Linear reprefentations of femigroups from 2-categories

Volodymyr Mazorchuk

(Uppsala University)

Workshop "Semigroup Representations" Upril 10, 2013, Edinburgh, UK

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of *C*;
- ▶ small categories C(i, j) of morphisms;
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of *C*;
- ▶ small categories C(i, j) of morphisms;
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ▶ objects of *C*;
- ▶ small categories C(i, j) of morphisms;
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ► objects of *C*;
- ▶ small categories C(i, j) of morphisms;
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ► objects of *C*;
- small categories $\mathscr{C}(i, j)$ of morphisms;
- functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k);$
- ▶ identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ▶ objects of *C*;
- ▶ small categories 𝒞(i, j) of morphisms;
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;

▶ identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ▶ objects of *C*;
- ▶ small categories 𝒞(i, j) of morphisms;
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ▶ objects of *C*;
- ▶ small categories 𝒞(i, j) of morphisms;
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of *C*;
- ▶ small categories 𝒞(i, j) of morphisms;
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k);$
- ► identity objects 1_j;

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of *C*;
- ▶ small categories 𝒞(i, j) of morphisms;
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k);$
- ► identity objects 1_j;

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- ▶ A morphism in 𝒞(i, j) is called a 2-*morphism* of 𝒞.
- ▶ Composition in C(i, j) is called *vertical* and denoted o₁.
- ▶ Composition in *C* is called *horizontal* and denoted ∘₀

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- ▶ Composition in *C* is called *horizontal* and denoted ∘₀

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- ► Composition is the usual composition.
- Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in 𝒞(i, j) is called *vertical* and denoted ◦₁.
- ▶ Composition in *C* is called *horizontal* and denoted ∘₀

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in C(i, j) is called vertical and denoted o₁.
- ▶ Composition in *C* is called *horizontal* and denoted ○0.

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in C(i, j) is called *vertical* and denoted \circ_1 .
- ▶ Composition in *C* is called *horizontal* and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- ▶ Composition in *C* is called *horizontal* and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- ▶ Composition in *C* is called *horizontal* and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- ▶ Composition in *C* is called *horizontal* and denoted \circ_0 .

- Objects of Cat are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- ► Composition in *C* is called *horizontal* and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- Composition in \mathscr{C} is called *horizontal* and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ► 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- Composition in \mathscr{C} is called *horizontal* and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- ► 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- Composition in \mathscr{C} is called *horizontal* and denoted \circ_0 .

Principal example. The category Cat is a 2-category.

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- ► 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.

▶ Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- Composition in \mathscr{C} is called *horizontal* and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ► 1-morphisms in **Cat** are functors.
- ► 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- Composition in \mathscr{C} is called *horizontal* and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ► 1-morphisms in **Cat** are functors.
- ► 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- Composition in \mathscr{C} is called *horizontal* and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ► 1-morphisms in **Cat** are functors.
- ► 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

- The only object of C is **\clubsuit**.
- $\blacktriangleright \ \mathcal{C}(\clubsuit, \clubsuit) := S.$
- Composition in C is given by multiplication in S.
- ▶ The identity element of $C(\clubsuit, \clubsuit)$ is *e*.

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $C = C_{(S, \circ, e)}$ as follows:

- The only object of C is **\clubsuit**.
- $\blacktriangleright \ \mathcal{C}(\clubsuit, \clubsuit) := S.$
- Composition in C is given by multiplication in S.
- ▶ The identity element of $C(\clubsuit, \clubsuit)$ is *e*.

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $C = C_{(S, \circ, e)}$ as follows:

- The only object of C is **\clubsuit**.
- $\blacktriangleright \ \mathcal{C}(\clubsuit, \clubsuit) := S.$
- Composition in C is given by multiplication in S.
- The identity element of $\mathcal{C}(\clubsuit, \clubsuit)$ is *e*.

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

- The only object of C is **\clubsuit**.
- $\blacktriangleright \ \mathcal{C}(\clubsuit, \clubsuit) := S.$
- Composition in C is given by multiplication in S.
- ▶ The identity element of $C(\clubsuit, \clubsuit)$ is *e*.

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

- The only object of C is \clubsuit .
- $\blacktriangleright C(\clubsuit, \clubsuit) := S.$
- Composition in C is given by multiplication in S.
- The identity element of $\mathcal{C}(\clubsuit, \clubsuit)$ is *e*.

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $\mathcal{C} = \mathcal{C}_{(S, \circ, e)}$ as follows:

• The only object of C is \clubsuit .

$$\blacktriangleright \ \mathcal{C}(\clubsuit,\clubsuit) := S.$$

- Composition in C is given by multiplication in S.
- The identity element of $\mathcal{C}(\clubsuit, \clubsuit)$ is *e*.

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

- The only object of C is \clubsuit .
- ► $C(\clubsuit, \clubsuit) := S.$
- Composition in C is given by multiplication in S.
- The identity element of $\mathcal{C}(\clubsuit, \clubsuit)$ is *e*.

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

- The only object of C is \clubsuit .
- ► $C(\clubsuit, \clubsuit) := S$.
- Composition in C is given by multiplication in S.
- The identity element of $\mathcal{C}(\clubsuit, \clubsuit)$ is *e*.

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

- The only object of C is \clubsuit .
- ► $C(\clubsuit, \clubsuit) := S$.
- Composition in C is given by multiplication in S.
- The identity element of $\mathcal{C}(\clubsuit, \clubsuit)$ is *e*.

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

- The only object of C is \clubsuit .
- ► $C(\clubsuit, \clubsuit) := S$.
- Composition in C is given by multiplication in S.
- The identity element of $\mathcal{C}(\clubsuit, \clubsuit)$ is *e*.
Can we extend C to a 2-category?

Naive approach to try: Let $X \subset S$ be some submonoid.

For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\clubsuit, \clubsuit)}(s, t) := \{x \in X : xs = t\}.$

Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\clubsuit,\clubsuit)}(s,t)$ may be empty or it may contain many elements.

Composition is given by multiplication in S.

Naive approach to try: Let $X \subset S$ be some submonoid.

For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\clubsuit, \clubsuit)}(s, t) := \{x \in X : xs = t\}.$

Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\clubsuit,\clubsuit)}(s,t)$ may be empty or it may contain many elements.

Composition is given by multiplication in S.

Naive approach to try: Let $X \subset S$ be some submonoid.

For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\clubsuit, \clubsuit)}(s, t) := \{x \in X : xs = t\}.$

Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\clubsuit,\clubsuit)}(s,t)$ may be empty or it may contain many elements.

Composition is given by multiplication in S.

Naive approach to try: Let $X \subset S$ be some submonoid.

For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\clubsuit, \clubsuit)}(s, t) := \{x \in X : xs = t\}.$

Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\clubsuit, \clubsuit)}(s, t)$ may be empty or it may contain many elements.

Composition is given by multiplication in *S*.

Can we extend C to a 2-category?

Naive approach to try: Let $X \subset S$ be some submonoid.

For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\clubsuit, \clubsuit)}(s, t) := \{x \in X : xs = t\}.$

Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\clubsuit,\bigstar)}(s,t)$ may be empty or it may contain many elements.

Composition is given by multiplication in S.

Can we extend C to a 2-category?

Naive approach to try: Let $X \subset S$ be some submonoid.

For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\clubsuit, \clubsuit)}(s, t) := \{x \in X : xs = t\}.$

Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\clubsuit,\clubsuit)}(s, t)$ may be empty or it may contain many elements.

Composition is given by multiplication in S.

Naive approach to try: Let $X \subset S$ be some submonoid.

For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\clubsuit, \clubsuit)}(s, t) := \{x \in X : xs = t\}.$

Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\clubsuit,\bigstar)}(s,t)$ may be empty or it may contain many elements.

Composition is given by multiplication in S.

Naive approach to try: Let $X \subset S$ be some submonoid.

For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\clubsuit, \clubsuit)}(s, t) := \{x \in X : xs = t\}.$

Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\clubsuit,\bigstar)}(s,t)$ may be empty or it may contain many elements.

Composition is given by multiplication in S.

2-categories: over monoids, part 3

Vertical: xr = s and ys = t implies yxr = t **OK**

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

To check: Functoriality of composition.

San

2-categories: over monoids, part 3

Vertical: xr = s and ys = t implies yxr = t **OK**

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

To check: Functoriality of composition.

San

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

2-categories: over monoids, part 3

Vertical: xr = s and ys = t implies yxr = t **OK**

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

2-categories: over monoids, part 3

Vertical: xr = s and ys = t implies yxr = t **OK**

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

To check: Functoriality of composition.

San

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

To check: Functoriality of composition.

San

One way:

One way:

One way:

One way:

Another way:

Another way:

Another way:

Another way:

Need: the *interchange law* $(y \circ_1 x) \circ_0 (y' \circ_1 x') = (y \circ_0 y') \circ_1 (x \circ_0 x').$

In our case: $yxy'x' = yy'xx' \forall x, y, x', y' \in X$ OK since $X \subset Z(S)$.

Claim. The above defines on C the structure of a 2-category if and only if $X \subset Z(S)$.

nac

Need: the *interchange law* $(y \circ_1 x) \circ_0 (y' \circ_1 x') = (y \circ_0 y') \circ_1 (x \circ_0 x')$.

In our case: $yxy'x' = yy'xx' \quad \forall x, y, x', y' \in X \text{ OK}$ since $X \subset Z(S)$.

Need: the *interchange law* $(y \circ_1 x) \circ_0 (y' \circ_1 x') = (y \circ_0 y') \circ_1 (x \circ_0 x')$.

In our case: $yxy'x' = yy'xx' \quad \forall x, y, x', y' \in X \text{ OK since } X \subset Z(S).$

Need: the *interchange law* $(y \circ_1 x) \circ_0 (y' \circ_1 x') = (y \circ_0 y') \circ_1 (x \circ_0 x')$.

In our case: $yxy'x' = yy'xx' \quad \forall x, y, x', y' \in X \text{ OK}$ since $X \subset Z(S)$.

Need: the *interchange law* $(y \circ_1 x) \circ_0 (y' \circ_1 x') = (y \circ_0 y') \circ_1 (x \circ_0 x')$.

In our case: $yxy'x' = yy'xx' \quad \forall x, y, x', y' \in X \text{ OK}$ since $X \subset Z(S)$.
2-categories: over monoids, part 6: the interchange law

Need: the *interchange law* $(y \circ_1 x) \circ_0 (y' \circ_1 x') = (y \circ_0 y') \circ_1 (x \circ_0 x')$.

In our case: $yxy'x' = yy'xx' \quad \forall x, y, x', y' \in X \text{ OK}$ since $X \subset Z(S)$.

Claim. The above defines on C the structure of a 2-category if and only if $X \subset Z(S)$.

 \leq — compatible order on S (i.e. $a \leq b$ implies $as \leq bs$ and $sa \leq sb$)

Define $\mathcal{C}_{(S,\leq)}$ — 2-category via

▶ $C_{(S,\leq)}$ has one object ♣

- ▶ 1-morphisms: $C_{(S,\leq)}(\clubsuit, \clubsuit) = S$
- ▶ 2-morphisms: for $s, t \in S$ set $\operatorname{Hom}(s, t) = \begin{cases} (s, t), & s \leq t; \\ \emptyset, & \text{else.} \end{cases}$
- horizontal composition is given by multiplication in S;
- vertical composition is uniquely defined.

