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What this talk is about

My goal is to show you how to construct groups from certain can-

cellative monoids. It is possible to replace cancellative monoids

by suitable cancellative categories, but sufficient unto the day

is the evil thereof. The cancellative monoids introduced are of

independent interest.

The origins of this talk lie in a couple of papers I wrote back in

2007, after reading a paper by Birget of 2004. I revisited this

work in 2019, and more recently first with Alina Vdovina (2020),

and then with Aidan Sims and Alina Vdovina (2024). There are

also connections with recent work due to Richard Garner.
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1. Idea

We want to construct groups.

Groups are abstract versions of groups of bijections.

How should we construct bijections?

Construct bijections by glueing together partial bijections.

But, partial bijections can only be glued together if they are
compatible.

Thus, we can construct bijections by glueing together compatible
sets of partial bijections.

The abstract theory of partial bijections is inverse semigroup
theory.
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Where do partial bijections come from?

One possible source of examples is provided by cancellative monoids.

For example, we can multiply by an element on the left — this

is a partial bijection, comme ça:

if M is a cancellative monoid and a ∈ M then we get a partial bi-

jection λa : M → M by defining λa(x) = ax. This partial bijection

has domain M and range aM .
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The goal of this talk is therefore to show how to construct groups

from certain cancellative monoids.

The cancellative monoids in question are certain one vertex

higher rank graphs.

These really are monoids (not graphs).
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2. Inverse semigroups as the abstract theory of partial

bijections.

We shall ultimately construct our groups from inverse semigroups

which are, in turn, constructed from cancellative monoids.

As groups are to bijections, so inverse semigroups are to partial

bijections.

Symmetry denotes that sort of concordance of several

parts by which they integrate into a whole. – Hermann

Weyl
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Inverse semigroups arose by abstracting pseudogroups of trans-

formations in the same way that groups arose by abstracting

groups of transformations. There were three independent ap-

proaches:

• Gordon B. Preston (1925–2015) in the UK;

• Charles Ehresmann (1905–1979) in France;

• Viktor V. Wagner (1908–1981) in the USSR.

They all three converge on the definition of inverse semigroup.
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A semigroup S is said to be inverse if for each a ∈ S there exists a unique
element a−1 such that a = aa−1a and a−1 = a−1aa−1.

Observe that aa−1 and a−1a are idempotents.

The idempotents in an inverse semigroup always commute with each other
(this is elementary but not easy to prove).

Example: Groups are the inverse semigroups having exactly one idempotent.

If θ is a semigroup homomorphism with domain an inverse semigroup and
θ(a) is an idempotent, then there is an idempotent e such that θ(e) = θ(a).
(This is a special case of Lallement’s lemma).

The image of an inverse semigroup under a semigroup homomorphism is

always inverse.
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Example: the symmetric inverse monoid

Let X be any non-empty set. Denote by I(X) the set of all partial
bijections of X. This is an example of an inverse semigroup called
the symmetric inverse monoid.

• The inverse of the partial bijection f is f−1.

• The idempotents are the identity functions on the subsets of
X. Thus, if A ⊆ X then the corresponding idempotent is 1A.

• The product of two idempotents is the idempotent defined
on the intersection of their domains of definition (this witnesses

the fact that the idempotents commute).
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The fact that inverse semigroups really are the abstract theory

of partial bijections is expressed by the following which is the

analogue of Cayley’s theorem.

Theorem [Wagner-Preston] Every inverse semigroup can be em-

bedded in a symmetric inverse monoid.
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Define a ≤ b if a = ba−1a. This is a partial order called the
natural partial order. It has some nice properties:

• If a ≤ b and c ≤ d then ac ≤ bd.

• If a ≤ b then a−1 ≤ b−1.

• If a ≤ e and e is an idempotent then a is an idempotent.

• If a, b ≤ c then ab−1 and a−1b are idempotents.

Define a ∼ b, and say that a and b are compatible, if a−1b and
ab−1 are both idempotents.
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Example: back to the symmetric inverse monoid

Crucially, we have the following:

• f ≤ g if and only if f ⊆ g.

• f ∼ g if and only if f ∪ g is a partial bijection.

Thus we can glue two partial bijections together to get another

partial bijection precisely when they are compatible.
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3. Groups from inverse semigroups.

Recall that groups are inverse semigroups with exactly one idem-
potent.

If S is an inverse semigroup, define a σ b if there exists c ≤ a, b.
Observe that σ is a congruence on S.

If e and f are idempotents then ef ≤ e, f . So, all idempotents
are identified by σ.

Theorem The inverse semigroup S/σ is a group, and if ρ is any
congruence on S such that S/ρ is a group then σ ⊆ ρ.

Thus, σ is the most efficient way of getting a group out of an
inverse semigroup.

BUT . . .
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The problem with the above construction is that if S contains a

zero then the group above is trivial.

This suggests that we look at large elements of S, which exclude

the zero. In this talk, large means the following.

