Dinear reprefentationf of femitgroup from zecategoríef

Dolodymyr $\mathfrak{H a z o r d} \mathfrak{H E}$

($\mathfrak{H p p} \mathfrak{p l a} \mathfrak{L}$ Univerfity)
$\mathfrak{W o r k}$ fop "Semigroup Rieprefentationt $"$ 2tpril 10,2013 , \mathbb{E} Sinburgb, 4 A

2-categories: definition

Definition. A 2-category is a category enriched over the monoidal
category Cat of small categories (in the latter the monoidal structure is
induced by the cartesian product)

2-categories: definition

Definition. A 2-category is a category enriched over the monoidal category Cat of small categories (in the latter the monoidal structure is induced by the cartesian product).

2-categories: definition

Definition. A 2-category is a category enriched over the monoidal category Cat of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2 -category \mathscr{C} is given by the following data:

2-categories: definition

Definition. A 2-category is a category enriched over the monoidal category Cat of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2 -category \mathscr{C} is given by the following data:

- objects of \mathscr{C};

2-categories: definition

Definition. A 2-category is a category enriched over the monoidal category Cat of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2 -category \mathscr{C} is given by the following data:

- objects of \mathscr{C};
- small categories $\mathscr{C}(i, j)$ of morphisms;

2-categories: definition

Definition. A 2-category is a category enriched over the monoidal category Cat of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2-category \mathscr{C} is given by the following data:

- objects of \mathscr{C};
- small categories $\mathscr{C}(i, j)$ of morphisms;
- functorial composition $\mathscr{C}(\mathrm{j}, \mathrm{k}) \times \mathscr{C}(\mathrm{i}, \mathrm{j}) \rightarrow \mathscr{C}(\mathrm{i}, \mathrm{k})$;

2-categories: definition

Definition. A 2-category is a category enriched over the monoidal category Cat of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2-category \mathscr{C} is given by the following data:

- objects of \mathscr{C};
- small categories $\mathscr{C}(i, j)$ of morphisms;
- functorial composition $\mathscr{C}(\mathrm{j}, \mathrm{k}) \times \mathscr{C}(\mathrm{i}, \mathrm{j}) \rightarrow \mathscr{C}(\mathrm{i}, \mathrm{k})$;
- identity objects $\mathbb{1}_{j}$;

2-categories: definition

Definition. A 2-category is a category enriched over the monoidal category Cat of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2-category \mathscr{C} is given by the following data:

- objects of \mathscr{C};
- small categories $\mathscr{C}(i, j)$ of morphisms;
- functorial composition $\mathscr{C}(\mathrm{j}, \mathrm{k}) \times \mathscr{C}(\mathrm{i}, \mathrm{j}) \rightarrow \mathscr{C}(\mathrm{i}, \mathrm{k})$;
- identity objects $\mathbb{1}_{j}$;

2-categories: definition

Definition. A 2-category is a category enriched over the monoidal category Cat of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2-category \mathscr{C} is given by the following data:

- objects of \mathscr{C};
- small categories $\mathscr{C}(i, j)$ of morphisms;
- functorial composition $\mathscr{C}(\mathrm{j}, \mathrm{k}) \times \mathscr{C}(\mathrm{i}, \mathrm{j}) \rightarrow \mathscr{C}(\mathrm{i}, \mathrm{k})$;
- identity objects $\mathbb{1}_{j}$;
which are subject to the obvious set of (strict) axioms.

2-categories: definition

Definition. A 2-category is a category enriched over the monoidal category Cat of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2-category \mathscr{C} is given by the following data:

- objects of \mathscr{C};
- small categories $\mathscr{C}(i, j)$ of morphisms;
- functorial composition $\mathscr{C}(\mathrm{j}, \mathrm{k}) \times \mathscr{C}(\mathrm{i}, \mathrm{j}) \rightarrow \mathscr{C}(\mathrm{i}, \mathrm{k})$;
- identity objects $\mathbb{1}_{j}$;
which are subject to the obvious set of (strict) axioms.

2-categories: terminology and the first example

2-categories: terminology and the first example

Terminology.

2-categories: terminology and the first example

Terminology.

- An object in $\mathscr{C}(\mathrm{i}, \mathrm{j})$ is called a 1-morphism of \mathscr{C}.

2-categories: terminology and the first example

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C}.
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C}.

2-categories: terminology and the first example

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C}.
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C}.
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_{1}.

2-categories: terminology and the first example

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C}.
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C}.
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted o_{1}.
- Composition in \mathscr{C} is called horizontal and denoted \circ_{0}.

Principal example.

2-categories: terminology and the first example

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C}.
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C}.
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted o_{1}.
- Composition in \mathscr{C} is called horizontal and denoted \circ_{0}.

[^0] - Objects of Cat are small categories.

2-categories: terminology and the first example

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C}.
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C}.
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted o_{1}.
- Composition in \mathscr{C} is called horizontal and denoted \circ_{0}.

Principal example. The category Cat is a 2 -category.

2-categories: terminology and the first example

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C}.
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C}.
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted o_{1}.
- Composition in \mathscr{C} is called horizontal and denoted \circ_{0}.

Principal example. The category Cat is a 2 -category.

- Objects of Cat are small categories.

2-categories: terminology and the first example

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C}.
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C}.
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted o_{1}.
- Composition in \mathscr{C} is called horizontal and denoted \circ_{0}.

Principal example. The category Cat is a 2-category.

- Objects of Cat are small categories.
- 1-morphisms in Cat are functors.

2-categories: terminology and the first example

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C}.
- A morphism in $\mathscr{C}(\mathrm{i}, \mathrm{j})$ is called a 2-morphism of \mathscr{C}.
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_{1}.
- Composition in \mathscr{C} is called horizontal and denoted \circ_{0}.

Principal example. The category Cat is a 2 -category.

- Objects of Cat are small categories.
- 1-morphisms in Cat are functors.
- 2-morphisms in Cat are natural transformations.

2-categories: terminology and the first example

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C}.
- A morphism in $\mathscr{C}(\mathrm{i}, \mathrm{j})$ is called a 2-morphism of \mathscr{C}.
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_{1}.
- Composition in \mathscr{C} is called horizontal and denoted \circ_{0}.

Principal example. The category Cat is a 2 -category.

- Objects of Cat are small categories.
- 1-morphisms in Cat are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.

2-categories: terminology and the first example

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C}.
- A morphism in $\mathscr{C}(\mathrm{i}, \mathrm{j})$ is called a 2-morphism of \mathscr{C}.
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_{1}.
- Composition in \mathscr{C} is called horizontal and denoted \circ_{0}.

Principal example. The category Cat is a 2-category.

- Objects of Cat are small categories.
- 1-morphisms in Cat are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- Identity 1-morphisms are the identity functors.

2-categories: terminology and the first example

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C}.
- A morphism in $\mathscr{C}(\mathrm{i}, \mathrm{j})$ is called a 2-morphism of \mathscr{C}.
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_{1}.
- Composition in \mathscr{C} is called horizontal and denoted \circ_{0}.

Principal example. The category Cat is a 2-category.

- Objects of Cat are small categories.
- 1-morphisms in Cat are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- Identity 1-morphisms are the identity functors.