2-categories: over monoids, part 7: ordered monoids

S - monoid

 \leq — compatible order on S (i.e. $a \leq b$ implies $as \leq bs$ and $sa \leq sb$)

Define $\mathcal{C}_{(S,\leq)}$ — 2-category via

▶ $C_{(S,\leq)}$ has one object ♣

▶ 1-morphisms: $C_{(S,\leq)}(\clubsuit, \clubsuit) = S$

▶ 2-morphisms: for $s, t \in S$ set $\operatorname{Hom}(s, t) = \begin{cases} (s, t), & s \leq t; \\ \emptyset, & else. \end{cases}$

- horizontal composition is given by multiplication in S;
- vertical composition is uniquely defined.

 \leq — compatible order on S (i.e. $a \leq b$ implies $as \leq bs$ and $sa \leq sb$)

Define $\mathcal{C}_{(\mathcal{S},\leq)}$ — 2-category via

▶ $C_{(S,\leq)}$ has one object ♣

▶ 1-morphisms: $C_{(S,\leq)}(\clubsuit, \clubsuit) = S$

▶ 2-morphisms: for $s, t \in S$ set $\operatorname{Hom}(s, t) = \begin{cases} (s, t), & s \leq t; \\ \emptyset, & else. \end{cases}$

- horizontal composition is given by multiplication in S;
- vertical composition is uniquely defined.

 \leq — compatible order on S (i.e. $a \leq b$ implies $as \leq bs$ and $sa \leq sb$)

Define $\mathcal{C}_{(\mathcal{S},\leq)}$ — 2-category via

▶ $C_{(S,\leq)}$ has one object ♣

▶ 1-morphisms: $C_{(S,\leq)}(\clubsuit, \clubsuit) = S$

▶ 2-morphisms: for $s, t \in S$ set $Hom(s, t) = \begin{cases} (s, t), & s \leq t; \\ \emptyset, & else. \end{cases}$

- horizontal composition is given by multiplication in S;
- vertical composition is uniquely defined.

 \leq — compatible order on S (i.e. $a \leq b$ implies $as \leq bs$ and $sa \leq sb$)

- ▶ $C_{(S,\leq)}$ has one object ♣
- ▶ 1-morphisms: $C_{(S,\leq)}(\clubsuit,\clubsuit) = S$
- ▶ 2-morphisms: for $s, t \in S$ set $Hom(s, t) = \begin{cases} (s, t), & s \leq t; \\ \emptyset, & else. \end{cases}$
- ▶ horizontal composition is given by multiplication in *S*;
- vertical composition is uniquely defined.

 \leq — compatible order on S (i.e. $a \leq b$ implies $as \leq bs$ and $sa \leq sb$)

- ▶ $C_{(S,\leq)}$ has one object ♣
- ▶ 1-morphisms: $C_{(S,\leq)}(\clubsuit,\clubsuit) = S$
- ▶ 2-morphisms: for $s, t \in S$ set $Hom(s, t) = \begin{cases} (s, t), & s \leq t; \\ \emptyset, & else. \end{cases}$
- ▶ horizontal composition is given by multiplication in *S*;
- vertical composition is uniquely defined.

 \leq — compatible order on S (i.e. $a \leq b$ implies $as \leq bs$ and $sa \leq sb$)

- ▶ $C_{(S,\leq)}$ has one object ♣
- ▶ 1-morphisms: $C_{(S,\leq)}(\clubsuit,\clubsuit) = S$
- ▶ 2-morphisms: for $s, t \in S$ set $Hom(s, t) = \begin{cases} (s, t), & s \leq t; \\ \emptyset, & else. \end{cases}$
- ► horizontal composition is given by multiplication in *S*;
- vertical composition is uniquely defined.

 \leq — compatible order on S (i.e. $a \leq b$ implies $as \leq bs$ and $sa \leq sb$)

- ▶ $C_{(S,\leq)}$ has one object ♣
- ▶ 1-morphisms: $C_{(S,\leq)}(\clubsuit,\clubsuit) = S$
- ▶ 2-morphisms: for $s, t \in S$ set $Hom(s, t) = \begin{cases} (s, t), & s \leq t; \\ \emptyset, & else. \end{cases}$
- ► horizontal composition is given by multiplication in *S*;
- vertical composition is uniquely defined.

 \leq — compatible order on S (i.e. $a \leq b$ implies $as \leq bs$ and $sa \leq sb$)

- ▶ $C_{(S,\leq)}$ has one object ♣
- ▶ 1-morphisms: $C_{(S,\leq)}(\clubsuit,\clubsuit) = S$
- ▶ 2-morphisms: for $s, t \in S$ set $Hom(s, t) = \begin{cases} (s, t), & s \leq t; \\ \emptyset, & else. \end{cases}$
- ► horizontal composition is given by multiplication in *S*;
- vertical composition is uniquely defined.

 \mathscr{A} and \mathscr{C} — two 2-categories

Definition. A 2-functor $F : \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example. For $i \in C$ the functor $C(i, _) : C \to Cat$ sends

- ▶ an object $j \in C$ to the category C(i, j),
- ▶ a 1-morphism $F \in \mathscr{C}(j,k)$ to the functor $F \circ _$: $\mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$,
- ▶ a 2-morphism α : $F \to G$ to the natural transformation $\alpha \circ_0 _$: $F \circ _ \to G \circ _$.

Definition. A 2-functor $F : \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example. For $i \in \mathscr{C}$ the functor $\mathscr{C}(i, _) : \mathscr{C} \to Cat$ sends

- ▶ an object $j \in C$ to the category C(i, j),
- ▶ a 1-morphism $F \in \mathscr{C}(j, k)$ to the functor $F \circ _$: $\mathscr{C}(i, j) \rightarrow \mathscr{C}(i, k)$,
- ▶ a 2-morphism α : $F \to G$ to the natural transformation $\alpha \circ_0 _$: $F \circ _ \to G \circ _$.

Definition. A 2-functor $F : \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example. For $i \in \mathscr{C}$ the functor $\mathscr{C}(i, _) : \mathscr{C} \to \mathsf{Cat}$ sends

- ▶ an object $j \in C$ to the category C(i, j),
- ▶ a 1-morphism $F \in \mathscr{C}(j,k)$ to the functor $F \circ _ : \mathscr{C}(i,j) \to \mathscr{C}(i,k)$,
- ▶ a 2-morphism α : $F \to G$ to the natural transformation $\alpha \circ_0 _$: $F \circ _ \to G \circ _$.

Definition. A 2-functor $F : \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

- ▶ an object $j \in C$ to the category C(i, j),
- ▶ a 1-morphism $F \in \mathscr{C}(j,k)$ to the functor $F \circ_{-} : \mathscr{C}(i,j) \to \mathscr{C}(i,k)$,
- ▶ a 2-morphism $\alpha : F \to G$ to the natural transformation $\alpha \circ_0 _ : F \circ _ \to G \circ _$.

Definition. A 2-functor $F : \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

- ▶ an object $j \in C$ to the category C(i, j),
- ▶ a 1-morphism $F \in \mathscr{C}(j,k)$ to the functor $F \circ _$: $\mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$,
- ▶ a 2-morphism $\alpha : F \to G$ to the natural transformation $\alpha \circ_0 _ : F \circ _ \to G \circ _$.

Definition. A 2-functor $F : \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

- ▶ an object $j \in C$ to the category C(i, j),
- ▶ a 1-morphism $F \in \mathscr{C}(j,k)$ to the functor $F \circ_{-} : \mathscr{C}(i,j) \to \mathscr{C}(i,k)$,
- ▶ a 2-morphism α : $F \to G$ to the natural transformation $\alpha \circ_0 _$: $F \circ _ \to G \circ _$.

Definition. A 2-functor $F : \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

- ▶ an object $j \in C$ to the category C(i, j),
- ▶ a 1-morphism $F \in \mathscr{C}(j,k)$ to the functor $F \circ_{-} : \mathscr{C}(i,j) \to \mathscr{C}(i,k)$,
- ► a 2-morphism $\alpha : F \to G$ to the natural transformation $\alpha \circ_0 _ : F \circ _ \to G \circ _$.

Definition. A 2-functor $F : \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

- ▶ an object $j \in C$ to the category C(i, j),
- ▶ a 1-morphism $F \in \mathscr{C}(j,k)$ to the functor $F \circ_{-} : \mathscr{C}(i,j) \to \mathscr{C}(i,k)$,
- ► a 2-morphism $\alpha : F \to G$ to the natural transformation $\alpha \circ_0 _ : F \circ _ \to G \circ _$.

Definition. A 2-functor $F : \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

- ▶ an object $j \in C$ to the category C(i, j),
- ▶ a 1-morphism $F \in \mathscr{C}(j,k)$ to the functor $F \circ_{-} : \mathscr{C}(i,j) \to \mathscr{C}(i,k)$,
- ► a 2-morphism $\alpha : F \to G$ to the natural transformation $\alpha \circ_0 _ : F \circ _ \to G \circ _$.

Example: $\mathscr{C}(i, -)$ is the principal 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

▶ in Cat;

- ▶ in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ▶ a the 2-category **ab** of abelian categories and exact functors.

Example: $\mathscr{C}(i, -)$ is the principal 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

▶ in Cat;

- in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ▶ a the 2-category **ab** of abelian categories and exact functors.

Example: $\mathscr{C}(i, _)$ is the principal 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

▶ in Cat;

- ▶ in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ▶ a the 2-category **ab** of abelian categories and exact functors.

Example: $\mathscr{C}(i, _)$ is the principal 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

▶ in Cat;

▶ in the 2-category Add of additive categories and additive functors;

- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ▶ a the 2-category **ab** of abelian categories and exact functors.

Example: $\mathscr{C}(i, _)$ is the principal 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

▶ in Cat;

▶ in the 2-category Add of additive categories and additive functors;

- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ▶ a the 2-category **ab** of abelian categories and exact functors.

Example: $\mathscr{C}(i, _)$ is the principal 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

► in Cat;

▶ in the 2-category Add of additive categories and additive functors;

 in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;

▶ a the 2-category **ab** of abelian categories and exact functors.

Example: $\mathscr{C}(i, _)$ is the principal 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

► in Cat;

- ▶ in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;

▶ a the 2-category **ab** of abelian categories and exact functors.

Example: $\mathscr{C}(i, _)$ is the principal 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

► in Cat;

- ▶ in the 2-category Add of additive categories and additive functors;
- ► in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ► a the 2-category **ab** of abelian categories and exact functors.

Example: $\mathscr{C}(i, _)$ is the principal 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

► in Cat;

- ▶ in the 2-category Add of additive categories and additive functors;
- ► in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ► a the 2-category **ab** of abelian categories and exact functors.

Example: $\mathscr{C}(i, _)$ is the principal 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

► in Cat;

- ▶ in the 2-category Add of additive categories and additive functors;
- ► in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ► a the 2-category **ab** of abelian categories and exact functors.

