
to associate another, smaller, groupoid to an inverse semigroup with
zero. Let S be an inverse semigroup with zero. An element s € S is
said to be an atom if t < s implies that t = 0 or t = s. The set of atoms
of S, if non-empty, forms a groupoid called the minimal groupoid of S.

Example 2.27. The symmetric inverse monoid /(X ) has an interesting
minimal groupoid. It consists of those partial bijections who domains
consist of exactly one element of X. This groupoid is isomorphic to
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the groupoid X x X with product given by (x,y)(y, 2) = (z, z). This is
just the groupoid corresponding to the universal relation on X. When
X is finite every partial bijection of X can be written as an orthogonal
join of elements of the minimal groupoid. This simple example has
far-reaching consequences as we shall see in Section 5.

3. SOME EXAMPLES

So far, our range of examples of inverse semigroups is not very ex-
tensive. This state of affairs is something we can now rectify using
the tools we have available. We describe three examples: groupoids
with zero adjoined, presheaves of groups, and semidirect products of
semilattices by groups.

3.1. Groupoids with zero adjoined. Category theorists may shud-
der at this example but a similar idea lies behind the construction of
matrix rings from matrix units.

Proposition 3.1. Groupoids with zero adjoined are precisely the in-
verse semigroups in which the natural partial order is equality when
restricted to the set of non-zero elements.

Proof. If G is a groupoid then S = G°, the groupoid G with an adjoined
zero, is a semigroup when we define all undefined product to be zero. It
is an inverse semigroup and the natural partial order is equality when
restricted to the non-zero elements.

To prove the converse, let S be an inverse semigroup in which the
natural partial order is equality when restricted to the set of non-zero
elements. Let s and ¢ be arbitrary elements in S. If d(s) = r(t)
then st is just the restricted product. Suppose that d(s) # r(t). Then
d(s)r(t) = 0. It follows that in this case st = 0. Thus the only non-zero
products in S are the restricted products and the result follows. 0

3.2. Presheaves of groups. The idempotents of an inverse semigroup
commute amongst themselves but needn’t commute with anything else.
The extreme case where they do is interesting. An inverse semigroup
is said to be Clifford if its idempotents are central. Abelian inverse
semigroups are Clifford semigroups and play a central role in the coho-
mology of inverse semigroups. We show first how to construct examples
of Clifford semigroups.

Let (E, <) be a meet semilattice, and let {G.: e € E} be a family of
disjoint groups indexed by the elements of E, the identity of G, being
denoted by 1.. For each pair e, f of elements of F where e > f let
¢e,r: Ge — G be a group homomorphism, such that the following two
axioms hold:



PRIMER ON INVERSE SEMIGROUPS 17

(PG1): ¢ is the identity homomorphism on G..
(PG2): If e > f > g then ¢f 0 f = Gey-
We call such a family

(Ges@ep) = ({Ge: e € E}{ges: e, f €E, f <e})
a presheaf of groups (over the semilattice E ).

Proposition 3.2. Let (G., ¢, ) be a presheaf of groups. Let S =
S(Ge, @e.r) be the union of the G. equipped with the product defined by:

Yy = Qbe,e/\f (x)¢f,eAf(y)7

where x € G, and y € Gy. With respect to this product, S is a Clifford
Semigroup.

Proof. The product is clearly well-defined. To prove associativity, let
r€G,,yeGyand z € Gy and put ¢ = e A f A g. By definition

(zy)z = ¢eAf,i(¢e,eAf<x>¢f,eAf (y))(bg,i (2).
But

¢e/\f,i(¢e,eAf($)¢f7e/\f(y)> - ¢6/\f,i(¢e7e/\f<x))¢e/\f,i<¢f,e/\f(y))'
By axiom (PG2) this simplifies to ¢.;(z)¢;(y). Thus

(.Z‘y)Z - ¢e,i(x)¢f,i(y)¢g,i(z)'
A similar argument shows that z(yz) likewise reduces to the right-hand
side of the above equation. Thus S is a semigroup.
Observe that if z,y € G, then zy is just their product in G.. Thus
if v € G, and x7! is the inverse of z in the group G. then

r=xr ‘zrand 27! = 2 !

by axiom (PG1). Thus S is a regular semigroup.
The idempotents of S are just the identities of the groups G., again
by axiom (PG1) and 1.1; = 1.4r. Thus the idempotents commute. We

have thus shown that S is an inverse semigroup.
To finish off, let € Gy. Then

lex = @e,e/\f(le)gpf,e/\f('r) = 16/\f90f,e/\f<x> = @f,e/\f(l’),
and similarly, z1. = ¢fcar(2). Consequently, the idempotents of S are
central. 0

The underlying groupoid of a Clifford semigroup is just a union of
groups as the following lemma shows.

Lemma 3.3. Let S be an inverse semigroup. Then S is Clifford if and
only if s71s = ss™! for every s € S.
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Proof. Let S be a Clifford semigroup and let s € S. Since the idempo-
tents are central s = s(s7's) = (s7's)s. Thus ss™' < s7's. We may
similarly show that s7's < ss~!, from which we obtain s~ 's = ss7.
Suppose now that s™'s = ss~! for all elements s. Let e be any
idempotent and s an arbitrary element. Then (es) les = es(es)™!.
That is s7les = ss~le. Multiplying on the left by s gives es = se, as

required. O
We may now characterize Clifford inverse semigroups.