2-categories: terminology and the first example

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C}.
- A morphism in $\mathscr{C}(\mathrm{i}, \mathrm{j})$ is called a 2-morphism of \mathscr{C}.
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_{1}.
- Composition in \mathscr{C} is called horizontal and denoted \circ_{0}.

Principal example. The category Cat is a 2-category.

- Objects of Cat are small categories.
- 1-morphisms in Cat are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- Identity 1-morphisms are the identity functors.

2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.

2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.

2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.

Indeed: If \mathcal{C} is a category with one object $\boldsymbol{\&}$, then $\mathcal{C}(\boldsymbol{\&}, \boldsymbol{q})$ is a monoid under composition.

2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.

Indeed: If \mathcal{C} is a category with one object $\boldsymbol{\&}$, then $\mathcal{C}(\boldsymbol{\phi}, \boldsymbol{\infty})$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $\mathcal{C}=\mathcal{C}_{(S, \circ, e)}$ as follows:

2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.

Indeed: If \mathcal{C} is a category with one object $\boldsymbol{\&}$, then $\mathcal{C}(\boldsymbol{\&}, \boldsymbol{q})$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $\mathcal{C}=\mathcal{C}_{(S, o, e)}$ as follows:

- The only object of \mathcal{C} is $\boldsymbol{\AA}$.

2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.

Indeed: If \mathcal{C} is a category with one object $\boldsymbol{\&}$, then $\mathcal{C}(\boldsymbol{\&}, \boldsymbol{q})$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $\mathcal{C}=\mathcal{C}_{(S, o, e)}$ as follows:

- The only object of \mathcal{C} is $\boldsymbol{\AA}$.
- $\mathcal{C}(\boldsymbol{\infty}, \boldsymbol{\mu}):=S$.

2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.

Indeed: If \mathcal{C} is a category with one object $\boldsymbol{\&}$, then $\mathcal{C}(\boldsymbol{\&}, \boldsymbol{q})$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $\mathcal{C}=\mathcal{C}_{(S, o, e)}$ as follows:

- The only object of \mathcal{C} is $\boldsymbol{\AA}$.
- $\mathcal{C}(\boldsymbol{\rho}, \boldsymbol{\mu}):=S$.
- Composition in \mathcal{C} is given by multiplication in S.

2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.

Indeed: If \mathcal{C} is a category with one object $\boldsymbol{\&}$, then $\mathcal{C}(\boldsymbol{\phi}, \boldsymbol{\&})$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $\mathcal{C}=\mathcal{C}_{(S, o, e)}$ as follows:

- The only object of \mathcal{C} is $\boldsymbol{\AA}$.
- $\mathcal{C}(\boldsymbol{\rho}, \boldsymbol{\mu}):=S$.
- Composition in \mathcal{C} is given by multiplication in S.
- The identity element of $\mathcal{C}(\boldsymbol{\phi}, \boldsymbol{\phi})$ is e.

2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.

Indeed: If \mathcal{C} is a category with one object $\boldsymbol{\&}$, then $\mathcal{C}(\boldsymbol{\phi}, \boldsymbol{\&})$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $\mathcal{C}=\mathcal{C}_{(S, o, e)}$ as follows:

- The only object of \mathcal{C} is $\boldsymbol{\AA}$.
- $\mathcal{C}(\boldsymbol{\rho}, \boldsymbol{\mu}):=S$.
- Composition in \mathcal{C} is given by multiplication in S.
- The identity element of $\mathcal{C}(\boldsymbol{\phi}, \boldsymbol{\phi})$ is e.

2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.

Indeed: If \mathcal{C} is a category with one object $\boldsymbol{\&}$, then $\mathcal{C}(\boldsymbol{\phi}, \boldsymbol{\&})$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $\mathcal{C}=\mathcal{C}_{(S, o, e)}$ as follows:

- The only object of \mathcal{C} is $\boldsymbol{\AA}$.
- $\mathcal{C}(\boldsymbol{\rho}, \boldsymbol{\mu}):=S$.
- Composition in \mathcal{C} is given by multiplication in S.
- The identity element of $\mathcal{C}(\boldsymbol{\phi}, \boldsymbol{\phi})$ is e.

2-categories: over monoids, part 2

Can we extend \mathcal{C} to a 2-category?

Naive approach to try: Let $X \subset S$ be some submonoid

2-categories: over monoids, part 2

Can we extend \mathcal{C} to a 2-category?

2-categories: over monoids, part 2

Can we extend \mathcal{C} to a 2 -category?

Naive approach to try: Let $X \subset S$ be some submonoid.

2-categories: over monoids, part 2

Can we extend \mathcal{C} to a 2 -category?

Naive approach to try: Let $X \subset S$ be some submonoid.
For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\boldsymbol{*}, \boldsymbol{s})}(s, t):=\{x \in X: x s=t\}$.

2-categories: over monoids, part 2

Can we extend \mathcal{C} to a 2 -category?

Naive approach to try: Let $X \subset S$ be some submonoid.
For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\boldsymbol{*}, \boldsymbol{*})}(s, t):=\{x \in X: x s=t\}$.
Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\boldsymbol{*}, \boldsymbol{*})}(s, t)$ may be empty or it may contain many elements.

Composition is given by multipl
Is composition well-defined?

2-categories: over monoids, part 2

Can we extend \mathcal{C} to a 2 -category?

Naive approach to try: Let $X \subset S$ be some submonoid.
For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\boldsymbol{*}, \boldsymbol{*})}(s, t):=\{x \in X: x s=t\}$.
Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\boldsymbol{*}, \boldsymbol{*})}(s, t)$ may be empty or it may contain many elements.

Composition is given by multiplication in S.
Is composition well-defined?

2-categories: over monoids, part 2

Can we extend \mathcal{C} to a 2 -category?

Naive approach to try: Let $X \subset S$ be some submonoid.
For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\boldsymbol{*}, \boldsymbol{*})}(s, t):=\{x \in X: x s=t\}$.
Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\boldsymbol{*}, \boldsymbol{*})}(s, t)$ may be empty or it may contain many elements.

Composition is given by multiplication in S.

Is composition well-defined?

2-categories: over monoids, part 2

Can we extend \mathcal{C} to a 2 -category?

Naive approach to try: Let $X \subset S$ be some submonoid.
For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\boldsymbol{*}, \boldsymbol{*})}(s, t):=\{x \in X: x s=t\}$.
Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\boldsymbol{*}, \boldsymbol{*})}(s, t)$ may be empty or it may contain many elements.

Composition is given by multiplication in S.

Is composition well-defined?