Decategorification: Grothendieck category

Definition. The (split) *Grothendieck group* $[\mathcal{A}]$ of a small additive category \mathcal{A} is the quotient of the free abelian group generated by objects of \mathcal{A} modulo relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

Note: If A is idempotent split with finitely many indecomposables, then [A] is free abelian of finite rank with indecomposables/iso as basis.

Definition. A 2-category \mathscr{C} is called *locally finitary* over a field k if each $\mathscr{C}(i, j)$ is k-linear, additive, idempotent split with finitely many indecomposables.

 \mathscr{C} — locally finitary

Definition. The (split) *Grothendieck category* [\mathscr{C}] of \mathscr{C} is a (usual) category with same objects as \mathscr{C} , where $[\mathscr{C}](i, j) = [\mathscr{C}(i, j)]$ and composition is induced from \mathscr{C} .

Decategorification: Grothendieck category

Definition. The (split) *Grothendieck group* $[\mathcal{A}]$ of a small additive category \mathcal{A} is the quotient of the free abelian group generated by objects of \mathcal{A} modulo relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

Note: If A is idempotent split with finitely many indecomposables, then [A] is free abelian of finite rank with indecomposables/iso as basis.

Definition. A 2-category \mathscr{C} is called *locally finitary* over a field k if each $\mathscr{C}(i, j)$ is k-linear, additive, idempotent split with finitely many indecomposables.

 \mathscr{C} — locally finitary

Definition. The (split) *Grothendieck category* [\mathscr{C}] of \mathscr{C} is a (usual) category with same objects as \mathscr{C} , where $[\mathscr{C}](i, j) = [\mathscr{C}(i, j)]$ and composition is induced from \mathscr{C} .

Decategorification: Grothendieck category

Definition. The (split) *Grothendieck group* $[\mathcal{A}]$ of a small additive category \mathcal{A} is the quotient of the free abelian group generated by objects of \mathcal{A} modulo relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

Note: If A is idempotent split with finitely many indecomposables, then [A] is free abelian of finite rank with indecomposables/iso as basis.

Definition. A 2-category \mathscr{C} is called *locally finitary* over a field \Bbbk if each $\mathscr{C}(i, j)$ is \Bbbk -linear, additive, idempotent split with finitely many indecomposables.

 \mathscr{C} — locally finitary

Definition. The (split) *Grothendieck category* [\mathscr{C}] of \mathscr{C} is a (usual) category with same objects as \mathscr{C} , where $[\mathscr{C}](i, j) = [\mathscr{C}(i, j)]$ and composition is induced from \mathscr{C} .
Definition. The (split) *Grothendieck group* $[\mathcal{A}]$ of a small additive category \mathcal{A} is the quotient of the free abelian group generated by objects of \mathcal{A} modulo relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

Note: If A is idempotent split with finitely many indecomposables, then [A] is free abelian of finite rank with indecomposables/iso as basis.

Definition. A 2-category \mathscr{C} is called *locally finitary* over a field \Bbbk if each $\mathscr{C}(i, j)$ is \Bbbk -linear, additive, idempotent split with finitely many indecomposables.

 \mathscr{C} — locally finitary

Definition. The (split) *Grothendieck group* $[\mathcal{A}]$ of a small additive category \mathcal{A} is the quotient of the free abelian group generated by objects of \mathcal{A} modulo relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

Note: If A is idempotent split with finitely many indecomposables, then [A] is free abelian of finite rank with indecomposables/iso as basis.

Definition. A 2-category \mathscr{C} is called *locally finitary* over a field \Bbbk if each $\mathscr{C}(i, j)$ is \Bbbk -linear, additive, idempotent split with finitely many indecomposables.

 \mathscr{C} — locally finitary

Definition. The (split) *Grothendieck group* $[\mathcal{A}]$ of a small additive category \mathcal{A} is the quotient of the free abelian group generated by objects of \mathcal{A} modulo relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

Note: If A is idempotent split with finitely many indecomposables, then [A] is free abelian of finite rank with indecomposables/iso as basis.

Definition. A 2-category \mathscr{C} is called *locally finitary* over a field \Bbbk if each $\mathscr{C}(i, j)$ is \Bbbk -linear, additive, idempotent split with finitely many indecomposables.

 \mathscr{C} — locally finitary

Definition. The (split) *Grothendieck group* $[\mathcal{A}]$ of a small additive category \mathcal{A} is the quotient of the free abelian group generated by objects of \mathcal{A} modulo relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

Note: If A is idempotent split with finitely many indecomposables, then [A] is free abelian of finite rank with indecomposables/iso as basis.

Definition. A 2-category \mathscr{C} is called *locally finitary* over a field \Bbbk if each $\mathscr{C}(i, j)$ is \Bbbk -linear, additive, idempotent split with finitely many indecomposables.

 \mathscr{C} — locally finitary

Main point: Forget the 2-level.

Note: For k-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} — locally finitary; \mathcal{F} — 2-representation of \mathscr{C} s.t.

- \blacktriangleright object i \mapsto additive (abelian, triangulated) category \mathcal{C}_{i}
- ▶ 1-morphism → additive (exact, triangulated) functor
- ► 2-morphism → natural transformation of functors

Then: The category $[\mathscr{C}]$ acts on $[\mathcal{C}]$

In particular: If $\mathscr C$ has 1 object \clubsuit then the monoid $[\mathscr C](\clubsuit,\clubsuit)$ acts on the abelian group $[\mathcal C]$

Extending scalars: The algebra $\Bbbk[\mathscr{C}](\clubsuit, \clubsuit)$ acts on the vector space $\Bbbk[\mathcal{C}]$, that is we get a linear representation of the monoid $[\mathscr{C}](\clubsuit, \clubsuit)$.

イロト イポト イヨト イヨ

Note: For k-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} — locally finitary; \mathcal{F} — 2-representation of \mathscr{C} s.t.

 \blacktriangleright object i \mapsto additive (abelian, triangulated) category \mathcal{C}_{i}

- ▶ 1-morphism → additive (exact, triangulated) functor
- ► 2-morphism → natural transformation of functors

Then: The category $[\mathscr{C}]$ acts on $[\mathcal{C}]$

In particular: If $\mathscr C$ has 1 object \clubsuit then the monoid $[\mathscr C](\clubsuit,\clubsuit)$ acts on the abelian group $[\mathcal C]$

Extending scalars: The algebra $\Bbbk[\mathscr{C}](\clubsuit, \clubsuit)$ acts on the vector space $\Bbbk[\mathcal{C}]$, that is we get a linear representation of the monoid $[\mathscr{C}](\clubsuit, \clubsuit)$.

イロト イポト イヨト イヨト

Main point: Forget the 2-level.

Note: For k-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} — locally finitary; \mathcal{F} — 2-representation of \mathscr{C} s.t.

• object $i \mapsto additive$ (abelian, triangulated) category C_i

- ▶ 1-morphism → additive (exact, triangulated) functor
- ► 2-morphism → natural transformation of functors

Then: The category $[\mathscr{C}]$ acts on $[\mathcal{C}]$

In particular: If $\mathscr C$ has 1 object \clubsuit then the monoid $[\mathscr C](\clubsuit,\clubsuit)$ acts on the abelian group $[\mathcal C]$

Extending scalars: The algebra $\Bbbk[\mathscr{C}](\clubsuit, \clubsuit)$ acts on the vector space $\Bbbk[\mathcal{C}]$, that is we get a linear representation of the monoid $[\mathscr{C}](\clubsuit, \clubsuit)$.

イロト イポト イヨト イヨト

Main point: Forget the 2-level.

Note: For k-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} — locally finitary; \mathcal{F} — 2-representation of \mathscr{C} s.t.

• object $i \mapsto additive$ (abelian, triangulated) category C_i

- ▶ 1-morphism → additive (exact, triangulated) functor
- ▶ 2-morphism → natural transformation of functors

Then: The category $[\mathscr{C}]$ acts on $[\mathcal{C}]$

In particular: If $\mathscr C$ has 1 object \clubsuit then the monoid $[\mathscr C](\clubsuit,\clubsuit)$ acts on the abelian group $[\mathcal C]$

Extending scalars: The algebra $\Bbbk[\mathscr{C}](\clubsuit, \clubsuit)$ acts on the vector space $\Bbbk[\mathcal{C}]$, that is we get a linear representation of the monoid $[\mathscr{C}](\clubsuit, \clubsuit)$.

イロト イポト イヨト イヨト

Main point: Forget the 2-level.

Note: For k-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} — locally finitary; \mathcal{F} — 2-representation of \mathscr{C} s.t.

▶ object $i \mapsto additive$ (abelian, triangulated) category C_i

▶ 1-morphism → additive (exact, triangulated) functor

▶ 2-morphism → natural transformation of functors

Then: The category $[\mathscr{C}]$ acts on $[\mathcal{C}]$

In particular: If $\mathscr C$ has 1 object \clubsuit then the monoid $[\mathscr C](\clubsuit,\clubsuit)$ acts on the abelian group $[\mathcal C]$

Extending scalars: The algebra $\Bbbk[\mathscr{C}](\clubsuit, \clubsuit)$ acts on the vector space $\Bbbk[\mathcal{C}]$, that is we get a linear representation of the monoid $[\mathscr{C}](\clubsuit, \clubsuit)$.

イロト イポト イヨト イヨト

Sac

Main point: Forget the 2-level.

Note: For k-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} — locally finitary; \mathcal{F} — 2-representation of \mathscr{C} s.t.

▶ object $i \mapsto additive$ (abelian, triangulated) category C_i

- 1-morphism \mapsto additive (exact, triangulated) functor
- ▶ 2-morphism → natural transformation of functors

Then: The category $[\mathscr{C}]$ acts on $[\mathcal{C}]$

In particular: If \mathscr{C} has 1 object **\$** then the monoid $[\mathscr{C}](\$, \$)$ acts on the abelian group $[\mathcal{C}]$

Extending scalars: The algebra $\Bbbk[\mathscr{C}](\clubsuit, \clubsuit)$ acts on the vector space $\Bbbk[\mathcal{C}]$, that is we get a linear representation of the monoid $[\mathscr{C}](\clubsuit, \clubsuit)$.

イロト イポト イヨト イヨト

Sac

Main point: Forget the 2-level.

Note: For k-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} — locally finitary; \mathcal{F} — 2-representation of \mathscr{C} s.t.

- object $i \mapsto additive$ (abelian, triangulated) category C_i
- 1-morphism \mapsto additive (exact, triangulated) functor
- ▶ 2-morphism \mapsto natural transformation of functors

Then: The category $[\mathscr{C}]$ acts on $[\mathscr{C}]$

In particular: If \mathscr{C} has 1 object **\$** then the monoid $[\mathscr{C}](\$, \$)$ acts on the abelian group $[\mathcal{C}]$

Extending scalars: The algebra $\Bbbk[\mathscr{C}](\clubsuit, \clubsuit)$ acts on the vector space $\Bbbk[\mathcal{C}]$, that is we get a linear representation of the monoid $[\mathscr{C}](\clubsuit, \clubsuit)$.

イロト イポト イヨト イヨト

Main point: Forget the 2-level.

Note: For k-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} — locally finitary; \mathcal{F} — 2-representation of \mathscr{C} s.t.