Theorem 3.4. An inverse semigroup is a Clifford semigroup if and
only if it is isomorphic to a presheaf of groups.

Proof. Let S be a Clifford semigroup. By Lemma 3.3, we know that
s57ts = ss57 ! for all element s. This implies that the underlying groupoid
of S is a union of groups. For each idempotent e € F(S) define

Ge={se S:d(s) =e=r(s)}.

This is a group, the local group at the identity e in the underlying
groupoid. By assumption the union of these groups is the whole of S
and each element of S belongs to exactly one of these groups. If e > f
define ¢, r: Ge — Gy by ¢, s(a) = af. This is a well-defined function,
because d(af) = e. We show that (G, ¢. ) is a presheaf of groups
over the semilattice F(S).

Axiom (PG1) holds: let e € E(S) and a € G.. Then ¢..(a) = ae =
aa"ta = a.

Axiom (PG2) holds: let e > f > g and a € G.. Then
(0199e.s)(@) = O1g(der(a)) = afg = ag = dey(a).

Let T be the inverse semigroup constructed from this presheaf of
groups. Let a € G and b € Gy. We calculate their product in this
semigroup. By definition

Gecr(a)prer(b) = aefbef = afbe = aefb = ab.

Thus S and T are isomorphic.
The converse was proved in Proposition 3.2. O

3.3. Semidirect products of semilattices by groups. The group
G acts on the set Y (on the left) if there is a function G x Y — Y
denoted by (g, e) — g-e satisfying 1-e = eforalle € Y and g-(h-e) =
(gh)-eforall gh € Gand e € Y. If Y is a partially ordered set, then
we say that G acts on Y by order automorphisms if for all e, f € Y we
have that

e<fegelg-f
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Observe that in the case of a group action, it is enough to assume that
e < fimplies g-e < g-f, because if g-¢ < g-f then g7'-(g-€) < g7'(g-f)
and so 1-e < 1- f, which gives e < f. If Y is a meet semilattice on
which G acts by order automorphisms, then it is automatic that

g-(eNf)=g-eng-f
forallge Gande, feY.
Let P(G,Y) be the set Y x G equipped with the multiplication

(e, 9)(f;h) = (eNg- [ gh).

Proposition 3.5. P(G,Y) is an E-unitary inverse semigroup in which
the semilattice of idempotents is isomorphic to (Y, <) and G is isomor-
phic to the mazimum group homomorphic image of P(G,Y).

Proof. P(G,Y) is an inverse semigroup in which the inverse of (e, g)
is the element (¢7' - €,¢7'), and the idempotents of P(G,Y) are the
elements of the form (e,1). From the definition of the multiplication
in P(G,Y) the function (e,1) — e is an isomorphism of semilattices.
The natural partial order is given by

(e,9) < (f,h) & e < fand g = h.

If (e,1) < (f,g) then g =1 and so P(G,Y) is E-unitary. It also follows
from the description of the natural partial order that (e, g)o(f, h) if and
only if g = h. 0

We may now characterize those inverse semigroups isomorphic to
semidirect products of semilattices by groups using many of the ideas
introduced in Section 2 to do so.

Theorem 3.6. Let S be an inverse semigroup. Then the following are
equivalent:

(1) The semigroup S is isomorphic to a semidirect product of a
semilattice by a group.

(2) S is E-unitary and for each a € S and e € E(S) there exists
be S such that b ~ a and b='b = e.

(3) o*: S — S/o is star bijective.

(4) There is a star bijective homomorphism from S to a group.

(5) The function §: S — E(S)x S/o defined by 6(a) = (a'a,o(a))
s a bijection.

(6) The function ¢: S — E(S)xS/c defined by ¢(a) = (aa™!,o(a))
18 a bijection.

Proof. (1) = (2). Without loss of generality, we may assume that S
is a semidirect product of a meet semilattice Y by a group G. The
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semigroup S is E-unitary by Theorem 3.6. Let (e,g) € S and (f,1) €
E(S). Then the element (g - f,g) of S satisfies

(9-f.9) ~(e;9)and (g- f,9) (g f.9) = (f,1)

as required.

(2) = (3). Since S is E-unitary, the homomorphism ¢?: S — S/o
is star injective by Theorem 2.26. Let e € E(S) and o(a) € S/o. By
assumption there exists b € S such that b™'b = e and b ~ a. But b~ a
implies o(b) = o(a). Thus o' is also star surjective.

(3) = (4). Immediate.

(4) = (3). Let #: S — G be a star bijective homomorphism to
a group (. Since ¢ is the minimum group congruence, o C kerf by
Theorem 2.19. But 6 is star injective by assumption, and so of is
idempotent pure by Lemma 2.25. In particular, S is E-unitary by
Theorem 2.26.

To show that o% is star surjective, let s € S and e € E(S). There
exists t € S such that t 7't = e and 6(¢) = 6(s), since 0 is star surjective.
Now 6(s~1t) is the identity of G, and so st is an idempotent of .S since
0 is star injective. Similarly, st~! is an idempotent. Hence s ~ t and so
(s,t) € 0. Thus for each e € E(S) and o(s) € S/o, there exists t € S
such that t~'t = e and o(t) = o(s). Thus o is star surjective.