2-categories: over monoids, part 3

2-categories: over monoids, part 3

Vertical:

2-categories: over monoids, part 3

Vertical: $x r=s$ and $y s=t$ implies $y x r=t$

2-categories: over monoids, part 3

Vertical: $x r=s$ and $y s=t$ implies $y x r=t \quad$ OK

2-categories: over monoids, part 3

Vertical: $x r=s$ and $y s=t$ implies $y x r=t \quad$ OK
Horizontal:

2-categories: over monoids, part 3

Vertical: $x r=s$ and $y s=t$ implies $y x r=t \quad$ OK
Horizontal: $x s=t$ and $x^{\prime} s^{\prime}=t^{\prime}$ implies $x s x^{\prime} s^{\prime}=t t^{\prime}$

2-categories: over monoids, part 3

Vertical: $x r=s$ and $y s=t$ implies $y x r=t \quad$ OK
Horizontal: $x s=t$ and $x^{\prime} s^{\prime}=t^{\prime}$ implies $x s x^{\prime} s^{\prime}=t t^{\prime}$

2-categories: over monoids, part 3

Vertical: $x r=s$ and $y s=t$ implies $y x r=t \quad$ OK
Horizontal: $x s=t$ and $x^{\prime} s^{\prime}=t^{\prime}$ implies $x s x^{\prime} s^{\prime}=t t^{\prime}$
Need:

2-categories: over monoids, part 3

Vertical: $x r=s$ and $y s=t$ implies $y x r=t \quad$ OK
Horizontal: $x s=t$ and $x^{\prime} s^{\prime}=t^{\prime}$ implies $x s x^{\prime} s^{\prime}=t t^{\prime}$
Need: $x x^{\prime} s s^{\prime}=t t^{\prime}$

From now on: X is a submonoid in the center $Z(S)$ of S

2-categories: over monoids, part 3

Vertical: $x r=s$ and $y s=t$ implies $y x r=t \quad$ OK
Horizontal: $x s=t$ and $x^{\prime} s^{\prime}=t^{\prime}$ implies $x s x^{\prime} s^{\prime}=t t^{\prime}$
Need: $x x^{\prime} s s^{\prime}=t t^{\prime} \quad$ OK if $X \subset Z(S)$
From now on: X is a submonoid in the center $Z(S)$ of S

All compositions are well-defined!!!

2-categories: over monoids, part 3

Vertical: $x r=s$ and $y s=t$ implies $y x r=t \quad$ OK
Horizontal: $x s=t$ and $x^{\prime} s^{\prime}=t^{\prime}$ implies $x s x^{\prime} s^{\prime}=t t^{\prime}$
Need: $x x^{\prime} s s^{\prime}=t t^{\prime} \quad$ OK if $X \subset Z(S)$
From now on: X is a submonoid in the center $Z(S)$ of S

All compositions are well-defined!!!

2-categories: over monoids, part 3

Vertical: $x r=s$ and $y s=t$ implies $y x r=t \quad$ OK
Horizontal: $x s=t$ and $x^{\prime} s^{\prime}=t^{\prime}$ implies $x s x^{\prime} s^{\prime}=t t^{\prime}$
Need: $x x^{\prime} s s^{\prime}=t t^{\prime} \quad$ OK if $X \subset Z(S)$
From now on: X is a submonoid in the center $Z(S)$ of S

All compositions are well-defined!!!
Is this a 2-category?

2-categories: over monoids, part 3

Vertical: $x r=s$ and $y s=t$ implies $y x r=t \quad$ OK
Horizontal: $x s=t$ and $x^{\prime} s^{\prime}=t^{\prime}$ implies $x s x^{\prime} s^{\prime}=t t^{\prime}$
Need: $x x^{\prime} s s^{\prime}=t t^{\prime} \quad$ OK if $X \subset Z(S)$
From now on: X is a submonoid in the center $Z(S)$ of S

All compositions are well-defined!!!
Is this a 2-category?

2-categories: over monoids, part 3

Vertical: $x r=s$ and $y s=t$ implies $y x r=t \quad$ OK
Horizontal: $x s=t$ and $x^{\prime} s^{\prime}=t^{\prime}$ implies $x s x^{\prime} s^{\prime}=t t^{\prime}$
Need: $x x^{\prime} s s^{\prime}=t t^{\prime} \quad$ OK if $X \subset Z(S)$
From now on: X is a submonoid in the center $Z(S)$ of S

All compositions are well-defined!!!

Is this a 2-category?
To check: Functoriality of composition.

2-categories: over monoids, part 3

Vertical: $x r=s$ and $y s=t$ implies $y x r=t \quad$ OK
Horizontal: $x s=t$ and $x^{\prime} s^{\prime}=t^{\prime}$ implies $x s x^{\prime} s^{\prime}=t t^{\prime}$
Need: $x x^{\prime} s s^{\prime}=t t^{\prime} \quad$ OK if $X \subset Z(S)$
From now on: X is a submonoid in the center $Z(S)$ of S

All compositions are well-defined!!!

Is this a 2-category?
To check: Functoriality of composition.

2-categories: over monoids, part 4: functoriality, part 1

One way:

2-categories: over monoids, part 4: functoriality, part 1

One way:

2-categories: over monoids, part 4: functoriality, part 1

One way:

Conclusion 1: $\left(y \circ_{0} y^{\prime}\right) \circ_{1}\left(x \circ_{0} x^{\prime}\right)=y y^{\prime} x x^{\prime}$.

2-categories: over monoids, part 4: functoriality, part 1

One way:

Conclusion 1: $\left(y \circ_{0} y^{\prime}\right) \circ_{1}\left(x \circ_{0} x^{\prime}\right)=y y^{\prime} x x^{\prime}$.

2-categories: over monoids, part 5: functoriality, part 2

Another way:

2-categories: over monoids, part 5: functoriality, part 2

Another way:

2-categories: over monoids, part 5: functoriality, part 2

Another way:

Conclusion 2: $\left(y \circ_{1} x\right) \circ_{0}\left(y^{\prime} \circ_{1} x^{\prime}\right)=y x y^{\prime} x^{\prime}$.

2-categories: over monoids, part 5: functoriality, part 2

Another way:

Conclusion 2: $\left(y \circ_{1} x\right) \circ_{0}\left(y^{\prime} \circ_{1} x^{\prime}\right)=y x y^{\prime} x^{\prime}$.

2-categories: over monoids, part 6: the interchange law

Need: the interchange law $\left(y \circ_{1} x\right) \circ_{0}\left(y^{\prime} \circ_{1} x^{\prime}\right)=\left(y \circ_{0} y^{\prime}\right) \circ_{1}\left(x \circ_{0} x^{\prime}\right)$.

2-categories: over monoids, part 6: the interchange law

Need: the interchange law $\left(y \circ_{1} x\right) \circ_{0}\left(y^{\prime} \circ_{1} x^{\prime}\right)=\left(y \circ_{0} y^{\prime}\right) \circ_{1}\left(x \circ_{0} x^{\prime}\right)$.

2-categories: over monoids, part 6: the interchange law

Need: the interchange law $\left(y \circ_{1} x\right) \circ_{0}\left(y^{\prime} \circ_{1} x^{\prime}\right)=\left(y \circ_{0} y^{\prime}\right) \circ_{1}\left(x \circ_{0} x^{\prime}\right)$.

In our case: $y x y^{\prime} x^{\prime}=y y^{\prime} x x^{\prime} \forall x, y, x^{\prime}, y^{\prime} \in X$

Claim. The above defines on \mathcal{C} the structure of a 2 -category if and only

2-categories: over monoids, part 6: the interchange law

Need: the interchange law $\left(y \circ_{1} x\right) \circ_{0}\left(y^{\prime} \circ_{1} x^{\prime}\right)=\left(y \circ_{0} y^{\prime}\right) \circ_{1}\left(x \circ_{0} x^{\prime}\right)$.