- ▶ object $i \mapsto additive$ (abelian, triangulated) category C_i
- 1-morphism \mapsto additive (exact, triangulated) functor
- ▶ 2-morphism \mapsto natural transformation of functors

Then: The category $[\mathscr{C}]$ acts on $[\mathcal{C}]$

In particular: If \mathscr{C} has 1 object **\$** then the monoid $[\mathscr{C}](\$, \$)$ acts on the abelian group $[\mathcal{C}]$

Extending scalars: The algebra $\Bbbk[\mathscr{C}](\clubsuit, \clubsuit)$ acts on the vector space $\Bbbk[\mathcal{C}]$, that is we get a linear representation of the monoid $[\mathscr{C}](\clubsuit, \clubsuit)$.

Note: For k-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} — locally finitary; \mathcal{F} — 2-representation of \mathscr{C} s.t.

- \blacktriangleright object i \mapsto additive (abelian, triangulated) category \mathcal{C}_{i}
- 1-morphism \mapsto additive (exact, triangulated) functor
- ▶ 2-morphism \mapsto natural transformation of functors

Then: The category $[\mathscr{C}]$ acts on $[\mathcal{C}]$

In particular: If $\mathscr C$ has 1 object \clubsuit then the monoid $[\mathscr C](\clubsuit,\clubsuit)$ acts on the abelian group $[\mathcal C]$

Extending scalars: The algebra $\Bbbk[\mathscr{C}](\clubsuit, \clubsuit)$ acts on the vector space $\Bbbk[\mathcal{C}]$, that is we get a linear representation of the monoid $[\mathscr{C}](\clubsuit, \clubsuit)$.

Note: For k-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} — locally finitary; \mathcal{F} — 2-representation of \mathscr{C} s.t.

- \blacktriangleright object i \mapsto additive (abelian, triangulated) category \mathcal{C}_{i}
- ▶ 1-morphism \mapsto additive (exact, triangulated) functor
- ▶ 2-morphism \mapsto natural transformation of functors

Then: The category $[\mathscr{C}]$ acts on $[\mathcal{C}]$

In particular: If $\mathscr C$ has 1 object \clubsuit then the monoid $[\mathscr C](\clubsuit,\clubsuit)$ acts on the abelian group $[\mathcal C]$

Extending scalars: The algebra $\Bbbk[\mathscr{C}](\clubsuit, \clubsuit)$ acts on the vector space $\Bbbk[\mathcal{C}]$, that is we get a linear representation of the monoid $[\mathscr{C}](\clubsuit, \clubsuit)$.

Note: For k-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} — locally finitary; \mathcal{F} — 2-representation of \mathscr{C} s.t.

- \blacktriangleright object i \mapsto additive (abelian, triangulated) category \mathcal{C}_{i}
- ▶ 1-morphism \mapsto additive (exact, triangulated) functor
- ▶ 2-morphism \mapsto natural transformation of functors

Then: The category $[\mathscr{C}]$ acts on $[\mathcal{C}]$

In particular: If $\mathscr C$ has 1 object \clubsuit then the monoid $[\mathscr C](\clubsuit,\clubsuit)$ acts on the abelian group $[\mathcal C]$

Extending scalars: The algebra $\Bbbk[\mathscr{C}](\clubsuit, \clubsuit)$ acts on the vector space $\Bbbk[\mathcal{C}]$, that is we get a linear representation of the monoid $[\mathscr{C}](\clubsuit, \clubsuit)$.

Decategorification: advantages

Assume: \mathscr{C} is 2-represented on \mathcal{C}

Decategorify: $[\mathscr{C}]$ acts on $[\mathcal{C}]$

Main point: C has non-trivial structure

Example 1: The group [C] might have many natural bases (e.g. given by simple, injective, projective or tilting modules).

Example 2: The category C could have stratifications, e.g. by Gelfand-Kirillov dimension of objects. This gives rise to filtrations on [C].

Decategorify: $[\mathscr{C}]$ acts on $[\mathcal{C}]$

Main point: C has non-trivial structure

Example 1: The group [C] might have many natural bases (e.g. given by simple, injective, projective or tilting modules).

Example 2: The category C could have stratifications, e.g. by Gelfand-Kirillov dimension of objects. This gives rise to filtrations on [C].

Decategorification: advantages

Assume: ${\mathscr C}$ is 2-represented on ${\mathcal C}$

Decategorify: $[\mathscr{C}]$ acts on $[\mathcal{C}]$

Main point: C has non-trivial structure

Example 1: The group [C] might have many natural bases (e.g. given by simple, injective, projective or tilting modules).

Example 2: The category C could have stratifications, e.g. by Gelfand-Kirillov dimension of objects. This gives rise to filtrations on [C].

Decategorify: $[\mathscr{C}]$ acts on $[\mathcal{C}]$

Main point: $\ensuremath{\mathcal{C}}$ has non-trivial structure

Example 1: The group [C] might have many natural bases (e.g. given by simple, injective, projective or tilting modules).

Example 2: The category C could have stratifications, e.g. by Gelfand-Kirillov dimension of objects. This gives rise to filtrations on [C].

Decategorify: $[\mathscr{C}]$ acts on $[\mathcal{C}]$

Main point: \mathcal{C} has non-trivial structure

Example 1: The group [C] might have many natural bases (e.g. given by simple, injective, projective or tilting modules).

Example 2: The category C could have stratifications, e.g. by Gelfand-Kirillov dimension of objects. This gives rise to filtrations on [C].

Decategorify: $[\mathscr{C}]$ acts on $[\mathcal{C}]$

Main point: \mathcal{C} has non-trivial structure

Example 1: The group [C] might have many natural bases (e.g. given by simple, injective, projective or tilting modules).

Example 2: The category C could have stratifications, e.g. by Gelfand-Kirillov dimension of objects. This gives rise to filtrations on [C].

Decategorify: $[\mathscr{C}]$ acts on $[\mathcal{C}]$

Main point: C has non-trivial structure

Example 1: The group [C] might have many natural bases (e.g. given by simple, injective, projective or tilting modules).

Example 2: The category C could have stratifications, e.g. by Gelfand-Kirillov dimension of objects. This gives rise to filtrations on [C].

Decategorify: $[\mathscr{C}]$ acts on $[\mathcal{C}]$

Main point: C has non-trivial structure

Example 1: The group [C] might have many natural bases (e.g. given by simple, injective, projective or tilting modules).

Example 2: The category C could have stratifications, e.g. by Gelfand-Kirillov dimension of objects. This gives rise to filtrations on [C].

Assume: Γ — simple digraph (no loops or multiple edges in the same direction)

Definition: The *Hecke-Kiselman* monoid HK_{Γ} has generators e_i where i is a vertex of Γ and relations

Examples:

• Γ — no edges \Rightarrow **HK**_{Γ} is the Boolean of Γ_0 ;

Γ — Dynkin diagram (unoriented) ⇒ HK_Γ is the 0-Hecke monoid;

• $\Gamma = \{1, \ldots, n\}$ with $i \to j$ iff $i < j \Rightarrow HK_{\Gamma}$ is Kiselman's semigroup.

San

Assume: Γ — simple digraph (no loops or multiple edges in the same direction)

Definition: The *Hecke-Kiselman* monoid HK_{Γ} has generators e_i where i is a vertex of Γ and relations

Examples:

- Γ no edges \Rightarrow **HK**_{Γ} is the Boolean of Γ_0 ;
- Γ Dynkin diagram (unoriented) \Rightarrow **HK**_{Γ} is the 0-Hecke monoid;
- ► $\Gamma = \{1, ..., n\}$ with $i \to j$ iff $i < j \Rightarrow HK_{\Gamma}$ is Kiselman's semigroup.

San

Assume: Γ — simple digraph (no loops or multiple edges in the same direction)

Definition: The *Hecke-Kiselman* monoid \mathbf{HK}_{Γ} has generators e_i where i is a vertex of Γ and relations

Examples:

• Γ — no edges \Rightarrow **HK**_{Γ} is the Boolean of Γ_0 ;

Γ — Dynkin diagram (unoriented) ⇒ HK_Γ is the 0-Hecke monoid;

► $\Gamma = \{1, ..., n\}$ with $i \to j$ iff $i < j \Rightarrow HK_{\Gamma}$ is Kiselman's semigroup.

Assume: Γ — simple digraph (no loops or multiple edges in the same direction)

Definition: The *Hecke-Kiselman* monoid \mathbf{HK}_{Γ} has generators e_i where i is a vertex of Γ and relations

Examples:

• Γ — no edges \Rightarrow **HK**_{Γ} is the Boolean of Γ_0 ;

Γ — Dynkin diagram (unoriented) ⇒ HK_Γ is the 0-Hecke monoid;

• $\Gamma = \{1, \ldots, n\}$ with $i \to j$ iff $i < j \Rightarrow HK_{\Gamma}$ is Kiselman's semigroup.

Assume: Γ — simple digraph (no loops or multiple edges in the same direction)

Definition: The *Hecke-Kiselman* monoid \mathbf{HK}_{Γ} has generators e_i where i is a vertex of Γ and relations

Examples:

• Γ — no edges \Rightarrow **HK**_{Γ} is the Boolean of Γ_0 ;

Γ — Dynkin diagram (unoriented) ⇒ HK_Γ is the 0-Hecke monoid;

► $\Gamma = \{1, ..., n\}$ with $i \to j$ iff $i < j \Rightarrow HK_{\Gamma}$ is Kiselman's semigroup.

Assume: Γ — simple digraph (no loops or multiple edges in the same direction)

Definition: The *Hecke-Kiselman* monoid \mathbf{HK}_{Γ} has generators e_i where i is a vertex of Γ and relations

Examples:

• Γ — no edges \Rightarrow **HK**_{Γ} is the Boolean of Γ_0 ;

▶ Γ — Dynkin diagram (unoriented) \Rightarrow **HK**_{Γ} is the 0-Hecke monoid;

• $\Gamma = \{1, \ldots, n\}$ with $i \to j$ iff $i < j \Rightarrow HK_{\Gamma}$ is Kiselman's semigroup.

Assume: Γ — simple digraph (no loops or multiple edges in the same direction)

Definition: The *Hecke-Kiselman* monoid \mathbf{HK}_{Γ} has generators e_i where i is a vertex of Γ and relations

Examples:

- Γ no edges \Rightarrow **HK**_{Γ} is the Boolean of Γ_0 ;
- ▶ Γ Dynkin diagram (unoriented) \Rightarrow **HK**_{Γ} is the 0-Hecke monoid;
- $\Gamma = \{1, \ldots, n\}$ with $i \to j$ iff $i < j \Rightarrow HK_{\Gamma}$ is Kiselman's semigroup.

Assume: Γ — simple digraph (no loops or multiple edges in the same direction)

Definition: The *Hecke-Kiselman* monoid \mathbf{HK}_{Γ} has generators e_i where i is a vertex of Γ and relations

Examples:

• Γ — no edges \Rightarrow **HK**_{Γ} is the Boolean of Γ_0 ;

Γ — Dynkin diagram (unoriented) ⇒ HK_Γ is the 0-Hecke monoid;
Γ = {1,...,n} with i → j iff i < j ⇒ HK_Γ is Kiselman's semigroup.