(3) = (5). Straightforward.

(5) = (6). Suppose that ¢(a) = ¢(b). Then aa™ = bb~" and o(a) =
o(b). But o(a™') = o(b7') and so 0(a™') = 6(b~'). By assumption 6
is bijective and so = = b~!, giving a = b. Hence ¢ is injective.

Now let (e,0(s)) € E x S/o. Since 6 is surjective there exists t € S
such that 0(t) = (e,0(s7')). Thus t't = e and tos~!. Hence ¢t~ is
such that t7'o s and t7'(¢t7')~! = e. Thus ¢(t7!) = (e, 0(s)), and so
¢ is surjective.

(6) = (5). A similar argument to (5) = (6).

(6) = (1). We shall use the fact that both the functions ¢ and 6
defined above are bijections.

First of all S is F-unitary. For suppose that e < a where e is an
idempotent. Then o(e) = o(a), and o(e) = #(a"'a), so that o(a) =
o(a~ta). Thus 6(a) = 0(a'a), and so a = a~'a, since 6 is a bijection.

We shall define an action of S/o on E(S) using 6, and then show
that ¢ defines an isomorphism from the semidirect product of E(S) by
S/o to S.

Define o(s) - e = tt~! where 6(t) = (e,o(s)). This is well-defined
because 6 is a bijection. The two defining properties of an action hold.
Firstly, if o(e) is the identity of S/o then 6(e) = (e,o(e)) and so
o(e)-e = e; secondly, o(u)-(c(v)-e) = o(u)-aa! where 0(a) = (e, o(v)),
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and o(u)-aa~t = bb~! where 0(b) = (aa™!,0(u)). Now acvand bou so
that bao uv. Also a™'a = e and b~'b = aa™! so that (ba) 'ba = a'a.
Hence 6(ba) = (e,o(uv)). Thus

o(uv) - e = (ba)(ba) ' =bb~' = o(u) - (a(v) - e).

Next, we show that S/o acts on E(S) by means of order automor-
phisms. Suppose that e < f. Then o(a)-e =uu' and o(a)- f = vv~!
where

O(u) = (e,0(a)) and O(v) = (f,o(a)).
Consequently, e = v~ 'u and f = v~'v and wov. But S is E-unitary,
and so o is equal to the compatibility relation by Theorem 2.26. From
ulu < v™'v and u ~ v we obtain u < v by Lemma 2.24. Hence
wut <wvv™!and so o(a)-e < o(a)- f.
It only remains to prove that ¢ is a homomorphism. By definition

o(a)d(b) = (aa™", o(a))(bb~*, (b)) = (aa™' A o(a)-bb~ ', o(ab)).
But o(a) - bb~! = ¢t~ where 6(t) = (bb~',0(a)). Thus

$(a)p(b) = (aa™'tt™", o(ab))
whereas
¢(ab) = (ab(ab) ™, o(ab)).
It remains to show that aa='tt~! = ab(ab)~'. We know that ¢~ = bb~!

and toa. But t ~ a since S is E-unitary. Thus ¢t 'a = at~'t = abb™!
by Lemma 2.16. Hence tt'aa™" = abb~'a™ = ab(ab)™". O

4. FUNDAMENTAL INVERSE SEMIGROUPS

The examples in the last section can be viewed as showing that vari-
ous natural ways of combining groups and semilattices lead to interest-
ing classes of inverse semigroups. But what does the ‘generic’ inverse
semigroup look like? The main goal of this section is to justify the claim
made in the Introduction that inverse semigroups should be viewed as
common generalizations of presheaves of groups and pseudogroups of
transformations. We shall also characterize the congruence-free inverse
semigroups with zero.

4.1. The Munn representation. The symmetric inverse monoid is
constructed from an arbitrary set. We now show how to construct
an inverse semigroup from a meet semilattice. Let (F,<) be a meet
semilattice, and denote by Tk be the set of all order isomorphisms
between principal order ideals of E. Clearly, Tg is a subset of I(E). In
fact we have the following.
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Proposition 4.1. The set T is an inverse subsemigroup of I(E)
whose semilattice of idempotents is isomorphic to E.

Tg is called the Munn semigroup of the semilattice F.

Theorem 4.2 (Munn representation theorem). Let S be an inverse
semigroup. Then there is an idempotent-separating homomorphism
0: 8 = Tr(s) whose image is a wide inverse subsemigroup of Tr(s).

Proof. For each s € S define the function
51 (s7's)t — (ss7 )

by ds(e) = ses™!. We first show that J, is well-defined. Let e < s™!s.
Then ss™1d,(e) = ds(e), and so ds(e) < ss~!. To show that d, is order-
preserving, let e < f € (s7!s)*. Then

55(e)0,(f) = ses tsfs ™t =sefs™' = &,(e).

Thus ds(e) < d5(f).
Consider now the function §,-1: (ss™!)¥ — (s7!s)*. This is order-
preserving by the argument above. For each e € (s7!s)*, we have that

8s-1(05(€)) = dg-1(ses™) = s lses 's =e.

Similarly, 6,(8s-1(f)) = f for each f € (ss™1)*. Thus d, and §,-1 are
mutually inverse, and so d is an order isomorphism.

