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1. Classical/Commutative Stone duality

A topological space X is called a Boolean space if it is compact, Hausdorff
and 0-dimensional (that is, it has a base of clopen sets).

Theorem: Classical/Commutative Stone duality. Stone.

1. With each Boolean algebra B, we can associate a Boolean space X(B),
called the Stone space of B.

2. With each Boolean space X, we can associate a Boolean algebra, B(X),
of clopen subsets.

3. B ∼= B(X(B)) for each Boolean algebra B.

4. X ∼= X(B(X)) for each Boolean space X.
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2. Ideas behind non-commutative Stone duality

1. Replace the Boolean algebra by some kind of semigroup

which has a Boolean character equipped with an order.

2. Replace the topological space by a (1-sorted) topological

(small) category. We assume all maps are continuous, the

space of identities is open, and the multiplication map is

open.
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3. Non-commutative Stone duality: Boolean inverse monoids
This is the version of non-commutative Stone duality of most interest to
those working in operator algebras.

An inverse monoid is a monoid in which for each element s there is a unique
element t such that s = sts and t = tst. We usually denote t by s−1 and refer
to the inverse of s.

Inverse monoids are ordered when we define s ≤ t iff s = ts−1s. This is called
the natural partial order.

An inverse monoid is said to be Boolean if it satisfies three conditions:

1. The idempotents form a Boolean algebra wrt the natural partial order.

2. If If st−1t = ts−1s and ss−1t = tt−1s then s ∨ t exists.

3. If s ∨ t exists then u(s ∨ t) = us ∨ ut and (s ∨ t)u = su ∨ tu for any u ∈ S.

A topological groupoid is said to be étale if domain and range maps are local
homeomorphisms and the space of identities is open.

A Boolean groupoid is an étale groupoid whose space of identities is a Boolean

space.
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Theorem: Non-commutative Stone duality I. Lawson and

Lenz.

1. With each Boolean inverse monoid S, we can associate a

Boolean groupoid G(S), called the Stone groupoid of S.

2. With each Boolean groupoid G, we can associate a Boolean

inverse monoid, KB(G), of compact-open local bisections.

3. S ∼= KB(G(S)) for each Boolean inverse monoid S.

4. G ∼= G(KB(G)) for each Boolean groupoid G.
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4. Non-commutative Stone duality: Boolean bi-restriction

monoids

We now replace groupoids by categories. We say that a category

is étale if its domain and range maps are both local homeomor-

phisms and the space of identities is open. A category is said to

be Boolean if it is étale and the space of identities is a Boolean

space.

We replace inverse monoids by bi-restriction monoids (see next

slide). One approach to understanding these semigroups is that

they are defined by axiomatizing the behaviour of the idempo-

tents s−1s and ss−1 in an inverse semigroup.
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We define a monoid S to be a right restriction monoid if it is equipped with
a unary operation a 7→ a∗ satisfying the following axioms:

(RR1) (s∗)∗ = s∗.

(RR2) (s∗t∗)∗ = s∗t∗.

(RR3) s∗t∗ = t∗s∗.

(RR4) ss∗ = s.

(RR5) (st)∗ = (s∗t)∗.

(RR6) t∗s = s(ts)∗.

Those elements a such that a∗ = a are called projections. The element a∗ in
fact axiomatizes the domain of definition of a partial function.

We define a left restriction monoid, dually, and use a 7→ a+ for the unary
operation.

A bi-restriction monoid is a monoid which is both a left and right restriction

monoid and the sets of projections are the same.
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Let S be a bi-restriction monoid. Define

y ≤ x iff y = xy∗ equivalently y = y+x.

This is a partial order with respect to which the monoid is partially ordered.
This is called the natural partial order.

A bi-restriction monoid is said to be Boolean if it satisfies three conditions:

1. The idempotents form a Boolean algebra wrt the natural partial order.

2. If st∗ = ts∗ and s+t = t+s then s ∨ t exists.

3. If s ∨ t exists then u(s ∨ t) = us ∨ ut and (s ∨ t)u = su ∨ tu for any u ∈ S.
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Theorem: Non-commutative Stone duality II. Kudryavtseva and Law-
son.

1. With each Boolean bi-restriction monoid S, we can associate a Boolean
category C(S), called the Stone category of S.

2. With each Boolean category C, we can associate a Boolean bi-restriction
monoid, KB(C), of compact-open local bisections.

3. S ∼= KB(C(S)) for each Boolean bi-restriction monoid S.

4. C ∼= C(KB(G)) for each Boolean category C.
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5. Non-commutative Stone duality: Boolean right restriction

monoids

We now replace étale categories by domain-étale catgeories where

we only require the domain map to be a local homeomorphism.

A Boolean domain-étale category is a domain-étale category

whose space of identities is a Boolean space.
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Let S be a right restriction monoid. Define

y ≤ x iff y = xy∗.

This is a partial order with respect to which the monoid is partially ordered.
This is called the natural partial order.

A right restriction is said to be Boolean if it satisfies three conditions:

1. The idempotents form a Boolean algebra wrt the natural partial order.

2. If st∗ = ts∗ then s ∨ t exists.

3. If s ∨ t exists then u(s ∨ t) = us ∨ ut and (s ∨ t)u = su ∨ tu for all u ∈ S.
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Theorem: Non-commutative Stone duality III. Cockett and
Garner.

1. With each Boolean right restriction monoid S, we can asso-
ciate a Boolean domian-etale category C(S), called the Stone
category of S.

2. With each Boolean domain-etale category C, we can asso-
ciate a Boolean right restriction monoid, KS(C), of compact-
open local sections.

3. S ∼= KS(C(S)) for each Boolean right restriction monoid S.

4. C ∼= C(KS(C)) for each Boolean domain-etale category C.
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6. In conclusion . . .

• Garner showed that the Boolean right restriction monoids

are intimately connected with those varieties (in the sense of

universal algebra) which are Cartesian closed.

• The work of Cockett and Garner suggests that we may gen-

eralize non-commutative Stone duality further, perhaps by

using some ideas of Resende.
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