Assume: Γ — simple digraph (no loops or multiple edges in the same direction)

Definition: The *Hecke-Kiselman* monoid \mathbf{HK}_{Γ} has generators e_i where i is a vertex of Γ and relations

Examples:

- Γ no edges \Rightarrow **HK**_{Γ} is the Boolean of Γ_0 ;
- Γ Dynkin diagram (unoriented) \Rightarrow **HK**_{Γ} is the 0-Hecke monoid;

▶ $\Gamma = \{1, ..., n\}$ with $i \to j$ iff $i < j \Rightarrow HK_{\Gamma}$ is Kiselman's semigroup.

Assume: Γ — simple digraph (no loops or multiple edges in the same direction)

Definition: The *Hecke-Kiselman* monoid \mathbf{HK}_{Γ} has generators e_i where i is a vertex of Γ and relations

Examples:

- Γ no edges \Rightarrow **HK**_{Γ} is the Boolean of Γ_0 ;
- Γ Dynkin diagram (unoriented) \Rightarrow **HK**_{Γ} is the 0-Hecke monoid;
- ► $\Gamma = \{1, ..., n\}$ with $i \to j$ iff $i < j \Rightarrow \mathbf{HK}_{\Gamma}$ is Kiselman's semigroup.

Assume: Γ — simple digraph (no loops or multiple edges in the same direction)

Definition: The *Hecke-Kiselman* monoid \mathbf{HK}_{Γ} has generators e_i where i is a vertex of Γ and relations

Examples:

- Γ no edges \Rightarrow **HK**_{Γ} is the Boolean of Γ_0 ;
- Γ Dynkin diagram (unoriented) \Rightarrow **HK**_{Γ} is the 0-Hecke monoid;
- ► $\Gamma = \{1, ..., n\}$ with $i \to j$ iff $i < j \Rightarrow \mathbf{HK}_{\Gamma}$ is Kiselman's semigroup.

Hecke-Kiselman semigroups: Catalan monoid

Catalan monoid: C_n — order preserving (i.e. $a \le b \Rightarrow f(a) \le f(b)$) and order decreasing (i.e. $f(a) \le a$) transformations of $\{0, 1, ..., n\}$.

 $|C_n| = \frac{1}{n+1} {2n \choose n}$ — the *n*-th Catalan number

 $\Gamma = \Gamma_n := \qquad 1 \xrightarrow{\qquad >} 2 \xrightarrow{\qquad >} \cdots \xrightarrow{\qquad >} n$

Theorem (A. Solomon): $HK_{\Gamma_n} \cong C_n$

Standard effective representations Φ of C_n : $\mathbf{v} = (v_1, v_2, \dots, v_n)$ basis of \mathbb{k}^n , action

$$e_i(v_j) = \begin{cases} v_j, & j \neq i; \\ v_{j-1}, & j = i > 1; \\ 0, & j = i = 1. \end{cases}$$

Hecke-Kiselman semigroups: Catalan monoid

Catalan monoid: C_n — order preserving (i.e. $a \le b \Rightarrow f(a) \le f(b)$) and order decreasing (i.e. $f(a) \le a$) transformations of $\{0, 1, ..., n\}$.

 $|\mathbf{C}_n| = \frac{1}{n+1} {\binom{2n}{n}}$ — the *n*-th Catalan number

 $\Gamma = \Gamma_n := \qquad 1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n$

Theorem (A. Solomon): $HK_{\Gamma_n} \cong C_n$

Standard effective representations Φ of C_n : $\mathbf{v} = (v_1, v_2, \dots, v_n)$ basis of \mathbb{k}^n , action

$$e_i(v_j) = \begin{cases} v_j, & j \neq i; \\ v_{j-1}, & j = i > 1; \\ 0, & j = i = 1. \end{cases}$$
Catalan monoid: C_n — order preserving (i.e. $a \le b \Rightarrow f(a) \le f(b)$) and order decreasing (i.e. $f(a) \le a$) transformations of $\{0, 1, ..., n\}$.

 $|\mathbf{C}_n| = \frac{1}{n+1} {2n \choose n}$ — the *n*-th Catalan number

 $\Gamma = \Gamma_n := \qquad 1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n$

Theorem (A. Solomon): $HK_{\Gamma_n} \cong C_n$

Standard effective representations Φ of C_n : $\mathbf{v} = (v_1, v_2, \dots, v_n)$ basis of \mathbb{k}^n , action

$$e_i(v_j) = \begin{cases} v_j, & j \neq i; \\ v_{j-1}, & j = i > 1; \\ 0, & j = i = 1. \end{cases}$$

Catalan monoid: C_n — order preserving (i.e. $a \le b \Rightarrow f(a) \le f(b)$) and order decreasing (i.e. $f(a) \le a$) transformations of $\{0, 1, ..., n\}$.

 $|\mathbf{C}_n| = \frac{1}{n+1} {2n \choose n}$ — the *n*-th Catalan number

 $\Gamma = \Gamma_n := \qquad 1 \xrightarrow{\qquad >} 2 \xrightarrow{\qquad >} \cdots \xrightarrow{\qquad >} n$

Theorem (A. Solomon): $HK_{\Gamma_n} \cong C_n$

Standard effective representations Φ of C_n : $\mathbf{v} = (v_1, v_2, \dots, v_n)$ basis of \mathbb{k}^n , action

$$e_i(v_j) = \begin{cases} v_j, & j \neq i; \\ v_{j-1}, & j = i > 1; \\ 0, & j = i = 1. \end{cases}$$

Catalan monoid: C_n — order preserving (i.e. $a \le b \Rightarrow f(a) \le f(b)$) and order decreasing (i.e. $f(a) \le a$) transformations of $\{0, 1, ..., n\}$.

 $|\mathbf{C}_n| = \frac{1}{n+1} {2n \choose n}$ — the *n*-th Catalan number

 $\Gamma = \Gamma_n := \qquad 1 \xrightarrow{\qquad >} 2 \xrightarrow{\qquad >} \cdots \xrightarrow{\qquad >} n$

Theorem (A. Solomon): $HK_{\Gamma_n} \cong C_n$

Standard effective representations Φ of C_n $\mathbf{v} = (v_1, v_2, \dots, v_n)$ basis of \mathbb{k}^n , action

$$e_i(v_j) = \begin{cases} v_j, & j \neq i; \\ v_{j-1}, & j = i > 1; \\ 0, & j = i = 1. \end{cases}$$

Catalan monoid: C_n — order preserving (i.e. $a \le b \Rightarrow f(a) \le f(b)$) and order decreasing (i.e. $f(a) \le a$) transformations of $\{0, 1, ..., n\}$.

 $|\mathbf{C}_n| = \frac{1}{n+1} {\binom{2n}{n}}$ — the *n*-th Catalan number

 $\Gamma = \Gamma_n := \qquad 1 \xrightarrow{\qquad >} 2 \xrightarrow{\qquad >} \cdots \xrightarrow{\qquad >} n$

Theorem (A. Solomon): $HK_{\Gamma_n} \cong C_n$

Standard effective representations Φ of C_n :

 $\mathbf{v} = (v_1, v_2, \dots, v_n)$ basis of \mathbb{k}^n , action

$$e_i(v_j) = \begin{cases} v_j, & j \neq i; \\ v_{j-1}, & j = i > 1; \\ 0, & j = i = 1. \end{cases}$$

Catalan monoid: C_n — order preserving (i.e. $a \le b \Rightarrow f(a) \le f(b)$) and order decreasing (i.e. $f(a) \le a$) transformations of $\{0, 1, ..., n\}$.

 $|\mathbf{C}_n| = \frac{1}{n+1} {2n \choose n}$ — the *n*-th Catalan number

 $\Gamma = \Gamma_n := \qquad 1 \xrightarrow{\qquad >} 2 \xrightarrow{\qquad >} \cdots \xrightarrow{\qquad >} n$

Theorem (A. Solomon): $HK_{\Gamma_n} \cong C_n$

Standard effective representations Φ of C_n : $\mathbf{v} = (v_1, v_2, \dots, v_n)$ basis of \mathbb{k}^n , action

$$e_i(v_j) = \begin{cases} v_j, & j \neq i; \\ v_{j-1}, & j = i > 1; \\ 0, & j = i = 1. \end{cases}$$

Catalan monoid: C_n — order preserving (i.e. $a \le b \Rightarrow f(a) \le f(b)$) and order decreasing (i.e. $f(a) \le a$) transformations of $\{0, 1, ..., n\}$.

 $|\mathbf{C}_n| = \frac{1}{n+1} {2n \choose n}$ — the *n*-th Catalan number

 $\Gamma = \Gamma_n := \qquad 1 \xrightarrow{\qquad >} 2 \xrightarrow{\qquad >} \cdots \xrightarrow{\qquad >} n$

Theorem (A. Solomon): $HK_{\Gamma_n} \cong C_n$

Standard effective representations Φ of C_n : $\mathbf{v} = (v_1, v_2, \dots, v_n)$ basis of \mathbb{k}^n , action

$$e_i(v_j) = \begin{cases} v_j, & j \neq i; \\ v_{j-1}, & j = i > 1; \\ 0, & j = i = 1. \end{cases}$$

- Γ acyclic quiver (no loops but multiple edges allowed)
- $\Bbbk\Gamma$ path category of Γ
 - ► objects: vertices of Γ
 - morphisms: linear combinations of paths in Γ
 - composition: concatenation of paths

Representation of $k\Gamma$ — functor to k-vector spaces, i.e.

- ▶ objects → vector space
- paths in $\Gamma \mapsto$ linear map
- ► concatenation of paths → composition of linear maps

kΓ-mod — category of locally finite dimensional representations (morphisms= natural transformations of functors)

- Γ acyclic quiver (no loops but multiple edges allowed)
- $\Bbbk\Gamma$ path category of I
 - ► objects: vertices of Γ
 - Morphisms: linear combinations of paths in Γ
 - composition: concatenation of paths

Representation of $k\Gamma$ — functor to k-vector spaces, i.e.

- ▶ objects → vector space
- paths in $\Gamma \mapsto$ linear map
- ► concatenation of paths → composition of linear maps

kΓ-mod — category of locally finite dimensional representations (morphisms= natural transformations of functors)

- Γ acyclic quiver (no loops but multiple edges allowed)
- $\Bbbk \Gamma$ path category of Γ
 - ► objects: vertices of Γ
 - \blacktriangleright morphisms: linear combinations of paths in Γ
 - composition: concatenation of paths

Representation of $k\Gamma$ — functor to k-vector spaces, i.e.

- ▶ objects → vector space
- paths in $\Gamma \mapsto$ linear map
- ► concatenation of paths → composition of linear maps

kΓ-mod — category of locally finite dimensional representations (morphisms= natural transformations of functors)

- Γ acyclic quiver (no loops but multiple edges allowed)
- $\Bbbk \Gamma$ path category of Γ

► objects: vertices of Γ

- Morphisms: linear combinations of paths in Γ
- composition: concatenation of paths

Representation of $k\Gamma$ — functor to k-vector spaces, i.e.