Define §: S — Tgs) by d(s) = ds. To show that ¢ is a homomor-
phism, we begin by calculating dom(ds0;) for any s,t € S. We have
that

dom(d,0,) = &; ((s7's)" N (7)) = 6, (s stt™)h).
But 6; ' = §,-1 and so
dom(4,6,) = ((st)"'st)* = dom(dy,).
If e € dom d,; then
Sa(e) = (sthe(st) ™! = s(tet™)s™ = 6,(5:(e)).

Hence 6,0; = 0.

To show that § is idempotent-separating, suppose that d(e) = 0(f)
where e and f are idempotents of S. Then dom d(e) = dom d(f). Thus
e=f.

The image of ¢ is a wide inverse subsemigroup of Tg(s) because every
idempotent in Tggs) is of the form 1) for some e € E(S), and §. =
Lig- O
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The Munn representation should be contrasted with the Wagner-
Preston representation: that was injective whereas this has a non-
trivial kernel which we shall now describe. The kernel of § is the congru-
ence p defined by (s,t) € p if and only if d(s) = d(t), r(s) = r(¢) and
for all idempotents e such that e < s~'s we have that ses™! = tet™!.
The definition can be slightly weakened.

Lemma 4.3. The congruence p is defined by
(5,t) € p <= (Ve € B(S)) ses™' = tet™'.

Proof. Define (s,t) € u'iff ses™! = tet~! for all idempotents e. We shall
prove that u = u/. Observe first that y' is a congruence. It is clearly an
equivalence relation. Suppose that (a,b) € p/ and (¢, d) € p'. The proof
that (ac,bd) € u' is straightforward. It follows that from (s,t) € u/
we may deduce that (s7',¢7') € u/. Let (s,t) € ¢/. We prove that
(s,t) € p. To do this we need to prove that d(s) = d(t), r(s) = r(t).
By choosing our idempotent to be ss~! we get that ss=! < tt~!. By
symmetry we deduce that r(s) = r(¢). The fact that d(s) = d(¢)
follows from the same argument using the fact that (s7*,¢71) € y/. We
have shown that ' C pu.

To prove the converse, suppose that (s,t) € pu. Let e be an ar-
bitrary idempotent. Then s~'s = t~¢ and so s !se = t~'te. Thus
s(s71se)s™t = t(t7'te)t~1, which simplifies to ses™t = tet~1. Tt follows
that (s,t) € i/, as required. O

We have defined idempotent-separating homomorphisms and we may
likewise define idempotent-separating congruences.

Lemma 4.4. pu is the largest idempotent-separating congruence on S.

Proof. Let p be any idempotent separating-congruence on S and let
(s,t) € p. Let e be any idempotent. Then (ses™!, tet™!) € p but p is
idempotent separating and so ses™' = tet™!. Tt follows that (s,t) € pu.
Thus we have shown that p C pu. U

An inverse semigroup is said to be fundamental if u is the equality
relation.

Lemma 4.5. Let S be an inverse semigroup. Then S/ is fundamental.

Proof. Suppose that pu(s) and p(t) are p-related in S/u. Every idem-
potent in S/p is of the form u(e) where e € E(S). Thus

p(s)ule)p(s)™ = p(t)u(e)u(t)™
so that u(ses™!) = p(tet™'). But both ses™! and tet ™! are idempotents,
so that ses™ = tet™! for every e € E(S). Thus (s,t) € p. O
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Theorem 4.6. Let S be an inverse semigroup. Then S is fundamental
if and only if S is isomorphic to a wide inverse subsemigroup of the
Munn semigroup Tgs).

Proof. Let S be a fundamental inverse semigroup. By Theorem 4.2,
there is a homomorphism 6: S — Tg(s) such that kerd = u. By
assumption, p is the equality congruence, and so d is an injective ho-
momorphism. Thus S is isomorphic to its image in T(s), which is a
wide inverse subsemigroup.

Conversely, let S be a wide inverse subsemigroup of a Munn semi-
group Tg. Clearly, we can assume that F = F(S). We calculate the
maximum idempotent-separating congruence of S. Let o, € S and
suppose that (a, ) € pin S. Then doma = dom . Let e € dom av.
Then 1 € S, since S is a wide inverse subsemigroup of Tg(s). By as-
sumption algja™t = Sl It is easy to check that 1, = alga™
and gy = BB, Thus a(e) = B(e). Hence o = f3, and so S is
fundamental. O

In group theory, congruences are handled using normal subgroups,
and in ring theory by ideals. In general semigroup theory, there are no
such substructures and so congruences have to be studied in their own
right something that is common to most of universal algebra. Even in
the case of inverse semigroups, congruences have to be used. However,
idempotent-separating homomorphisms are determined by analogues
of normal subgroups.

Let 8: S — T be a homomorphism of inverse semigroups. The
Kernel of 6 is defined to be the set K of all elements of S that map to
idempotents under ¢. Observe that K is a wide inverse subsemigroup
of S and it is self-conjugate in the sense that s™1Ks C K for all s € S.
We say that K is a a normal inverse subsemigroup of S.

Remark 4.7. This typographical distinction between kernels which
are congruences and Kernels which are substructures is not entirely
happy but convenient for the purposes of this section.