In our case: $y x y^{\prime} x^{\prime}=y y^{\prime} x x^{\prime} \forall x, y, x^{\prime}, y^{\prime} \in X$ OK since $X \subset Z(S)$.
Claim. The above defines on \mathcal{C} the structure of a 2 -category if and only

2-categories: over monoids, part 6: the interchange law

Need: the interchange law $\left(y \circ_{1} x\right) \circ_{0}\left(y^{\prime} \circ_{1} x^{\prime}\right)=\left(y \circ_{0} y^{\prime}\right) \circ_{1}\left(x \circ_{0} x^{\prime}\right)$.

In our case: $y x y^{\prime} x^{\prime}=y y^{\prime} x x^{\prime} \forall x, y, x^{\prime}, y^{\prime} \in X$ OK since $X \subset Z(S)$.
Claim. The above defines on \mathcal{C} the structure of a 2 -category if and only if $X \subset Z(S)$.

2-categories: over monoids, part 6: the interchange law

Need: the interchange law $\left(y \circ_{1} x\right) \circ_{0}\left(y^{\prime} \circ_{1} x^{\prime}\right)=\left(y \circ_{0} y^{\prime}\right) \circ_{1}\left(x \circ_{0} x^{\prime}\right)$.

In our case: $y x y^{\prime} x^{\prime}=y y^{\prime} x x^{\prime} \forall x, y, x^{\prime}, y^{\prime} \in X$ OK since $X \subset Z(S)$.
Claim. The above defines on \mathcal{C} the structure of a 2 -category if and only if $X \subset Z(S)$.

2-categories: over monoids, part 7: ordered monoids

S - monoid

2-categories: over monoids, part 7: ordered monoids

S - monoid
\leq - compatible order on S (i.e. $a \leq b$ implies $a s \leq b s$ and $s a \leq s b$)

2-categories: over monoids, part 7: ordered monoids

S - monoid
\leq - compatible order on S (i.e. $a \leq b$ implies $a s \leq b s$ and $s a \leq s b$)
Define $\mathcal{C}_{(S, \leq)}$ - 2-category via

2-categories: over monoids, part 7: ordered monoids

S - monoid
\leq - compatible order on S (i.e. $a \leq b$ implies $a s \leq b s$ and $s a \leq s b$)
Define $\mathcal{C}_{(S, \leq)}-2$-category via

- $\mathcal{C}_{(S, \leq)}$ has one object $\boldsymbol{\&}$

2-categories: over monoids, part 7: ordered monoids

S - monoid
\leq compatible order on S (i.e. $a \leq b$ implies $a s \leq b s$ and $s a \leq s b$)
Define $\mathcal{C}_{(S, \leq)}-2$-category via

- $\mathcal{C}_{(S, \leq)}$ has one object \&
- 1-morphisms: $\mathcal{C}_{(S, \leq)}(\boldsymbol{\phi}, \boldsymbol{\phi})=S$

2-categories: over monoids, part 7: ordered monoids

S - monoid
\leq compatible order on S (i.e. $a \leq b$ implies $a s \leq b s$ and $s a \leq s b$)
Define $\mathcal{C}_{(S, \leq)}-2$-category via

- $\mathcal{C}_{(S, \leq)}$ has one object $\boldsymbol{\&}$
- 1-morphisms: $\mathcal{C}_{(S, \leq)}(\boldsymbol{\phi}, \boldsymbol{\phi})=S$
- 2-morphisms: for $s, t \in S$ set $\operatorname{Hom}(s, t)= \begin{cases}(s, t), & s \leq t ; \\ \varnothing, & \text { else. }\end{cases}$

2-categories: over monoids, part 7: ordered monoids

S - monoid
\leq - compatible order on S (i.e. $a \leq b$ implies $a s \leq b s$ and $s a \leq s b$)
Define $\mathcal{C}_{(S, \leq)}-2$-category via

- $\mathcal{C}_{(S, \leq)}$ has one object
- 1-morphisms: $\mathcal{C}_{(S, \leq)}(\boldsymbol{\phi}, \boldsymbol{\phi})=S$
- 2-morphisms: for $s, t \in S$ set $\operatorname{Hom}(s, t)= \begin{cases}(s, t), & s \leq t ; \\ \varnothing, & \text { else. }\end{cases}$
- horizontal composition is given by multiplication in S;

2-categories: over monoids, part 7: ordered monoids

S - monoid
\leq compatible order on S (i.e. $a \leq b$ implies $a s \leq b s$ and $s a \leq s b$)
Define $\mathcal{C}_{(S, \leq)}-2$-category via

- $\mathcal{C}_{(S, \leq)}$ has one object
- 1-morphisms: $\mathcal{C}_{(S, \leq)}(\boldsymbol{\phi}, \boldsymbol{\phi})=S$
- 2-morphisms: for $s, t \in S$ set $\operatorname{Hom}(s, t)= \begin{cases}(s, t), & s \leq t ; \\ \varnothing, & \text { else. }\end{cases}$
- horizontal composition is given by multiplication in S;
- vertical composition is uniquely defined.

2-categories: over monoids, part 7: ordered monoids

S - monoid
\leq compatible order on S (i.e. $a \leq b$ implies $a s \leq b s$ and $s a \leq s b$)
Define $\mathcal{C}_{(S, \leq)}-2$-category via

- $\mathcal{C}_{(S, \leq)}$ has one object
- 1-morphisms: $\mathcal{C}_{(S, \leq)}(\boldsymbol{\phi}, \boldsymbol{\phi})=S$
- 2-morphisms: for $s, t \in S$ set $\operatorname{Hom}(s, t)= \begin{cases}(s, t), & s \leq t ; \\ \varnothing, & \text { else. }\end{cases}$
- horizontal composition is given by multiplication in S;
- vertical composition is uniquely defined.

2-representations: 2-functors, part 1

2-representations: 2-functors, part 1

\mathscr{A} and \mathscr{C} - two 2-categories Definition. A 2 -functor $\mathrm{F}: \mathscr{A} \rightarrow \mathscr{C}$ is a functor which send
1-morphisms to 1 -morphisms and 2 -morphisms to 2 -morphis
that is coordinated with all the categorical structures (doma
codomains, identities and compositions).
Example. For $i \in \mathscr{C}$ the functor $\mathscr{C}(i,-): \mathscr{C} \rightarrow$ Cat sends

2-representations: 2-functors, part 1

\mathscr{A} and \mathscr{C} - two 2-categories
Definition. A 2-functor $\mathrm{F}: \mathscr{A} \rightarrow \mathscr{C}$ is a functor which sends 1-morphisms to 1 -morphisms and 2 -morphisms to 2 -morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example.