- ▶ objects → vector space
- paths in $\Gamma \mapsto$ linear map
- ► concatenation of paths → composition of linear maps

kΓ-mod — category of locally finite dimensional representations (morphisms= natural transformations of functors)

- Γ acyclic quiver (no loops but multiple edges allowed)
- $\Bbbk \Gamma$ path category of Γ
 - ► objects: vertices of Γ
 - morphisms: linear combinations of paths in Γ
 - composition: concatenation of paths

Representation of $\Bbbk\Gamma$ — functor to \Bbbk -vector spaces, i.e.

- ▶ objects → vector space
- paths in $\Gamma \mapsto$ linear map
- ► concatenation of paths → composition of linear maps

kΓ-mod — category of locally finite dimensional representations (morphisms= natural transformations of functors)

- Γ acyclic quiver (no loops but multiple edges allowed)
- $\Bbbk \Gamma$ path category of Γ
 - ► objects: vertices of Γ
 - morphisms: linear combinations of paths in Γ
 - composition: concatenation of paths

Representation of $\Bbbk\Gamma$ — functor to \Bbbk -vector spaces, i.e.

- ▶ objects → vector space
- paths in $\Gamma \mapsto$ linear map
- ► concatenation of paths → composition of linear maps

kΓ-mod — category of locally finite dimensional representations (morphisms= natural transformations of functors)

- Γ acyclic quiver (no loops but multiple edges allowed)
- $\Bbbk \Gamma$ path category of Γ
 - ► objects: vertices of Γ
 - \blacktriangleright morphisms: linear combinations of paths in Γ
 - composition: concatenation of paths

Representation of $\Bbbk\Gamma$ — functor to \Bbbk -vector spaces, i.e.

- ▶ objects → vector space
- paths in $\Gamma \mapsto$ linear map
- ► concatenation of paths → composition of linear maps

kΓ-mod — category of locally finite dimensional representations (morphisms= natural transformations of functors)

- Γ acyclic quiver (no loops but multiple edges allowed)
- $\Bbbk \Gamma$ path category of Γ
 - ► objects: vertices of Γ
 - \blacktriangleright morphisms: linear combinations of paths in Γ
 - composition: concatenation of paths

Representation of $\Bbbk\Gamma$ — functor to \Bbbk -vector spaces, i.e.

- $\blacktriangleright \text{ objects} \mapsto \text{vector space}$
- paths in $\Gamma \mapsto$ linear map
- ▶ concatenation of paths → composition of linear maps

kr-mod — category of locally finite dimensional representations (morphisms= natural transformations of functors)

- Γ acyclic quiver (no loops but multiple edges allowed)
- $\Bbbk \Gamma$ path category of Γ
 - ► objects: vertices of Γ
 - \blacktriangleright morphisms: linear combinations of paths in Γ
 - composition: concatenation of paths

Representation of $\Bbbk\Gamma$ — functor to \Bbbk -vector spaces, i.e.

- $\blacktriangleright \text{ objects} \mapsto \text{vector space}$
- ▶ paths in $\Gamma \mapsto$ linear map
- ► concatenation of paths → composition of linear maps

k∇-mod — category of locally finite dimensional representations (morphisms= natural transformations of functors)

- Γ acyclic quiver (no loops but multiple edges allowed)
- $\Bbbk \Gamma$ path category of Γ
 - ► objects: vertices of Γ
 - morphisms: linear combinations of paths in Γ
 - composition: concatenation of paths

Representation of $\Bbbk\Gamma$ — functor to \Bbbk -vector spaces, i.e.

- $\blacktriangleright \text{ objects} \mapsto \text{vector space}$
- paths in $\Gamma \mapsto$ linear map
- \blacktriangleright concatenation of paths \mapsto composition of linear maps

k∇-mod — category of locally finite dimensional representations (morphisms= natural transformations of functors)

- Γ acyclic quiver (no loops but multiple edges allowed)
- $\Bbbk \Gamma$ path category of Γ
 - ► objects: vertices of Γ
 - \blacktriangleright morphisms: linear combinations of paths in Γ
 - ▶ composition: concatenation of paths

Representation of $\Bbbk\Gamma$ — functor to \Bbbk -vector spaces, i.e.

- $\blacktriangleright \text{ objects} \mapsto \text{vector space}$
- paths in $\Gamma \mapsto$ linear map
- \blacktriangleright concatenation of paths \mapsto composition of linear maps

 $\Bbbk\Gamma\text{-}\mathrm{mod} - \mathsf{category} \text{ of locally finite dimensional representations} \\ (\mathsf{morphisms} = \mathsf{natural transformations of functors})$

- Γ acyclic quiver (no loops but multiple edges allowed)
- $\Bbbk \Gamma$ path category of Γ
 - ► objects: vertices of Γ
 - \blacktriangleright morphisms: linear combinations of paths in Γ
 - ▶ composition: concatenation of paths

Representation of $\Bbbk\Gamma$ — functor to \Bbbk -vector spaces, i.e.

- $\blacktriangleright \text{ objects} \mapsto \text{vector space}$
- paths in $\Gamma \mapsto$ linear map
- \blacktriangleright concatenation of paths \mapsto composition of linear maps

 $\Bbbk\Gamma\text{-}\mathrm{mod} - \mathsf{category} \text{ of locally finite dimensional representations} \\ (\mathsf{morphisms} = \mathsf{natural transformations of functors})$

 Γ — acyclic quiver, $i \in \Gamma$

 $F_i : \&\Gamma - mod \to \&\Gamma - mod \longrightarrow projection functor$ "factor out the maximal possible $\&\Gamma$ -invariant subspace at vertex i" **Theorem (Grensing).** Projections functors satisfy:

► $F_iF_j \cong F_jF_i$ if *i* and *j* are not connected in Γ ;

► $F_iF_jF_i \cong F_jF_iF_j \cong F_iF_j$ if there is an arrow from *i* to *j* in Γ .

Difficulty. Projections functors are not exact.

Fact. Projections functors send injectives to injectives.

Way out. Let G_i be the unique left exact functor whose action on the additive category of injective modules is isomorphic to that of F_i

Γ — acyclic quiver, $i \in \Gamma$

 $F_i : \&\Gamma - mod \to \&\Gamma - mod \longrightarrow projection functor$ "factor out the maximal possible $\&\Gamma$ -invariant subspace at vertex i" **Theorem (Grensing).** Projections functors satisfy:

► $F_iF_j \cong F_jF_i$ if *i* and *j* are not connected in Γ ;

► $F_iF_jF_i \cong F_jF_iF_j \cong F_iF_j$ if there is an arrow from *i* to *j* in Γ .

Difficulty. Projections functors are not exact.

Fact. Projections functors send injectives to injectives.

Way out. Let G_i be the unique left exact functor whose action on the additive category of injective modules is isomorphic to that of F_i

 Γ — acyclic quiver, $i \in \Gamma$

$F_i : \mathbb{k}\Gamma \operatorname{-mod} \to \mathbb{k}\Gamma \operatorname{-mod} \longrightarrow \operatorname{projection} functor$ "factor out the maximal possible $\mathbb{k}\Gamma$ -invariant subspace at vertex *i*"

Theorem (Grensing). Projections functors satisfy:

▶ $F_iF_i \cong F_iF_i$ if *i* and *j* are not connected in Γ ;

► $\mathbf{F}_i \mathbf{F}_j \mathbf{F}_i \cong \mathbf{F}_j \mathbf{F}_j \mathbf{F}_j \cong \mathbf{F}_i \mathbf{F}_j$ if there is an arrow from *i* to *j* in Γ .

Difficulty. Projections functors are not exact.

Fact. Projections functors send injectives to injectives.

Way out. Let G_i be the unique left exact functor whose action on the additive category of injective modules is isomorphic to that of F_i

 Γ — acyclic quiver, $i \in \Gamma$

 $F_i : \mathbb{k}\Gamma \operatorname{-mod} \to \mathbb{k}\Gamma \operatorname{-mod} \longrightarrow \operatorname{projection} \operatorname{functor}$ "factor out the maximal possible $\mathbb{k}\Gamma$ -invariant subspace at vertex *i*"

Theorem (Grensing). Projections functors satisfy:

▶ $\mathbf{F}_i \mathbf{F}_j \cong \mathbf{F}_j \mathbf{F}_i$ if *i* and *j* are not connected in Γ ;

 $\blacktriangleright \mathbf{F}_i \mathbf{F}_j \mathbf{F}_i \cong \mathbf{F}_j \mathbf{F}_i \mathbf{F}_j \cong \mathbf{F}_i \mathbf{F}_j \text{ if there is an arrow from } i \text{ to } j \text{ in } \Gamma.$

Difficulty. Projections functors are not exact.

Fact. Projections functors send injectives to injectives.

Way out. Let G_i be the unique left exact functor whose action on the additive category of injective modules is isomorphic to that of F_i

 Γ — acyclic quiver, $i \in \Gamma$

 $F_i : \Bbbk \Gamma \operatorname{-mod} \to \Bbbk \Gamma \operatorname{-mod} \longrightarrow \operatorname{projection} functor$ "factor out the maximal possible $\Bbbk \Gamma$ -invariant subspace at vertex *i*"

Theorem (Grensing). Projections functors satisfy:

• $F_iF_j \cong F_jF_i$ if *i* and *j* are not connected in Γ ;

▶ $F_iF_jF_i \cong F_jF_iF_j \cong F_iF_j$ if there is an arrow from *i* to *j* in Γ .

Difficulty. Projections functors are not exact.

Fact. Projections functors send injectives to injectives.

Way out. Let G_i be the unique left exact functor whose action on the additive category of injective modules is isomorphic to that of F_i

 Γ — acyclic quiver, $i \in \Gamma$

 $F_i : \Bbbk \Gamma \operatorname{-mod} \to \Bbbk \Gamma \operatorname{-mod} \longrightarrow \operatorname{projection} functor$ "factor out the maximal possible $\Bbbk \Gamma$ -invariant subspace at vertex *i*"

Theorem (Grensing). Projections functors satisfy:

• $F_iF_j \cong F_jF_i$ if *i* and *j* are not connected in Γ ;

► $F_iF_jF_i \cong F_jF_iF_j \cong F_iF_j$ if there is an arrow from *i* to *j* in Γ .

Difficulty. Projections functors are not exact.

Fact. Projections functors send injectives to injectives.

Way out. Let G_i be the unique left exact functor whose action on the additive category of injective modules is isomorphic to that of F_i

 Γ — acyclic quiver, $i \in \Gamma$

 $F_i : \Bbbk \Gamma \operatorname{-mod} \to \Bbbk \Gamma \operatorname{-mod} \longrightarrow \operatorname{projection} functor$ "factor out the maximal possible $\Bbbk \Gamma$ -invariant subspace at vertex *i*"

Theorem (Grensing). Projections functors satisfy:

• $F_iF_j \cong F_jF_i$ if *i* and *j* are not connected in Γ ;

► $F_iF_jF_i \cong F_jF_iF_j \cong F_iF_j$ if there is an arrow from *i* to *j* in Γ .

Difficulty. Projections functors are not exact.

Fact. Projections functors send injectives to injectives.