If 4 is idempotent-separating then its Kernel satisfies an additional
property. If a € K and if e is any idempotent then ae = ea. This
motivates the following definition.

For every inverse semigroup S, we define Z(E(S5)), the centralizer of
the idempotents, to be set of all elements of S which commute with ev-
ery idempotent. The centralizer is a normal inverse subsemigroup and
is Clifford. Thus the Kernels of idempotent-separating homomorphisms
from S are subsets of the centralizer of the idempotents of S. We now
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prove that idempotent-separating homomorphisms are determined by
their Kernels.

Theorem 4.8. Let S be an inverse semigroup. Let K be a normal
inverse subsemigroup of S contained in Z(E(S)). Define the relation
P by

(5,t) € prc & st™! € K and d(s) = d(¢).
Then pk 1s an idempotent-separating congruence whose associated Ker-
nel is K.

Proof. We show first that px is an equivalence relation. Reflexivity
and symmetry hold because K is a wide inverse subsemigroup of S.
To prove transitivity suppose that (a,b), (b,c) € pg. Then ab™!,bc! €
K and d(a) = d(b) = d(c). Observe that ab~'bc™! = ac™! € K
and d(a) = d(c). Hence (a,c) € pgx. Next we show that px is a
congruence. Let (a,b) € px and ¢ € S. By assumption, ab™' € K and
d(a) = d(b). We prove first that px is a right congruence by showing
that (ac,bc) € px. Observe that ac(be)™ = acc™'b~'. We may move
the idempotent cc™! through b=! by Lemma 2.6. Thus by the fact that
K is a wide inverse subsemigroup we have show that ac(bc)™' € K.
A simple calculation shows that d(ac) = d(bc). We prove now that
pk is a left congruence by showing that (ca,cb) € pg. Observe that
ca(ch)™t = c(ab )™t but ab™! € K and K is self-conjugate so that
ca(ch)™' € K.
It remains to show that the elements

(ca)'ca=a'c'ca and (cb) 'eb =b"'cch

are equal. Put e = ¢ 'c. We shall show that a=tea = b~teb. Write

a ‘ea = (atea)(a"ta)(a " ea).

But a~'a = b7!b and so

a 'ea = (a"tea)(b™'b)(a " ea).
Now

(a tea)(b'b)(a ea) = (a " e)(ab ) (ab ) (ea).

But ab~! € K, and K is contained in the centralizer of the idempotents,
and so

abHab™ )t = (ab” ) rab .
Thus

(a™e)(ab™")(ab™") " (ea) = (™ e)(ab™") " (ab7") (ea),

and so
a 'ea = (a 'e)(batab~ ") (ea).
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Now

(a te)(ba tab ) (ea) = a " (ab~te) (ab e)a.
But ab~! € K, and K is a wide subsemigroup, so that ab~'e € K.
Thus because K is contained in the centralizer of the idempotents we
have that

a '(ab~te) (abe)a = a " (ab te)(ab te) a.
Thus
a tea =a'(ab te)(abte) ta.
But a (ab~te)(ab~te)"ta = a~tab~leb, so that we in fact have

lea = a tab~'eb.

a
But then from a~'a = b~'b we obtain a~'ea = b~'eb as required.

We now calculate the Kernel of px. Let a be in the Kernel of pg.
Then there is an idempotent e € S such that (a,e) € px. But then
ae € K and a'a = e. Thus a € K. It follows that the Kernel of py is
contained in K. To prove the reverse inclusion, suppose that a € K.
Then a(a™'a) € K and a'a = a~'a. Thus (a,a 'a) € px. Hence a
belongs to the Kernel of pg. O

The following now confirms what we already suspect.

Proposition 4.9. Let S be an inverse semigroup. The idempotent-
separating congruence determined by Z(E(S)) is .

Proof. We calculate the Kernel of u. Suppose that sue where e is
an idempotent. Let f be an arbitrary idempotent. Then sfs™!uef
and fss~luef. Thus sfs ‘ufss™! and so sfs™! = fss~!. It follows
that sf = fs and s € Z(E(S)). Conversely, let s € Z(E(S)). Then
spss~ L. 0

The following result provides a useful criterion for a semigroup to be
fundamental.

Proposition 4.10. Let S be an inverse semigroup. Then S is funda-
mental if and only if Z(E(S)) = E(S).

Proof. Suppose that S is fundamental. Let a € Z(E(S)). By Propo-
sition 4.9, Kerpy = Z(E(S)). Thus (a,e) € p for some e € E(S).
But then a = e, since p is equality, and so a is an idempotent. Thus
Z(E(S)) = E(S).

Conversely, suppose that Z(E(S)) = E(S). Let (a,b) € p. Then
(ab™t,071) € p,

and so ab~! € Ker . But Ker u = Z(E(S)) by Proposition 4.9, and so
ab™' € Z(E(S)). Thus ab! is an idempotent, by assumption. But then
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ab™! = bb~! since p is idempotent-separating, which gives ab~'b = b.
But d(a) = d(b) and so a = b. O

A topological space X is said to be Ty if for each pair of elements
x,y € X there exists an open set which contains one but not both of x
and y. A base for a topological space is a set of open sets  such that
every open set of the topology is a union of elements of 3. Let X be
an arbitrary set and ( a set of subsets of X whose union is X and with
the property that the intersection of any two elements of £ is a union
of elements of 5. Then a topology can be defined on X by defining the
open sets to be the unions of elements of f.