2-representations: 2-functors, part 1

\mathscr{A} and \mathscr{C} - two 2-categories

Definition. A 2-functor $\mathrm{F}: \mathscr{A} \rightarrow \mathscr{C}$ is a functor which sends 1-morphisms to 1 -morphisms and 2 -morphisms to 2 -morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example. For $i \in \mathscr{C}$ the functor $\mathscr{C}\left(i,{ }_{-}\right): \mathscr{C} \rightarrow$ Cat sends

2-representations: 2-functors, part 1

\mathscr{A} and \mathscr{C} - two 2-categories

Definition. A 2-functor $\mathrm{F}: \mathscr{A} \rightarrow \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example. For $i \in \mathscr{C}$ the functor $\mathscr{C}\left(i,,_{-}\right): \mathscr{C} \rightarrow$ Cat sends

- an object $\mathrm{j} \in \mathscr{C}$ to the category $\mathscr{C}(\mathrm{i}, \mathrm{j})$,

2-representations: 2-functors, part 1

\mathscr{A} and \mathscr{C} - two 2-categories

Definition. A 2-functor $\mathrm{F}: \mathscr{A} \rightarrow \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example. For $i \in \mathscr{C}$ the functor $\mathscr{C}\left(i,,_{-}\right): \mathscr{C} \rightarrow$ Cat sends

- an object $\mathrm{j} \in \mathscr{C}$ to the category $\mathscr{C}(\mathrm{i}, \mathrm{j})$,
- a 1-morphism $F \in \mathscr{C}(\mathrm{j}, \mathrm{k})$ to the functor $F \circ_{-}: \mathscr{C}(\mathrm{i}, \mathrm{j}) \rightarrow \mathscr{C}(\mathrm{i}, \mathrm{k})$,

2-representations: 2-functors, part 1

\mathscr{A} and \mathscr{C} - two 2-categories

Definition. A 2-functor $\mathrm{F}: \mathscr{A} \rightarrow \mathscr{C}$ is a functor which sends 1-morphisms to 1 -morphisms and 2 -morphisms to 2 -morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example. For $i \in \mathscr{C}$ the functor $\mathscr{C}\left(i,,_{-}\right): \mathscr{C} \rightarrow$ Cat sends

- an object $\mathrm{j} \in \mathscr{C}$ to the category $\mathscr{C}(\mathrm{i}, \mathrm{j})$,
- a 1-morphism $F \in \mathscr{C}(\mathrm{j}, \mathrm{k})$ to the functor $F \circ_{-}: \mathscr{C}(\mathrm{i}, \mathrm{j}) \rightarrow \mathscr{C}(\mathrm{i}, \mathrm{k})$,
- a 2-morphism $\alpha: F \rightarrow G$ to the natural transformation $\alpha \circ_{0-}: F \circ_{-} \rightarrow G \circ_{-}$.

2-representations: 2-functors, part 1

\mathscr{A} and \mathscr{C} - two 2-categories

Definition. A 2-functor $\mathrm{F}: \mathscr{A} \rightarrow \mathscr{C}$ is a functor which sends 1-morphisms to 1 -morphisms and 2 -morphisms to 2 -morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example. For $i \in \mathscr{C}$ the functor $\mathscr{C}\left(i,,_{-}\right): \mathscr{C} \rightarrow$ Cat sends

- an object $\mathrm{j} \in \mathscr{C}$ to the category $\mathscr{C}(\mathrm{i}, \mathrm{j})$,
- a 1-morphism $F \in \mathscr{C}(\mathrm{j}, \mathrm{k})$ to the functor $F \circ_{-}: \mathscr{C}(\mathrm{i}, \mathrm{j}) \rightarrow \mathscr{C}(\mathrm{i}, \mathrm{k})$,
- a 2-morphism $\alpha: F \rightarrow G$ to the natural transformation $\alpha \circ_{0-}: F \circ_{-} \rightarrow G \circ_{-}$.

2-representations: 2-functors, part 1

\mathscr{A} and \mathscr{C} - two 2-categories

Definition. A 2-functor $\mathrm{F}: \mathscr{A} \rightarrow \mathscr{C}$ is a functor which sends 1-morphisms to 1 -morphisms and 2 -morphisms to 2 -morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example. For $i \in \mathscr{C}$ the functor $\mathscr{C}\left(i,,_{-}\right): \mathscr{C} \rightarrow$ Cat sends

- an object $\mathrm{j} \in \mathscr{C}$ to the category $\mathscr{C}(\mathrm{i}, \mathrm{j})$,
- a 1-morphism $F \in \mathscr{C}(\mathrm{j}, \mathrm{k})$ to the functor $F \circ_{-}: \mathscr{C}(\mathrm{i}, \mathrm{j}) \rightarrow \mathscr{C}(\mathrm{i}, \mathrm{k})$,
- a 2-morphism $\alpha: F \rightarrow G$ to the natural transformation $\alpha \circ_{0-}: F \circ_{-} \rightarrow G \circ_{-}$.

2-representations: 2-functors, part 2

2-representations: 2-functors, part 2

2-representations: 2 -functors, part 2

2-representations: 2 -functors, part 2

2-representations: 2-representations

2-representations: 2 -representations

Definition: A 2-representation of a 2-category \mathscr{C} is a 2 -functor from \mathscr{C} to some "classical" 2-category.

2-representations: 2 -representations

Definition: A 2-representation of a 2-category \mathscr{C} is a 2 -functor from \mathscr{C} to some "classical" 2-category.

Example: $\mathscr{C}\left(\mathrm{i},{ }_{-}\right)$is the principal 2-representation of \mathscr{C} in Cat.

2-representations: 2 -representations

Definition: A 2-representation of a 2-category \mathscr{C} is a 2 -functor from \mathscr{C} to some "classical" 2-category.

Example: $\mathscr{C}\left(\mathrm{i},{ }_{-}\right)$is the principal 2-representation of \mathscr{C} in Cat.
"Classical" 2-representations:

2-representations: 2 -representations

Definition: A 2-representation of a 2-category \mathscr{C} is a 2 -functor from \mathscr{C} to some "classical" 2-category.

Example: $\mathscr{C}\left(\mathrm{i},{ }_{-}\right)$is the principal 2-representation of \mathscr{C} in Cat.
"Classical" 2-representations:

- in Cat;

2-representations: 2 -representations

Definition: A 2-representation of a 2-category \mathscr{C} is a 2 -functor from \mathscr{C} to some "classical" 2-category.

Example: $\mathscr{C}\left(\mathrm{i},{ }_{-}\right)$is the principal 2-representation of \mathscr{C} in Cat.
"Classical" 2-representations:

- in Cat;
- in the 2-category Add of additive categories and additive functors;

2-representations: 2 -representations

Definition: A 2-representation of a 2-category \mathscr{C} is a 2 -functor from \mathscr{C} to some "classical" 2-category.

Example: $\mathscr{C}\left(\mathrm{i},{ }_{-}\right)$is the principal 2-representation of \mathscr{C} in Cat.
"Classical" 2-representations:

- in Cat;
- in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;

2-representations: 2 -representations

Definition: A 2-representation of a 2-category \mathscr{C} is a 2 -functor from \mathscr{C} to some "classical" 2-category.

Example: $\mathscr{C}\left(\mathrm{i},{ }_{-}\right)$is the principal 2-representation of \mathscr{C} in Cat.
"Classical" 2-representations:

- in Cat;
- in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- a the 2-category ab of abelian categories and exact functors.

2-representations: 2 -representations

Definition: A 2-representation of a 2-category \mathscr{C} is a 2 -functor from \mathscr{C} to some "classical" 2-category.

Example: $\mathscr{C}\left(\mathrm{i},{ }_{-}\right)$is the principal 2-representation of \mathscr{C} in Cat.
"Classical" 2-representations:

- in Cat;
- in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- a the 2-category ab of abelian categories and exact functors.

2-representations: 2 -representations

Definition: A 2-representation of a 2-category \mathscr{C} is a 2 -functor from \mathscr{C} to some "classical" 2-category.