Way out. Let G_i be the unique left exact functor whose action on the additive category of injective modules is isomorphic to that of F_i

 Γ — acyclic quiver, $i \in \Gamma$

 $F_i : \Bbbk \Gamma \operatorname{-mod} \to \Bbbk \Gamma \operatorname{-mod} \longrightarrow \operatorname{projection} \operatorname{functor}$ "factor out the maximal possible $\Bbbk \Gamma$ -invariant subspace at vertex *i*"

Theorem (Grensing). Projections functors satisfy:

- $F_iF_i \cong F_iF_i$ if *i* and *j* are not connected in Γ ;
- ► $F_iF_iF_i \cong F_iF_iF_i \cong F_iF_i$ if there is an arrow from *i* to *j* in Γ .

Difficulty. Projections functors are not exact.

Fact. Projections functors send injectives to injectives.

 Γ — acyclic quiver, $i \in \Gamma$

 $F_i : \Bbbk \Gamma \operatorname{-mod} \to \Bbbk \Gamma \operatorname{-mod} \longrightarrow \operatorname{projection} functor$ "factor out the maximal possible $\Bbbk \Gamma$ -invariant subspace at vertex *i*"

Theorem (Grensing). Projections functors satisfy:

• $F_iF_j \cong F_jF_i$ if *i* and *j* are not connected in Γ ;

► $F_iF_jF_i \cong F_jF_iF_j \cong F_iF_j$ if there is an arrow from *i* to *j* in Γ .

Difficulty. Projections functors are not exact.

Fact. Projections functors send injectives to injectives.

Way out. Let G_i be the unique left exact functor whose action on the additive category of injective modules is isomorphic to that of F_i

Fact: G_i is exact

 Γ — acyclic quiver, $i \in \Gamma$

 $F_i : \Bbbk \Gamma \operatorname{-mod} \to \Bbbk \Gamma \operatorname{-mod} \longrightarrow \operatorname{projection} functor$ "factor out the maximal possible $\Bbbk \Gamma$ -invariant subspace at vertex *i*"

Theorem (Grensing). Projections functors satisfy:

• $F_iF_j \cong F_jF_i$ if *i* and *j* are not connected in Γ ;

► $F_iF_jF_i \cong F_jF_iF_j \cong F_iF_j$ if there is an arrow from *i* to *j* in Γ .

Difficulty. Projections functors are not exact.

Fact. Projections functors send injectives to injectives.

Way out. Let G_i be the unique left exact functor whose action on the additive category of injective modules is isomorphic to that of F_i

 Γ — acyclic quiver, $i \in \Gamma$

 $F_i : \Bbbk \Gamma \operatorname{-mod} \to \Bbbk \Gamma \operatorname{-mod} \longrightarrow \operatorname{projection} functor$ "factor out the maximal possible $\Bbbk \Gamma$ -invariant subspace at vertex *i*"

Theorem (Grensing). Projections functors satisfy:

• $F_iF_j \cong F_jF_i$ if *i* and *j* are not connected in Γ ;

► $F_iF_jF_i \cong F_jF_iF_j \cong F_iF_j$ if there is an arrow from *i* to *j* in Γ .

Difficulty. Projections functors are not exact.

Fact. Projections functors send injectives to injectives.

Way out. Let G_i be the unique left exact functor whose action on the additive category of injective modules is isomorphic to that of F_i

 Γ — acyclic quiver, Θ — underlying simple digraph

Definition: 2-category $\mathscr{C}_{\Theta,\Gamma}$.

▶ Object: \clubsuit := $\Bbbk\Gamma$ -mod;

- ► 1-morphisms: Endofunctors on kF-mod isomorphic to a direct sum of direct summands of compositions of the G_i'th
- > 2-morphisms: natural transformations of functors

The 2-category $\mathscr{C}_{\Theta,\Gamma}$ is given by its *defining* 2-*representation*, that is a functorial action on $k\Gamma$ -mod.

Theorem (Grensing-M): $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit,\clubsuit) \cong \mathbb{Z}[\mathsf{C}_n].$

Corollary: In the basis of simple modules, the action of $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit, \clubsuit)$ on $[\&\Gamma-mod]$ gives Φ .

Consequence: In the basis of projective (injective) modules we get two new (but equivalent) effective linear representations of \mathbb{C}_n .

Γ — acyclic quiver, Θ — underlying simple digraph

Definition: 2-category $\mathscr{C}_{\Theta,\Gamma}$.

▶ Object: \clubsuit := $\Bbbk\Gamma$ -mod;

- ► 1-morphisms: Endofunctors on kΓ-mod isomorphic to a direct sum of direct summands of compositions of the G_i'th
- 2-morphisms: natural transformations of functors

The 2-category $\mathscr{C}_{\Theta,\Gamma}$ is given by its *defining* 2-*representation*, that is a functorial action on $k\Gamma$ -mod.

Theorem (Grensing-M): $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit,\clubsuit) \cong \mathbb{Z}[\mathsf{C}_n].$

Corollary: In the basis of simple modules, the action of $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit, \clubsuit)$ on $[\&\Gamma-mod]$ gives Φ .

Consequence: In the basis of projective (injective) modules we get two new (but equivalent) effective linear representations of \mathbb{C}_n .

 Γ — acyclic quiver, Θ — underlying simple digraph

Definition: 2-category $\mathscr{C}_{\Theta,\Gamma}$.

► Object: \clubsuit := $\Bbbk\Gamma$ -mod;

- ▶ 1-morphisms: Endofunctors on kr-mod isomorphic to a direct sum of direct summands of compositions of the G_i'th
- 2-morphisms: natural transformations of functors

The 2-category $\mathscr{C}_{\Theta,\Gamma}$ is given by its *defining* 2-*representation*, that is a functorial action on $k\Gamma$ -mod.

Theorem (Grensing-M): $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit,\clubsuit) \cong \mathbb{Z}[\mathsf{C}_n].$

Corollary: In the basis of simple modules, the action of $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit, \clubsuit)$ on $[\&\Gamma - mod]$ gives Φ .

Consequence: In the basis of projective (injective) modules we get two new (but equivalent) effective linear representations of \mathbb{C}_n .

 Γ — acyclic quiver, Θ — underlying simple digraph

Definition: 2-category $\mathscr{C}_{\Theta,\Gamma}$.

• Object: $\mathbf{A} := \mathbf{k} \Gamma$ -mod;

- ▶ 1-morphisms: Endofunctors on kr-mod isomorphic to a direct sum of direct summands of compositions of the G_i'th
- 2-morphisms: natural transformations of functors

The 2-category $\mathscr{C}_{\Theta,\Gamma}$ is given by its *defining* 2-*representation*, that is a functorial action on $k\Gamma$ -mod.

Theorem (Grensing-M): $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit,\clubsuit) \cong \mathbb{Z}[\mathsf{C}_n].$

Corollary: In the basis of simple modules, the action of $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit, \clubsuit)$ on $[\&\Gamma - mod]$ gives Φ .

Consequence: In the basis of projective (injective) modules we get two new (but equivalent) effective linear representations of \mathbb{C}_n .

 Γ — acyclic quiver, Θ — underlying simple digraph

Definition: 2-category $\mathscr{C}_{\Theta,\Gamma}$.

• Object: $\mathbf{\clubsuit} := \mathbf{k} \Gamma$ -mod;

- ► 1-morphisms: Endofunctors on kr-mod isomorphic to a direct sum of direct summands of compositions of the G_i'th
- 2-morphisms: natural transformations of functors

The 2-category $\mathscr{C}_{\Theta,\Gamma}$ is given by its *defining* 2-*representation*, that is a functorial action on $\Bbbk\Gamma$ -mod.

Theorem (Grensing-M): $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit,\clubsuit) \cong \mathbb{Z}[\mathsf{C}_n].$

Corollary: In the basis of simple modules, the action of $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit, \clubsuit)$ on $[\&\Gamma - mod]$ gives Φ .

Consequence: In the basis of projective (injective) modules we get two new (but equivalent) effective linear representations of \mathbb{C}_n .

 Γ — acyclic quiver, Θ — underlying simple digraph

Definition: 2-category $\mathscr{C}_{\Theta,\Gamma}$.

• Object: $\mathbf{\clubsuit} := \mathbf{k} \Gamma$ -mod;

- ► 1-morphisms: Endofunctors on kr-mod isomorphic to a direct sum of direct summands of compositions of the G_i'th
- ▶ 2-morphisms: natural transformations of functors

The 2-category 𝒞_{Θ,Γ} is given by its *defining* 2-*representation*, that is a functorial action on kΓ-mod.

Theorem (Grensing-M): $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit,\clubsuit) \cong \mathbb{Z}[\mathsf{C}_n].$

Corollary: In the basis of simple modules, the action of $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit, \clubsuit)$ on $[\&\Gamma - mod]$ gives Φ .

Consequence: In the basis of projective (injective) modules we get two new (but equivalent) effective linear representations of \mathbb{C}_n .

 Γ — acyclic quiver, Θ — underlying simple digraph

Definition: 2-category $\mathscr{C}_{\Theta,\Gamma}$.

• Object: $\mathbf{\clubsuit} := \mathbf{k} \Gamma$ -mod;

- ► 1-morphisms: Endofunctors on kΓ-mod isomorphic to a direct sum of direct summands of compositions of the G_i'th
- ▶ 2-morphisms: natural transformations of functors

The 2-category $\mathscr{C}_{\Theta,\Gamma}$ is given by its *defining* 2-*representation*, that is a functorial action on $\Bbbk\Gamma$ -mod.

Theorem (Grensing-M): $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit,\clubsuit) \cong \mathbb{Z}[\mathsf{C}_n].$

Corollary: In the basis of simple modules, the action of $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit, \clubsuit)$ on $[\&\Gamma - mod]$ gives Φ .

Consequence: In the basis of projective (injective) modules we get two new (but equivalent) effective linear representations of \mathbb{C}_n .
Γ — acyclic quiver, Θ — underlying simple digraph

Definition: 2-category $\mathscr{C}_{\Theta,\Gamma}$.

• Object: $\clubsuit := \Bbbk \Gamma \operatorname{-mod};$

- ► 1-morphisms: Endofunctors on kΓ-mod isomorphic to a direct sum of direct summands of compositions of the G_i'th
- ▶ 2-morphisms: natural transformations of functors

The 2-category $\mathscr{C}_{\Theta,\Gamma}$ is given by its *defining* 2-*representation*, that is a functorial action on $\Bbbk\Gamma$ -mod.

Theorem (Grensing-M): $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit,\clubsuit) \cong \mathbb{Z}[\mathsf{C}_n].$

Corollary: In the basis of simple modules, the action of $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit, \clubsuit)$ on $[\Bbbk\Gamma\text{-mod}]$ gives Φ .

Consequence: In the basis of projective (injective) modules we get two new (but equivalent) effective linear representations of \mathbb{C}_n .

San

 Γ — acyclic quiver, Θ — underlying simple digraph

Definition: 2-category $\mathscr{C}_{\Theta,\Gamma}$.