We say that a non-zero idempotent e is essential if ef ̸= 0 when-

ever f is a non-zero idempotent. We say that the element a ∈ S

is essential if both a−1a and aa−1 are essential idempotents.

The essential part, Se, of the inverse semigroup S consists of all

the essential elements of S. It is easy to show that (if non-empty)

Se is always an inverse subsemigroup of S.
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Define the group associated with the inverse semigroup S as

follows:

G (S) = Se/σ.

From now on, we shall ONLY consider groups constructed from

inverse semigroups in the above way.
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4. Inverse semigroups from cancellative monoids.

We shall now find a source of examples of inverse semigroups
to which we can apply the above constructions. Let M be a
cancellative monoid.

An invertible element in a monoid is an element x for which there
exists an element y such that yx = 1 and xy = 1.

A monoid in which the only invertible elements are the identities
is said to be conical.

It is convenient to assume that from now on all our monoids are
cancellative and conical.

It is worth noting that we shall build groups from cancellative
monoids which are almost entirely devoid of invertible elements.
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A subset R ⊆ M is said to be a right ideal if r ∈ R and a ∈ M

implies that ra ∈ R. That is: RM ⊆ R.

If X ⊆ M is any subset then XM is the right ideal generated by

X. If X is a finite set we say that XM is a finitely generated

right ideal.

We call aM the principal right ideal generated by a.

We say that the monoid M is finitely aligned if, when aM ∩ bM

is non-empty, it is always a finitely generated right ideal. This

definition is taken from the theory of C∗-algebras but seems to

have first been studied witin semigroup theory by Victoria Gould.

17



Let R1 and R2 be right ideals of the monoid M . A function

θ : R1 → R2 is a morphism if θ(ra) = θ(r)a for all a ∈ M .

Morphisms are therefore analogous to the homomorphisms be-

tween right R-modules in ring theory.

A bijective morphism is called an isomorphism.
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We say that a non-empty right ideal is essential if it intersects

every principal right ideal non-trivially.

This will match our earlier definition of ‘essential’.
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Theorem Let M be a cancellative, conical finitely aligned monoid.

Then R(M), the set of all isomorphisms between the finitely

generated right ideals of M , is an inverse monoid. The group

associated with M is defined to be

G (M) = R(M)e/σ.

where R(M)e is the set of isomorphisms between the essential

finitely generated right ideals of M .
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We can say more about the structure of the inverse monoid

R(M)e.

An inverse semigroup S is said to be E-unitary if e ≤ a, where e

is an idempotent, implies that a is an idempotent.

Lemma An inverse semigroup S is E-unitary if and only if σ =∼.

Proposition The inverse monoid R(M)e is E-unitary.
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We have shown how to obtain a group from a cancellative monoid.

But to say more about the structure of the group, we have to

impose some extra conditions on the cancellative monoid.

22



5. Projective right ideals.

Let M be a monoid. The elements a, b ∈ M are said to be inde-

pendent if aM∩bM = ∅ otherwise they are said to be dependent.

A finite set of independent elements is called a code.

A code X is said to be maximal if every element of M is depen-

dent on an element of X.

A right ideal generated by a code is said to be projective. The

study of projective right ideals is due to John Fountain. An

essential projective right ideal is precisely that generated by a

maximal code.
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A monoid M is said to be strongly finitely aligned if aM∩bM ̸= ∅
is projective.

[We can now see the point of conical cancellative monoids. If M

is a conical cancellative monoid and X and Y are codes then we

have that XM = YM ⇔ X = Y . Thus right ideals generated by

codes can be labelled by the codes alone. I shall not use this, but

it is used in representing the elements of the Thompson groups.]
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Theorem Let M be a conical cancellative strongly finitely aligned
monoid. Then P(M), the set of all isomorphisms between the
projective right ideals of M , is an inverse monoid. The inverse
monoid P(M)e consists of all the isomorphisms between the pro-
jective right ideals generated by maximal codes.

We now add in one extra assumption which is included in the
theorem below.

Theorem Let M be a cancellative strongly finitely aligned coni-
cal monoid. Suppose that every essential finitely generated right
ideal contains an essential projective right ideal. Then

G (M) ∼= P(M)e/σ.

With these extra assumptions on our cancellative monoids, our
groups are defined in terms of maximal codes.
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6. An example.

I shall now apply the general theory above to describe my 2007

paper which only used the theory of free monoids and developed

some ideas to be found in Birget.
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Let A be any (non-empty) set called in this context an alphabet.

Denote by A∗ the set of all finite sequences from A. Elements

of A∗ are called strings.

Equipped with concatenation as the product, the set A∗ becomes

a semigroup. It has an identity, the empty string ε, and so A∗ is

a monoid. A∗ is the free monoid on the set A.

This monoid is cancellative and the only invertible element is

the identity. Free monoids are therefore cancellative conical

monoids.
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Let A be an alphabet.

Let u and v be strings. Then uA∗ ∩ vA∗ could be empty. If it is

not empty then either u is a prefix of v, or v is a prefix of u; this

means that uA∗ ∩ vA∗ = vA∗, or uA∗ ∩ vA∗ = uA∗.