Example: $\mathscr{C}\left(\mathrm{i},{ }_{-}\right)$is the principal 2-representation of \mathscr{C} in Cat.
"Classical" 2-representations:

- in Cat;
- in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- a the 2-category ab of abelian categories and exact functors.

Decategorification: Grothendieck category

Decategorification: Grothendieck category

Definition. The (split) Grothendieck group $[\mathcal{A}]$ of a small additive category \mathcal{A} is the quotient of the free abelian group generated by objects of \mathcal{A} modulo relations $[X]-[Y]-[Z]$ whenever $X \cong Y \oplus Z$ in \mathcal{A}.

Decategorification: Grothendieck category

Definition. The (split) Grothendieck group $[\mathcal{A}]$ of a small additive category \mathcal{A} is the quotient of the free abelian group generated by objects of \mathcal{A} modulo relations $[X]-[Y]-[Z]$ whenever $X \cong Y \oplus Z$ in \mathcal{A}.

Note: If \mathcal{A} is idempotent split with finitely many indecomposables, then $[\mathcal{A}]$ is free abelian of finite rank with indecomposables/iso as basis.

Decategorification: Grothendieck category

Definition. The (split) Grothendieck group $[\mathcal{A}]$ of a small additive category \mathcal{A} is the quotient of the free abelian group generated by objects of \mathcal{A} modulo relations $[X]-[Y]-[Z]$ whenever $X \cong Y \oplus Z$ in \mathcal{A}.

Note: If \mathcal{A} is idempotent split with finitely many indecomposables, then $[\mathcal{A}]$ is free abelian of finite rank with indecomposables/iso as basis.

Definition. A 2-category \mathscr{C} is called locally finitary over a field \mathbb{k} if each $\mathscr{C}(i, j)$ is \mathbb{k}-linear, additive, idempotent split with finitely many indecomposables.

Decategorification: Grothendieck category

Definition. The (split) Grothendieck group $[\mathcal{A}]$ of a small additive category \mathcal{A} is the quotient of the free abelian group generated by objects of \mathcal{A} modulo relations $[X]-[Y]-[Z]$ whenever $X \cong Y \oplus Z$ in \mathcal{A}.

Note: If \mathcal{A} is idempotent split with finitely many indecomposables, then $[\mathcal{A}]$ is free abelian of finite rank with indecomposables/iso as basis.

Definition. A 2-category \mathscr{C} is called locally finitary over a field \mathbb{k} if each $\mathscr{C}(i, j)$ is \mathbb{k}-linear, additive, idempotent split with finitely many indecomposables.
\mathscr{C} - locally finitary

Decategorification: Grothendieck category

Definition. The (split) Grothendieck group $[\mathcal{A}]$ of a small additive category \mathcal{A} is the quotient of the free abelian group generated by objects of \mathcal{A} modulo relations $[X]-[Y]-[Z]$ whenever $X \cong Y \oplus Z$ in \mathcal{A}.

Note: If \mathcal{A} is idempotent split with finitely many indecomposables, then $[\mathcal{A}]$ is free abelian of finite rank with indecomposables/iso as basis.

Definition. A 2-category \mathscr{C} is called locally finitary over a field \mathbb{k} if each $\mathscr{C}(i, j)$ is \mathbb{k}-linear, additive, idempotent split with finitely many indecomposables.
\mathscr{C} - locally finitary
Definition. The (split) Grothendieck category $[\mathscr{C}]$ of \mathscr{C} is a (usual) category with same objects as \mathscr{C}, where $[\mathscr{C}](i, j)=[\mathscr{C}(i, j)]$ and composition is induced from \mathscr{C}.

Decategorification: Grothendieck category

Definition. The (split) Grothendieck group $[\mathcal{A}]$ of a small additive category \mathcal{A} is the quotient of the free abelian group generated by objects of \mathcal{A} modulo relations $[X]-[Y]-[Z]$ whenever $X \cong Y \oplus Z$ in \mathcal{A}.

Note: If \mathcal{A} is idempotent split with finitely many indecomposables, then $[\mathcal{A}]$ is free abelian of finite rank with indecomposables/iso as basis.

Definition. A 2-category \mathscr{C} is called locally finitary over a field \mathbb{k} if each $\mathscr{C}(i, j)$ is \mathbb{k}-linear, additive, idempotent split with finitely many indecomposables.
\mathscr{C} - locally finitary
Definition. The (split) Grothendieck category $[\mathscr{C}]$ of \mathscr{C} is a (usual) category with same objects as \mathscr{C}, where $[\mathscr{C}](i, j)=[\mathscr{C}(i, j)]$ and composition is induced from \mathscr{C}.

Decategorification: linear algebra

Decategorification: linear algebra

Main point: Forget the 2-level.

Decategorification: linear algebra

Main point: Forget the 2-level.
Note: For \mathbb{k}-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Decategorification: linear algebra

Main point: Forget the 2-level.
Note: For \mathbb{k}-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} - locally finitary; \mathcal{F} - 2 -representation of \mathscr{C} s.t.

Decategorification: linear algebra

Main point: Forget the 2-level.
Note: For \mathbb{k}-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} - locally finitary; \mathcal{F} - 2 -representation of \mathscr{C} s.t.

- object i \mapsto additive (abelian, triangulated) category \mathcal{C}_{i}

Decategorification: linear algebra

Main point: Forget the 2-level.
Note: For \mathbb{k}-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} - locally finitary; \mathcal{F} - 2 -representation of \mathscr{C} s.t.

- object i \mapsto additive (abelian, triangulated) category \mathcal{C}_{i}
- 1-morphism \mapsto additive (exact, triangulated) functor

Decategorification: linear algebra

Main point: Forget the 2-level.
Note: For \mathbb{k}-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} - locally finitary; \mathcal{F} - 2 -representation of \mathscr{C} s.t.

- object i \mapsto additive (abelian, triangulated) category \mathcal{C}_{i}
- 1-morphism \mapsto additive (exact, triangulated) functor
- 2-morphism \mapsto natural transformation of functors

Then:

Decategorification: linear algebra

Main point: Forget the 2-level.
Note: For \mathbb{k}-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} - locally finitary; \mathcal{F} - 2 -representation of \mathscr{C} s.t.

- object i \mapsto additive (abelian, triangulated) category \mathcal{C}_{i}
- 1-morphism \mapsto additive (exact, triangulated) functor
- 2-morphism \mapsto natural transformation of functors

Then: The category [$\mathscr{C}]$ acts on $[\mathcal{C}]$

Decategorification: linear algebra

Main point: Forget the 2-level.
Note: For \mathbb{k}-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} - locally finitary; \mathcal{F} - 2 -representation of \mathscr{C} s.t.

- object i \mapsto additive (abelian, triangulated) category \mathcal{C}_{i}
- 1-morphism \mapsto additive (exact, triangulated) functor
- 2-morphism \mapsto natural transformation of functors

Then: The category $[\mathscr{C}]$ acts on $[\mathcal{C}]$
In particular: If \mathscr{C} has 1 object $\boldsymbol{\&}$ then the monoid $[\mathscr{C}](\boldsymbol{\&}, \boldsymbol{\&})$ acts on the abelian group $[\mathcal{C}]$

Decategorification: linear algebra

Main point: Forget the 2-level.
Note: For \mathbb{k}-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} - locally finitary; \mathcal{F} - 2 -representation of \mathscr{C} s.t.