• Object: $\mathbf{\clubsuit} := \mathbf{k} \Gamma$ -mod;

- ► 1-morphisms: Endofunctors on kΓ-mod isomorphic to a direct sum of direct summands of compositions of the G_i'th
- ▶ 2-morphisms: natural transformations of functors

The 2-category $\mathscr{C}_{\Theta,\Gamma}$ is given by its *defining* 2-*representation*, that is a functorial action on $\Bbbk\Gamma$ -mod.

Theorem (Grensing-M): $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit,\clubsuit) \cong \mathbb{Z}[\mathsf{C}_n].$

Corollary: In the basis of simple modules, the action of $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit, \clubsuit)$ on $[\&\Gamma\text{-mod}]$ gives Φ .

Consequence: In the basis of projective (injective) modules we get two new (but equivalent) effective linear representations of \mathbb{C}_n .

(미) (종) (종) (종)

San

 Γ — acyclic quiver, Θ — underlying simple digraph

Definition: 2-category $\mathscr{C}_{\Theta,\Gamma}$.

• Object: $\clubsuit := \Bbbk \Gamma \operatorname{-mod};$

- ▶ 1-morphisms: Endofunctors on $\Bbbk\Gamma\text{-mod}$ isomorphic to a direct sum of direct summands of compositions of the $G_i{'}th$
- ▶ 2-morphisms: natural transformations of functors

The 2-category $\mathscr{C}_{\Theta,\Gamma}$ is given by its *defining* 2-*representation*, that is a functorial action on $\Bbbk\Gamma$ -mod.

Theorem (Grensing-M): $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit,\clubsuit) \cong \mathbb{Z}[\mathsf{C}_n].$

Corollary: In the basis of simple modules, the action of $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit, \clubsuit)$ on $[\&\Gamma \text{-mod}]$ gives Φ .

Consequence: In the basis of projective (injective) modules we get two new (but equivalent) effective linear representations of \mathbb{C}_n .

Sac

 Γ — acyclic quiver, Θ — underlying simple digraph

Definition: 2-category $\mathscr{C}_{\Theta,\Gamma}$.

• Object: $\clubsuit := \Bbbk \Gamma \operatorname{-mod};$

- ▶ 1-morphisms: Endofunctors on $\Bbbk\Gamma\text{-mod}$ isomorphic to a direct sum of direct summands of compositions of the $G_i{'}th$
- ▶ 2-morphisms: natural transformations of functors

The 2-category $\mathscr{C}_{\Theta,\Gamma}$ is given by its *defining* 2-*representation*, that is a functorial action on $\Bbbk\Gamma$ -mod.

Theorem (Grensing-M): $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit,\clubsuit) \cong \mathbb{Z}[\mathsf{C}_n].$

Corollary: In the basis of simple modules, the action of $[\mathscr{C}_{\Gamma_n,\Gamma_n}](\clubsuit, \clubsuit)$ on $[\&\Gamma \text{-mod}]$ gives Φ .

Consequence: In the basis of projective (injective) modules we get two new (but equivalent) effective linear representations of \mathbb{C}_n .

Sac

Fact: Mapping e_i to G_i gives a weak functorial action of HK_{Θ} on $\Bbbk\Gamma$ -mod.

Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on $\{1, 2, ..., n\}$ oriented from smaller to bigger vertices (i.e. \mathbf{HK}_{Θ} is the Kiselman semigroup), then there exists Γ such that this action is faithful.

Difficulty: Composition of the G_i 's may decompose!

Problem: What are indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$?

Known full answer: For Γ_n any composition of the G_i 's is indecomposable.

Known partial answer: For a Dynkin quiver of type A and any orientation, indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$ form a monoid T (under composition) generated by idempotents (each $\rightarrow \bullet \rightarrow$ contributes with one generator and each $\rightarrow \bullet \leftarrow$ and $\leftarrow \bullet \rightarrow$ with two generators). There is a presentation for T and a realization of HK_{Θ} inside $\mathbb{Z}[T]$.

Fact: Mapping e_i to G_i gives a weak functorial action of HK_{Θ} on $\Bbbk\Gamma$ -mod.

Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on $\{1, 2, ..., n\}$ oriented from smaller to bigger vertices (i.e. \mathbf{HK}_{Θ} is the Kiselman semigroup), then there exists Γ such that this action is faithful.

Difficulty: Composition of the G_i 's may decompose!

Problem: What are indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$?

Known full answer: For Γ_n any composition of the G_i 's is indecomposable.

Known partial answer: For a Dynkin quiver of type A and any orientation, indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$ form a monoid T (under composition) generated by idempotents (each $\rightarrow \bullet \rightarrow$ contributes with one generator and each $\rightarrow \bullet \leftarrow$ and $\leftarrow \bullet \rightarrow$ with two generators). There is a presentation for T and a realization of HK_{Θ} inside $\mathbb{Z}[T]$.

Fact: Mapping e_i to G_i gives a weak functorial action of HK_{Θ} on $\Bbbk\Gamma$ -mod.

Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on $\{1, 2, \ldots, n\}$ oriented from smaller to bigger vertices (i.e. \mathbf{HK}_{Θ} is the Kiselman semigroup), then there exists Γ such that this action is faithful.

Difficulty: Composition of the G_i's may decompose!

Problem: What are indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$?

Known full answer: For Γ_n any composition of the G_i 's is indecomposable.

Known partial answer: For a Dynkin quiver of type A and any orientation, indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$ form a monoid T (under composition) generated by idempotents (each $\rightarrow \bullet \rightarrow$ contributes with one generator and each $\rightarrow \bullet \leftarrow$ and $\leftarrow \bullet \rightarrow$ with two generators). There is a presentation for T and a realization of HK_{Θ} inside $\mathbb{Z}[T]$.

Fact: Mapping e_i to G_i gives a weak functorial action of HK_{Θ} on $\Bbbk\Gamma$ -mod.

Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on $\{1, 2, ..., n\}$ oriented from smaller to bigger vertices (i.e. \mathbf{HK}_{Θ} is the Kiselman semigroup), then there exists Γ such that this action is faithful.

Difficulty: Composition of the G_i's may decompose!

Problem: What are indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$?

Known full answer: For Γ_n any composition of the G_i 's is indecomposable.

Known partial answer: For a Dynkin quiver of type A and any orientation, indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$ form a monoid T (under composition) generated by idempotents (each $\rightarrow \bullet \rightarrow$ contributes with one generator and each $\rightarrow \bullet \leftarrow$ and $\leftarrow \bullet \rightarrow$ with two generators). There is a presentation for T and a realization of HK_{Θ} inside $\mathbb{Z}[T]$.

・ロト ・ 同ト ・ 王ト ・ 王

Fact: Mapping e_i to G_i gives a weak functorial action of HK_{Θ} on $\Bbbk\Gamma$ -mod.

Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on $\{1, 2, ..., n\}$ oriented from smaller to bigger vertices (i.e. \mathbf{HK}_{Θ} is the Kiselman semigroup), then there exists Γ such that this action is faithful.

Difficulty: Composition of the G_i 's may decompose!

Problem: What are indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$?

Known full answer: For Γ_n any composition of the G_i 's is indecomposable.

Known partial answer: For a Dynkin quiver of type A and any orientation, indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$ form a monoid T (under composition) generated by idempotents (each $\rightarrow \bullet \rightarrow$ contributes with one generator and each $\rightarrow \bullet \leftarrow$ and $\leftarrow \bullet \rightarrow$ with two generators). There is a presentation for T and a realization of HK_{Θ} inside $\mathbb{Z}[T]$.

・ロト ・ 同ト ・ 王ト ・ 王

Fact: Mapping e_i to G_i gives a weak functorial action of HK_{Θ} on $\Bbbk\Gamma$ -mod.

Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on $\{1, 2, \ldots, n\}$ oriented from smaller to bigger vertices (i.e. \mathbf{HK}_{Θ} is the Kiselman semigroup), then there exists Γ such that this action is faithful.

Difficulty: Composition of the G_i's may decompose!

Problem: What are indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$?

Known full answer: For Γ_n any composition of the G_i 's is indecomposable.

Known partial answer: For a Dynkin quiver of type A and any orientation, indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$ form a monoid T (under composition) generated by idempotents (each $\rightarrow \bullet \rightarrow$ contributes with one generator and each $\rightarrow \bullet \leftarrow$ and $\leftarrow \bullet \rightarrow$ with two generators). There is a presentation for T and a realization of HK_{Θ} inside $\mathbb{Z}[T]$.

Dac

Fact: Mapping e_i to G_i gives a weak functorial action of HK_{Θ} on $\Bbbk\Gamma$ -mod.

Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on $\{1, 2, \ldots, n\}$ oriented from smaller to bigger vertices (i.e. \mathbf{HK}_{Θ} is the Kiselman semigroup), then there exists Γ such that this action is faithful.

Difficulty: Composition of the G_i's may decompose!

Problem: What are indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$?

Known full answer: For Γ_n any composition of the G_i 's is indecomposable.

Known partial answer: For a Dynkin quiver of type A and any orientation, indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$ form a monoid T (under composition) generated by idempotents (each $\rightarrow \bullet \rightarrow$ contributes with one generator and each $\rightarrow \bullet \leftarrow$ and $\leftarrow \bullet \rightarrow$ with two generators). There is a presentation for T and a realization of \mathbf{HK}_{Θ} inside $\mathbb{Z}[T]$.

Fact: Mapping e_i to G_i gives a weak functorial action of HK_{Θ} on $\Bbbk\Gamma$ -mod.

Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on $\{1, 2, \ldots, n\}$ oriented from smaller to bigger vertices (i.e. \mathbf{HK}_{Θ} is the Kiselman semigroup), then there exists Γ such that this action is faithful.

Difficulty: Composition of the G_i 's may decompose!

Problem: What are indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$?

Known full answer: For Γ_n any composition of the G_i 's is indecomposable.

Known partial answer: For a Dynkin quiver of type A and any orientation, indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$ form a monoid T (under composition) generated by idempotents (each $\rightarrow \bullet \rightarrow$ contributes with one generator and each $\rightarrow \bullet \leftarrow$ and $\leftarrow \bullet \rightarrow$ with two generators). There is a presentation for T and a realization of \mathbf{HK}_{Θ} inside $\mathbb{Z}[T]$.

Dac

Fact: Mapping e_i to G_i gives a weak functorial action of HK_{Θ} on $\Bbbk\Gamma$ -mod.

Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on $\{1, 2, \ldots, n\}$ oriented from smaller to bigger vertices (i.e. \mathbf{HK}_{Θ} is the Kiselman semigroup), then there exists Γ such that this action is faithful.

Difficulty: Composition of the G_i 's may decompose!

Problem: What are indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$?

Known full answer: For Γ_n any composition of the G_i 's is indecomposable.

Known partial answer: For a Dynkin quiver of type A and any orientation, indecomposable 1-morphisms in $\mathscr{C}_{\Theta,\Gamma}$ form a monoid T (under composition) generated by idempotents (each $\rightarrow \bullet \rightarrow$ contributes with one generator and each $\rightarrow \bullet \leftarrow$ and $\leftarrow \bullet \rightarrow$ with two generators). There is a presentation for T and a realization of \mathbf{HK}_{Θ} inside $\mathbb{Z}[T]$.

Dac