As in Example 2.9, the inverse semigroup of all homeomorphisms
between open subsets of X is denoted by I'(X). An inverse subsemi-
group S of T'(X) is said to be topologically complete if the set-theoretic
domains of the elements of S form a base for the topology.

Theorem 4.11. An inverse semigroup is fundamental if and only if
it 1s isomorphic to a topologically complete inverse semigroup on a Tjy-
space.

Proof. Let S be a fundamental inverse semigroup. We can assume
by Theorem 4.6, that S is a wide inverse subsemigroup of a Munn
semigroup Tg. Put 8 = {e*: e € E}. Clearly, E is the union of the
elements of 3, and [ is closed under finite intersections. Thus [ is
the base of a topology on the set E. With respect to this topology,
each element of S is a homeomorphism between open subsets of E.
It remains to show that this topology is Ty. Let e, f € E be distinct
idempotents. If f < e then f* is an open set containing f but not e. If
f % e then et is an open set containing e but not f. Thus the topology
is To.

Conversely, let S be a topologically complete inverse subsemigroup
of the inverse semigroup I'(X) where the topology is Ty and 8 =
{doma: « € S} is a base for 7. We shall prove that S is fundamental
by showing that the centralizer of the idempotents of S contains only
idempotents (Proposition 4.10). Let ¢ € S\ E(S). Then there exists
x € dom ¢ such that ¢(z) # x, because ¢ is not an idempotent. Since
7 is Ty, there exists an open set U such that

either (¢(z) € U and x ¢ U) or (¢(z) ¢ U and z € U).

Since (3 is a basis for the topology, U = |J B; for some B; € . It
follows that there is a B = B; € [ such that

either (¢(z) € B and = ¢ B) or (¢(x) ¢ B and = € B).
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Observe that 15 € S since B = dom« for some o« € S. Thus the
elements ¢1p and 15¢ belong to S. In the first case, ¢(x) € B and z ¢
B, so that whereas (¢1p)(x) is not defined, (15¢)(z) is defined. Thus
¢ ¢ Z(E(S)). In the second case, (¢lg)(x) is defined and (15¢)(x)
is not defined. Thus once again ¢ ¢ Z(E(S)). Hence in either case

¢ ¢ Z(E(S)). O

Let S be an arbitrary inverse semigroup, let its image under the
Munn representation be 1", and let K be the centralizer of the idem-
potents of S. Then S is an extension of K by 7" where the former is a
presheaf of groups and the latter is a pseudogroup of transformations.

Theorem 4.12. Fvery inverse semigroup is an idempotent-separating
extension of a presheaf of groups by a pseudogroup of transformations.

4.2. Congruence-free inverse semigroups. A useful application of
fundamental inverse semigroups is in characterizing those semigroups
which are congruence-free. I shall concentrate only on the case of in-
verse semigroups with zero. Douglas Munn once remarked to me that
this was one of the few instances where the theory for inverse semi-
groups with zero was easier than it was for the one without. We shall
need a sequence of definitions before we can state our main result.

Although ideals are useful in semigroup theory, the connection be-
tween ideals and congruences is weaker for semigroups than it is for
rings. If p is a congruence on a semigroup with zero S, then the set
I = p(0) is an ideal of S; however, examples show that the congruence
is not determined by this ideal. Nevertheless, ideals can be used to
construct some congruences on semigroups. Let [ be an ideal in the
semigroup S. Define a relation p; on S by:

(s,t) € p; < either s,t € I or s = t.

Then p; is a congruence. The quotient semigroup S/p; is isomorphic
to the set S\ TU{0} (we may assume that 0 ¢ S\ I) equipped with the
following product: if s,¢ € S\ [ then their product is st if st € S\ [,
all other products are defined to be 0. Such quotients are called Rees
quotients.

There is also a way of constructing congruences from subsets. Let S
be a semigroup and let L C S. Define a relation py on S by:

(s,t) € pr < (Va,be S)(asb e L < atb € L).

Then py, is a congruence on S, called the syntactic congruence of L.
An inverse semigroup with zero S is said to be 0-simple if it contains

at least one non-zero element and the only ideals are {0} and S. An

inverse semigroup is said to be congruence-free if its only congruences
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are equality and the universal congruence. Thus congruence-free-ness
is much stronger than O-simplicity. A congruence p is said to be 0-
restricted if the p-class containing 0 is just 0. Finally, define £ to be
the syntactic congruence of the subset {0}.

Lemma 4.13. The congruence £ is the mazimum 0-restricted congru-
ence.

Proof. Let p be a 0O-restricted congruence on S and let spt. Suppose
that asb = 0. But asbfatb and so since p is O-restricted, we have
that atb = 0. By symmetry we deduce that a&b. Thus p C &, as
required. O

Lemma 4.14. Let S be an inverse semigroup with zero.

(1) pCé&.
(2) The congruence £ restricted to E(S) is the syntactic congruence
determined by zero on E(S).

Proof. (1) Let sut. Suppose that asb = 0 then asbuatb and so atb = 0.
By symmetry this shows that sét.

