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This is joint work with Phil Scott and appeared as:

M. V. Lawson, P. Scott, AF inverse monoids and the structure of countable
MV-algebras, J. Pure Appl. Algebra 221 (2017), 45–74.

We have also submitted a paper that develops some of the ideas found above:

M. V. Lawson, P. Scott, Characterizations of classes of countable Boolean

inverse monoids, arXiv:2204.10033.
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There are two generalizations of Boolean algebras

1. MV-algebras are to ℵ0-valued propositional logic as Boolean
algebras are to classical two-valued propositional logic. They
were introduced by C. C. Chang. The ‘MV’ stands for ‘many-
valued’.

2. Boolean inverse monoids may be used to generalize classical
Stone duality by replacing Boolean spaces by a class of étale
topological groupoids.

The aim of this talk is to show how these two generalizations of
Boolean algebras are related.

The first order of business is therefore to introduce the two
classes of algebraic structure that we shall be dealing with.
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1. MV-algebras

An MV-algebra is a structure (A,⊕,¬,0) where ⊕ is a binary operation, ¬ is
a unary operation, and 0 is a constant satisfying the following axioms:

(MVL1) The binary operation ⊕ is associative.

(MVL2) The binary operation ⊕ is commutative.

(MVL3) 0 is the identity for ⊕.

(MVL4) ¬ is an involution.

(MVL5) ¬0 is the zero for ⊕.

(MVL6) ¬(¬x⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.
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Examples of MV-algebras

1. Every Boolean algebra is an MV-algebra when it is consid-
ered with respect to the operations (B,∨,̄ ,0). Axiom (MV6),
simply says that

(x → y) → y = (y → x) → x.

2. The unit interval [0,1] becomes an MV-algebra when we de-
fine x⊕ y = min{1, x + y}, ¬x = 1 − x and 0 is 0.

3. Put Ln = {0 1
n−1, . . . ,

n−2
n−1,1}. This is an MV-subalgebra of

the unit interval. It is a finite MV-algebra. When n = 2 we
get the two-element Boolean algebra.
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Some results about MV-algebras

• An element x of an MV-algebra is said to be idempotent if

x⊕ x = x.

The set of idempotent elements of an MV-algebra forms a

Boolean algebra.

• An MV-algebra is a Boolean algebra if and only if every ele-

ment is an idempotent.

• Every finite MV-algebra is isomorphic to a finite direct prod-

uct of MV-algebras of the form Ln.
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2. Boolean inverse monoids

Our second generalization of Boolean algebras are the Boolean inverse monoids. We begin
with an example to motivate the general definition.

Let X be any non-empty set. Denote by I(X) the set of all bijections between subsets of
X. We call the elements of I(X) partial bijections. If X is finite with n elements we write
In. Here are some facts about I(X):

• I(X) is a monoid with zero.

• The equations f = fgf and g = gfg have a unique solution: namely, g = f−1.

• The only idempotents have the form 1A, the identity functions on a subset A ⊆ X.

• 1A1B = 1A∩B.

• f−1f is the identity on the domain of definition of f .

• f ⊆ g if and only if f = gf−1f .

• The set of idempotents forms a Boolean algebra under ⊆.

• If f, g ∈ I(X) then f ∪ g ∈ I(X) if and only if f−1g and fg−1 are both idempotents.
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A semigroup S is siad to be inverse if the equations x = xyx and y = yxy have
a unique solution for any x ∈ S. We denote the unique solution by x−1.

The idempotents in an inverse semigroup always commute.

On every inverse semigroup, we may define a relation by x ≤ y if and only if
x = yx−1x This is a partial order, called the natural partial order, and every
inverse semigroup is partially ordered with respect to the natural partial order.
This is the only partial order we shall consider on an inverse semigroup.

You should regard the elements of an inverse semigroup as being abstract
partial bijections.

If x is an element of an inverse semigroup, then we may think of it like this:

xx−1• •x−1xxoo

If e and f are idempotents, we say that there is an arrow from e to f :
f• •eoo

precisely when there is an element x such that e = x−1x and f = xx−1.
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An inverse monoid is said to be Boolean if it satisfies the following conditions:

• If xy−1 and x−1y are both idempotents then x ∨ y exists.

• If x ∨ y exists then z(x ∨ y) = zx ∨ zy and (x ∨ y)z = xz ∨ yz.

• The set of idempotents forms a Boolean algebra.

Example The finite direct product

In1 × . . .× Ins

is a finite Boolean inverse monoid. It is analogous to the finite-dimensional
C∗-algebra

Mn1(C) × . . .×Mns
(C);

this analogy is used in our proof of the main theorem in finding the Boolean
inverse monoid analogue of an AF C∗-algebra.
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3. Co-ordinatization

Let S be a Boolean inverse monoid. Denote by L(S) the set of
all equivalence classes [e] where e is an idempotent and f ∈ [e]
precisely when there is an arrow from e to f .

Define a partial operation ⊕ on L(S) by

[e] ⊕ [f ] = [e′ ∨ f ′]

where e′ ∈ [e] and f ′ ∈ [f ] and e′f ′ = 0 thus e′ and f ′ are orthog-
onal.

The structure L(S) is an effect algebra, the definition of which
need not detain us here.

We would like to complete ⊕ to an everywhere defined operation.
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We need to make two further assumptions about our Boolean in-

verse monoid S in order to make the above operation everywhere

defined:

1. Every element of S is below a unit of S.

2. The principal ideals of S form a lattice.

A Boolean inverse monoid is called a Foulis monoid if it satisfies

conditions (1) and (2) above.
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Let S be a Foulis monoid.

Define

¬[e] = [ē].

This makes sense by (1) above.

If e and f are idempotents, then we write [e]∧ [f ] for the equivalence class [i]
of the idempotent i so that SeS ∩ SfS = SiS.

Define

[e] ⊕ [f ] = [e] ⊕ ([ē] ∧ [f ]).

Despite appearances, this can be shown to make sense by (1) and (2) above.

Proposition For every Foulis monoid S, L(S), with the above definitions, is
an MV-algebra.

We say that an MV-algebra is co-ordinatizable if it is isomorphic to L(S) for

some Foulis monoid S.
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We can now state our main theorem.

Theorem Every countable MV-algebra can be co-ordinatized.

Example In is a Foulis monoid. The finite direct products

In1 × . . .× Ins
co-ordinatize the finite MV-algebras.
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4. Extensions and further questions

• Fred Wehrung (Theorem 5.2.10 page 164) proved that every

MV-algebra is co-ordinatized by some Foulis monoid.

• L(S) is a Boolean algebra if and only if S is such that every

idempotent is central.

• Which effect algebras are co-ordinatized by Boolean inverse

monoids?
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