- object i \mapsto additive (abelian, triangulated) category \mathcal{C}_{i}
- 1-morphism \mapsto additive (exact, triangulated) functor
- 2-morphism \mapsto natural transformation of functors

Then: The category $[\mathscr{C}]$ acts on $[\mathcal{C}]$
In particular: If \mathscr{C} has 1 object $\boldsymbol{\&}$ then the monoid $[\mathscr{C}](\boldsymbol{\&}, \boldsymbol{\&})$ acts on the abelian group $[\mathcal{C}]$

Extending scalars: The algebra $\mathbb{k}[\mathscr{C}](\boldsymbol{\infty}, \boldsymbol{\infty})$ acts on the vector space $\mathbb{k}[\mathcal{C}]$, that is we get a linear representation of the monoid $[\mathscr{C}](\boldsymbol{\&}, \boldsymbol{\&})$.

Decategorification: linear algebra

Main point: Forget the 2-level.
Note: For \mathbb{k}-linear categories indecomposability is defined on the 2-level (an object in indecomposable iff its endomorphism algebra is local).

Assume: \mathscr{C} - locally finitary; \mathcal{F} - 2 -representation of \mathscr{C} s.t.

- object i \mapsto additive (abelian, triangulated) category \mathcal{C}_{i}
- 1-morphism \mapsto additive (exact, triangulated) functor
- 2-morphism \mapsto natural transformation of functors

Then: The category $[\mathscr{C}]$ acts on $[\mathcal{C}]$
In particular: If \mathscr{C} has 1 object $\boldsymbol{\&}$ then the monoid $[\mathscr{C}](\boldsymbol{\&}, \boldsymbol{\&})$ acts on the abelian group $[\mathcal{C}]$

Extending scalars: The algebra $\mathbb{k}[\mathscr{C}](\boldsymbol{\infty}, \boldsymbol{\infty})$ acts on the vector space $\mathbb{k}[\mathcal{C}]$, that is we get a linear representation of the monoid $[\mathscr{C}](\boldsymbol{\&}, \boldsymbol{\&})$.

Decategorification: advantages

Decategorification: advantages

Assume: \mathscr{C} is 2-represented on \mathcal{C}
Decategorify: [©] acts on [C]

Decategorification: advantages

Assume: \mathscr{C} is 2-represented on \mathcal{C}
Decategorify: $[\mathscr{C}]$ acts on $[\mathcal{C}]$

Decategorification: advantages

Assume: \mathscr{C} is 2-represented on \mathcal{C}
Decategorify: $[\mathscr{C}]$ acts on $[\mathcal{C}]$

Main point: \mathcal{C} has non-trivial structure

Decategorification: advantages

Assume: \mathscr{C} is 2-represented on \mathcal{C}
Decategorify: $[\mathscr{C}]$ acts on $[\mathcal{C}]$

Main point: \mathcal{C} has non-trivial structure

Example 1: The group $[\mathcal{C}]$ might have many natural bases (e.g. given by simple, injective, projective or tilting modules).

Decategorification: advantages

Assume: \mathscr{C} is 2-represented on \mathcal{C}
Decategorify: $[\mathscr{C}]$ acts on $[\mathcal{C}]$

Main point: \mathcal{C} has non-trivial structure

Example 1: The group $[\mathcal{C}]$ might have many natural bases (e.g. given by simple, injective, projective or tilting modules).

Example 2: The category \mathcal{C} could have stratifications, e.g. by Gelfand-Kirillov dimension of objects. This gives rise to filtrations on $[\mathcal{C}]$.

Decategorification: advantages

Assume: \mathscr{C} is 2-represented on \mathcal{C}
Decategorify: $[\mathscr{C}]$ acts on $[\mathcal{C}]$

Main point: \mathcal{C} has non-trivial structure

Example 1: The group $[\mathcal{C}]$ might have many natural bases (e.g. given by simple, injective, projective or tilting modules).

Example 2: The category \mathcal{C} could have stratifications, e.g. by Gelfand-Kirillov dimension of objects. This gives rise to filtrations on $[\mathcal{C}]$.

Example 3: The category \mathcal{C} could be graded, which would give a "layered upgrade" of $[\mathcal{C}]$ (e.g. Jones polynomial \rightarrow Khovanov homology).

Decategorification: advantages

Assume: \mathscr{C} is 2-represented on \mathcal{C}
Decategorify: $[\mathscr{C}]$ acts on $[\mathcal{C}]$

Main point: \mathcal{C} has non-trivial structure

Example 1: The group $[\mathcal{C}]$ might have many natural bases (e.g. given by simple, injective, projective or tilting modules).

Example 2: The category \mathcal{C} could have stratifications, e.g. by Gelfand-Kirillov dimension of objects. This gives rise to filtrations on $[\mathcal{C}]$.

Example 3: The category \mathcal{C} could be graded, which would give a "layered upgrade" of $[\mathcal{C}]$ (e.g. Jones polynomial \rightarrow Khovanov homology).

Hecke-Kiselman semigroups: definition

Assume: 「 - simple digraph (no loops or multiple edges in the same

Hecke-Kiselman semigroups: definition

Assume: 「 - simple digraph (no loops or multiple edges in the same direction)

Hecke-Kiselman semigroups: definition

Assume: 「 - simple digraph (no loops or multiple edges in the same direction)

Definition: The Hecke-Kiselman monoid $\mathbf{H K}_{\Gamma}$ has generators e_{i} where i is a vertex of Γ and relations

Hecke-Kiselman semigroups: definition

Assume: 「 - simple digraph (no loops or multiple edges in the same direction)

Definition: The Hecke-Kiselman monoid $\mathbf{H K}_{\Gamma}$ has generators e_{i} where i is a vertex of Γ and relations
$-e_{i} e_{j} e_{i}=e_{j} e_{i} e_{j}$
if

Hecke-Kiselman semigroups: definition

Assume: 「 - simple digraph (no loops or multiple edges in the same direction)

Definition: The Hecke-Kiselman monoid HK_{Γ} has generators e_{i} where i is a vertex of Γ and relations
$-e_{i} e_{j} e_{i}=e_{j} e_{i} e_{j}$
if

Hecke-Kiselman semigroups: definition

Assume: 「 - simple digraph (no loops or multiple edges in the same direction)

Definition: The Hecke-Kiselman monoid HK_{Γ} has generators e_{i} where i is a vertex of Γ and relations
$-e_{i} e_{j} e_{i}=e_{j} e_{i} e_{j}$
if

$-e_{i} e_{j} e_{i}=e_{j} e_{i} e_{j}=e_{i} e_{j}$
if
$i \longrightarrow j$;
$-e_{i} e_{j}=e_{j} e_{i}$
if
i
j.

Hecke-Kiselman semigroups: definition

Assume: 「 - simple digraph (no loops or multiple edges in the same direction)

Definition: The Hecke-Kiselman monoid HK_{Γ} has generators e_{i} where i is a vertex of Γ and relations
$-e_{i} e_{j} e_{i}=e_{j} e_{i} e_{j}$
if

$-e_{i} e_{j} e_{i}=e_{j} e_{i} e_{j}=e_{i} e_{j}$
if
$i \longrightarrow j$;
$-e_{i} e_{j}=e_{j} e_{i}$
if
$i \quad j$.