(2) Let e and f be idempotents. Suppose that for all idempotents
i we have that ie = 0 iff if = 0. Let aeb = 0. Then a taebb™! = 0.
Thus a'abb~te = 0 and so a tabb~'f = 0. Hence a tafbb~! = 0 and
so afb = 0. The reverse direction is proved similarly. U

An inverse semigroup with zero is said to be 0-disjunctive if £ is the
equality relation.

Proposition 4.15. An inverse semigroup S is 0-disjunctive if and only
if E(S) is 0-disjunctive and S is fundamental.

Proof. If S is O-disjunctive it follows by Lemma 4.14 that E(S) is 0-
disjunctive and S is fundamental. Suppose that E(S) is 0-disjunctive
and S is fundamental. Then & restricted to E(.S) is the equality relation
and so ¢ is idempotent-separating. Thus by Lemma 4.4 € C y. But S
is fundamental and so p is the equality relation and so £ is the equality
relation. U

Lemma 4.16. Let E be a meet semilattice with zero. Then the follow-
ing are equivalent.
(1) E is 0-disjunctive.
(2) For all distinct e, f € E nonzero there exists g € E such that
eithere N\g#0 and fANg=0o0reNg=0and f \Ng+#0.
(8) For all 0 # f < e there exists 0 # g < e such that f A g = 0.
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Proof. (1)=-(2). This is immediate from the definition.

(2)=(3). Let 0 # f < e. Then there exists ¢’ such that ¢ A f =0
and ¢ ANe #0or ¢ AN f#0and ¢ ANe = 0. Clearly the second case
cannot occur. Put g = ¢’ Ae. Then g <e, g# 0and gA f =0, as
required.

(3)=-(1). Suppose that e f where e and f are both non-zero. Then
e£(e N f) and so e A f # 0. Suppose that e A f # e. Then there exists
0 # g < e such that (e A f) Ag = 0. But clearly e Ag # 0. We therefore
have a contradiction and so e A f = e. Similarly eA f = f andsoe = f,
as required. O

Remark 4.17. Property (3) in the above lemma has a Boolean ‘feel’
to it. If e < f are non-zero then fe < f and e A fé = 0. Thus Boolean
algebras are automatically 0-disjunctive. This has implications in the
study of Boolean inverse semigroups. See Section 5.

We may now state the characterization of congruence-free inverse
semigroups with zero.

Theorem 4.18. An inverse semigroup with zero S is congruence-free
if and only if S is fundamental, 0-simple and E(S) is 0-disjunctive.

Proof. Suppose that S is congruence-free. Then p is equality, there are
no non-trivial ideals and & is equality. Thus S is fundamental, 0-simple
and E(S) is 0-disjunctive.

To prove the converse, suppose that S is fundamental, 0-simple and
E(S) is O-disjunctive. Let p be a congruence on S which is not the
universal relation. Then p(0) is an ideal which is not S. Thus it must
be equal to {0}. It follows that p is a O-restricted congruence and so
p C & But by Proposition 4.15, £ is the equality congruence and so p
is the equality congruence. 0

The above theorem will be a useful criterion for congruence-free-
ness once we have a nice characterization of 0-simplicity. This involves
the one Green’s relation we have yet to define. Let S be an inverse
semigroup. Define

(s,t) € Z & Ss5 = StS.

It is always true that 2 C _¢. The meaning of the _#-relation for
inverse semigroups is clarified by the following result.

Lemma 4.19. Let S be an inverse semigroup. Then a € SbS if and
only if there exists u € S such that aPu < b.

Proof. Let a € SbS. Then a = xby for some z,y € S. By Proposi-
tion 2.23, there exist elements z’,3' and ¢’ such that a = 2’ - b - ¢/ is
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a restricted product where 2/ < z, b < b and o’ < a. Hence a 2V
which, together with ' < b, gives a 21’ < b. Conversely, suppose that
a2t <b. From a 2V we have that a ¢ V', and from ' < b we have
that SH'S C SbS. Thus a € SbS. O

Lemma 4.20. Let S be an inverse semigroup with zero. Then it is
0-simple if and only if S # {0} and the only 7 -classes are {0} and

S\ {0}

Proof. Let S be 0-simple and let s,t € S be a pair of non-zero elements.
Both SsS and StS are ideals of S and so must be equal. Thus (s,t) €
7. Conversely, suppose that the only non-zero #-class is S\ {0}.
Let I be any non-zero ideal of S. Let s € I and t € S be non-zero
elements. By assumption, (s,t) € #. Thus ¢t = asb for some a,b € S
and so t € I. Hence I = S\ {0}. O

Proposition 4.21. Let S be an inverse semigroup with zero.

(1) S is 0-simple if and only if for any two non-zero elements s and
t in S there exists an element s such that s P s’ < t.

(2) S is 0-simple if and only if for any two non-zero idempotents e
and f in S there exists an idempotent i such that e Zi < f.

Proof. (1) By Lemma 4.19, an inverse semigroup is 0-simple if it con-
sists of exactly two #-class {0} and S \ {0}. Thus any two non-
zero elements of S are _#Z-related. The result is now immediate by
Lemma 4.18.