Thus free monoids are finitely aligned.
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A code in a free monoid is simply a finite prefix code.

Every finitely generated right ideal of a free monoid is generated

by a prefix code.

Every essential finitely generated right ideal of a free monoid is

generated by a maximal prefix code.
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Let A be an alphabet with at least one element. The group

associated with A∗ is the group

G (A∗) ∼= P(A∗)e/σ.

Theorem When A has n elements, where n is finite and at least

2, then this group is the Thompson group Gn,1. Thus when

n = 2 this group is the Thompson group often denoted by V .
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7. Generalizations of free monoids: one-vertex higher

rank graphs.

So matters stood until I came across the paper by Kumjian and

Pask (2009).

This showed me how to generalize free monoids and so construct

their groups.

31



We show first how to generalize free monoids. We shall need

some notation.

Denote by N the set of natural numbers under addition and with

the usual order.

Denote by Nk the set of k-tuples of the natural numbers under

componentwise addition and order.

We denote the additive identity of Nk by 0.
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Let A∗ be a free monoid. Then there is a homomorphism

δ : A∗ → N

given by δ(x) = |x|, the length of the string x.

This homomorphism has a nice property. Suppose that δ(x) =

m+ n, where m,n ∈ N. Then there are unique elements u and v

of A∗ such that x = uv where δ(u) = m and δ(v) = n.
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More generally, . . .

A monoid M is said to be a one-vertex higher rank graph or

a k-monoid (our preferred term in this context) if there is a

homomorphism δ : M → Nk, called the degree map, satisfying

the unique factorization property (UFP): if δ(a) = m + n then

there are unique elements a1 and a2 in M such that a = a1a2
where δ(a1) = m and δ(a2) = n. We call δ(x) the degree of x.

If M is a k-monoid for some k, but we are not particular about

the number k, then we shall say that M is a poly-monoid.

The only difference with the definition you will find in Kumjian

and Pask is that I do not assume that M is countable.
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The place of free monoids within the broader theory of poly-

monoids is spelled out by the following theorem.

Theorem The 1-monoids are precisely the free monoids. The

degree map is just the usual length function.

N.B. However, if M and N are poly-monoids so too is M×N.

Thus the class of poly-monoids is closed under finite direct

products. This is not true of free monoids.
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How to think about the elements of poly-monoids.

The elements of 1-monoids are strings.

The elements of 2-monoids can be regarded as rectangles. These

can be described as Zappa-Szép products of free monoids.

The elements of 3-monoids can be regarded as cuboids etc.
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Visualization of the multiplication in 2-monoids

Given x and y, to calculate xy

x

y

use UFP to fill in the blanks

x

y

and now we get the result xy

xy
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It can be proved that, if M is a k-monoid, then:

1. M is cancellative.

2. M is conical.
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I will add a couple of further assumptions (familiar to C*-algebra

theorists).

A one-vertex higher rank graph M has no sources if the map δ

is surjective (this rules out the free monoid on no generators).

A one-vertex higher rank graph M is row finite if the number of

elements of M of degree m is finite.
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Example

Let A be a set.

Then, A∗ has no sources means that A consists of at least one

element.

In addition, A∗ is row finite precisely when A is finite.
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We now have the following results:

• A k-monoid which is row finite is strongly finitely aligned.

• A k-monoid which has no sources is such that if m ∈ Nk then

the set of all elements of M of degree m is a maximal code.

• Every finitely generated essential right ideal contains a right

ideal generated by a maximal code.

Thus k-monoids which are row finite and have no sources are

cancellative monoids to which we may apply our constructions:
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Theorem Let M be a k-monoid which is row finite and hs no

sources. Then, we may construct the group G (M) as R(M)e/σ

which is isomorphic with P(M)e/σ.

To understand the group above, we therefore have to understand

maximal codes in k-monoids. I do not.
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Example

Let A be a two-element alphabet. Then A∗ × A∗ is not a free

monoid but is a 2-monoid.

The group associated with this monoid is the group 2V intro-

duced by Matt Brin.

This is an example of a higher dimensional Thompson group.

In fact, there are groups associated with any finite direct product

of free monoids.
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The following theorem is more advanced and requires a

knowledge of étale groupoids.

Theorem Let M be a k-monoid with no sources and is row finite.

If M is also aperiodic and cofinal then G (M) is a topological full

group of an étale groupoid which is Hausdorff, effective and

minimal. If G (M) is, in addition, countably infinite then it is

isomorphic to a subgroup of the group of automorphisms of the

Cantor set.
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An example (of the above).

We return to our 2007 paper.

Let A be an alphabet with exactly two elements.

The group G (A∗) is the Thompson group V or G2,1.

It is the group of units of a simple Boolean inverse meet-monoid

C2 (called the Cuntz inverse monoid).

Under non-commutative Stone duality, this is isomorphic to the

topological full group of a Hausdorff, effective minimal étale

groupoid the identity space of which is the Cantor space.
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