(2) Suppose the condition on the idempotents holds. Let s, € S be
a pair of non-zero elements. Then ¢ = ss~! and f = t¢t~! are non-zero
idempotents and so, by assumption, there is an idempotent ¢ such that
e?i< f. Putu=it. Thenu <t and uu™t =it(it) ' =itt ' =if =
1. Thus s Zu < t. The proof of the converse is straightforward. O

5. NON-COMMUTATIVE FRAMES AND OTHER ANIMALS

The past few years have seen a radical reorientation of the theory
of inverse semigroups in that they have gone back to their roots in
the theory of pseudogroups of transformations. This is principally as a
result of the way that inverse semigroups arise naturally in the theory
of C*-algebras, and have proven useful in the study of C*-algebras,
but also through their connections with étale groupoids and groups of
homeomorphisms of Cantor spaces. Inverse semigroup theory began as
an abstract version of the theory of pseudogroups of transformations.
Whilst it is true that both Wagner and Ehresmann developed aspects
of the theory of inverse semigroups with a close eye on the theory of
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pseudogroups, by and large the origins of the field were neglected. This
did not mean that impressive results were not proved, they certainly
were, but the developments in the field were of quite a general nature.
The biggest development in the past 6 years has been a return to the
subjects origins. This has opened up new avenues of research and
provided new connections. In this section, I shall simply sketch out the
guiding ideas of these developments.

We begin by returning to pseudogroups of transformations. Inverse
semigroups abstract the algebraic structure but do not deal with the
order structure. Recall that a frame is a complete infinitely distributive
lattice. The lattice of open sets of a topological space is such a lat-
tice and frames provide an alternative ‘point-free’ approach to spaces.
The first two chapters of [8] provide an introduction to this theory.
We now define an (abstract) pseudogroup to be an inverse semigroup
whose semilattice of idempotents is a frame, that has all non-empty
compatible joins, and where multiplication distributes over such joins.
Pseudogroups in this sense, though viewed from the perspective of or-
dered groupoids, were studied by Ehresmann. But, and here’s the rub,
Ehresmann’s work is cited by Johnstone as one of the origins of frame
theory. He writes [8, page 76]:

“It was Ehresmann ... and his student Bénabou ...who
first took the decisive step in regarding complete Heyt-

0

ing algebras as ‘generalized topological spaces’ ”.

The paper Johnstone cites, Gattungen von lokalen Strukturen — that is,
‘Species of local structures’ — can be found in Ehresmann’s QOeuvres in
3, Partie II-1, paper 47].° Frame theory proceeded without any interest
in inverse semigroup theory, but right at the start of the subject there
inverse semigroups were. Our perspective is this: pseudogroups are
non-commutative frames. This has turned out to be an immensely
fruitful approach and has reconnected inverse semigroup theory with
its roots in pseudogroups of transformation.

In the classical theory, pseudogroups of transformations are often
replaced by their groupoids of germs. The groupoids that arise in this
way are topological groupoids that are étale; this means that the do-
main and codomain maps in the groupoid are local homeomorphisms.
[s it possible to associate étale topological groupoids with (abstract)
groupoids? The answer is — yes. The key insight needed is due to
Resende [25, 26]. Let G be a topological groupoid and denote by
Q(G) its set of open subsets. Resende observed that the fact of G
being étale is equivalent to Q2(G) being a monoid under multiplication

STncidently, the only paper Ehresmann wrote in his native German.
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of subsets. Thus étale groupoids are those which have an essentially
algebraic character. In Resende’s paper [26], he constructs explicit
links between pseudogroups and localic étale groupoids whereas ex-
plicit dualties are constructed between pseudogroups and topological
étale groupoids in [13, 14, 15, 16, 18]. In this theory, étale topological
groupoids are viewed as non-commutative topological spaces. This ap-
proach goes back, of course, to the work of Renault [24] and Kumjian
[10].

Renault’s motivation lay in constructing C*-algebras from topologi-
cal groupoids. This adds a new theme: the relationship between inverse
semigroups and C*-algebras. In fact, many of the most interesting pa-
pers on inverse semigroups are being written from this perspective: for
example, [4]. However, the inverse semigroups that arise most naturally
in connection with C*-algebras have rather special properties. We say
that an inverse semigroup is Boolean if its semilattice of idempotents is
a (generalized) Boolean algebra, if it has all joins of compatible pairs of
elements, and multiplication distributes over those joins. The inverse
semigroups that most naturally arise inside C*-algebras are Boolean
for the following reason. Suppose that S is an inverse semigroup that
occurs as a subsemigroup of a C*-algebra R in such a way that the in-
verse in S is the restriction of the x in R. Then in [22, 27], it is proved
that there is a Boolean inverse semigroup 7' such that S C T C R.
The category of Boolean inverse monoids is much more closely related
to the category of unital C*-algebras than arbitrary inverse monoids.
For example, within the class of Boolean inverse monoids it has been
possible to find analogues of AF C*-algebras [17], Cuntz [12, 17] and
Cuntz-Krieger algebras [7], in addition they also form the correct set-
ting for studying tiling semigroups [9].

The following two tables are a suitable summary of the ideas we have
touched upon in this section.

| Algebra | Topology |
Semigroup Locally compact
Monoid Compact
Meet-semigroup Hausdorff
| Commutative | Non-commutative
Frame Pseudogroup

Distributive lattice | Distributive inverse semigroup

Boolean algebra Boolean inverse semigroup

Boolean inverse meet-semigroup
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