Examples:

Hecke-Kiselman semigroups: definition

Assume: 「 - simple digraph (no loops or multiple edges in the same direction)

Definition: The Hecke-Kiselman monoid HK_{Γ} has generators e_{i} where i is a vertex of Γ and relations
$-e_{i} e_{j} e_{i}=e_{j} e_{i} e_{j}$
if
$-e_{i} e_{j} e_{i}=e_{j} e_{i} e_{j}=e_{i} e_{j}$
$-e_{i} e_{j}=e_{j} e_{i}$
if

Examples:

- Γ - no edges $\Rightarrow \mathbf{H K}_{\Gamma}$ is the Boolean of Γ_{0};

Hecke-Kiselman semigroups: definition

Assume: 「 - simple digraph (no loops or multiple edges in the same direction)

Definition: The Hecke-Kiselman monoid HK_{Γ} has generators e_{i} where i is a vertex of Γ and relations
$-e_{i} e_{j} e_{i}=e_{j} e_{i} e_{j}$
if
if
if
$-e_{i} e_{j} e_{i}=e_{j} e_{i} e_{j}=e_{i} e_{j}$
$-e_{i} e_{j}=e_{j} e_{i}$

$i \quad j$.

Examples:

- Γ - no edges $\Rightarrow \mathbf{H K}_{\Gamma}$ is the Boolean of Γ_{0};
- Γ - Dynkin diagram (unoriented) $\Rightarrow \mathbf{H K}_{\Gamma}$ is the 0-Hecke monoid;

Hecke-Kiselman semigroups: definition

Assume: 「 - simple digraph (no loops or multiple edges in the same direction)

Definition: The Hecke-Kiselman monoid HK_{Γ} has generators e_{i} where i is a vertex of Γ and relations
$-e_{i} e_{j} e_{i}=e_{j} e_{i} e_{j}$
$-e_{i} e_{j} e_{i}=e_{j} e_{i} e_{j}=e_{i} e_{j}$

- $e_{i} e_{j}=e_{j} e_{i}$

Examples:

- Γ - no edges $\Rightarrow \mathbf{H K}_{\Gamma}$ is the Boolean of Γ_{0};
- Γ - Dynkin diagram (unoriented) $\Rightarrow \mathbf{H K}_{\Gamma}$ is the 0-Hecke monoid;
- $\Gamma=\{1, \ldots, n\}$ with $i \rightarrow j$ iff $i<j \Rightarrow \mathbf{H K}_{\Gamma}$ is Kiselman's semigroup.

Hecke-Kiselman semigroups: definition

Assume: 「 - simple digraph (no loops or multiple edges in the same direction)

Definition: The Hecke-Kiselman monoid HK_{Γ} has generators e_{i} where i is a vertex of Γ and relations
$-e_{i} e_{j} e_{i}=e_{j} e_{i} e_{j}$
$-e_{i} e_{j} e_{i}=e_{j} e_{i} e_{j}=e_{i} e_{j}$

- $e_{i} e_{j}=e_{j} e_{i}$

Examples:

- Γ - no edges $\Rightarrow \mathbf{H K}_{\Gamma}$ is the Boolean of Γ_{0};
- Γ - Dynkin diagram (unoriented) $\Rightarrow \mathbf{H K}_{\Gamma}$ is the 0-Hecke monoid;
- $\Gamma=\{1, \ldots, n\}$ with $i \rightarrow j$ iff $i<j \Rightarrow \mathbf{H K}_{\Gamma}$ is Kiselman's semigroup.

Hecke-Kiselman semigroups: Catalan monoid

Hecke-Kiselman semigroups: Catalan monoid

Catalan monoid: \mathbf{C}_{n} - order preserving (i.e. $\left.a \leq b \Rightarrow f(a) \leq f(b)\right)$ and order decreasing (i.e. $f(a) \leq a$) transformations of $\{0,1, \ldots, n\}$.

Hecke-Kiselman semigroups: Catalan monoid

Catalan monoid: \mathbf{C}_{n} - order preserving (i.e. $a \leq b \Rightarrow f(a) \leq f(b)$) and order decreasing (i.e. $f(a) \leq a$) transformations of $\{0,1, \ldots, n\}$.
$\left|\mathbf{C}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n}$ - the n-th Catalan number

Hecke-Kiselman semigroups: Catalan monoid

Catalan monoid: \mathbf{C}_{n} - order preserving (i.e. $a \leq b \Rightarrow f(a) \leq f(b)$) and order decreasing (i.e. $f(a) \leq a$) transformations of $\{0,1, \ldots, n\}$.
$\left|\mathbf{C}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n}$ —the n-th Catalan number
$\Gamma=\Gamma_{n}:=1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n$
Theorem (A. Solomon): $\mathrm{HK}_{\Gamma_{n}} \cong \mathrm{C}_{n}$
Standard effective representations Φ of C_{n} :

Hecke-Kiselman semigroups: Catalan monoid

Catalan monoid: \mathbf{C}_{n} - order preserving (i.e. $\left.a \leq b \Rightarrow f(a) \leq f(b)\right)$ and order decreasing (i.e. $f(a) \leq a$) transformations of $\{0,1, \ldots, n\}$.
$\left|\mathrm{C}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n}$ —the n-th Catalan number
$\Gamma=\Gamma_{n}:=1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n$
Theorem (A. Solomon): $\mathrm{HK}_{\Gamma_{n}} \cong \mathrm{C}_{n}$

Hecke-Kiselman semigroups: Catalan monoid

Catalan monoid: \mathbf{C}_{n} - order preserving (i.e. $\left.a \leq b \Rightarrow f(a) \leq f(b)\right)$ and order decreasing (i.e. $f(a) \leq a$) transformations of $\{0,1, \ldots, n\}$.
$\left|\mathbf{C}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n}$ - the n-th Catalan number
$\Gamma=\Gamma_{n}:=1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n$
Theorem (A. Solomon): $\mathrm{HK}_{\Gamma_{n}} \cong \mathrm{C}_{n}$

Standard effective representations Φ of C_{n} :

Hecke-Kiselman semigroups: Catalan monoid

Catalan monoid: \mathbf{C}_{n} - order preserving (i.e. $\left.a \leq b \Rightarrow f(a) \leq f(b)\right)$ and order decreasing (i.e. $f(a) \leq a$) transformations of $\{0,1, \ldots, n\}$.
$\left|\mathrm{C}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n}$ —the n-th Catalan number
$\Gamma=\Gamma_{n}:=1 \longrightarrow 2$

Theorem (A. Solomon): $\mathrm{HK}_{\Gamma_{n}} \cong \mathrm{C}_{n}$
Standard effective representations Φ of C_{n} :
$\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ basis of \mathbb{k}^{n}, action

$$
e_{i}\left(v_{j}\right)= \begin{cases}v_{j}, & j \neq i \\ v_{j-1}, & j=i>1 \\ 0, & j=i=1\end{cases}
$$

Hecke-Kiselman semigroups: Catalan monoid

Catalan monoid: \mathbf{C}_{n} - order preserving (i.e. $\left.a \leq b \Rightarrow f(a) \leq f(b)\right)$ and order decreasing (i.e. $f(a) \leq a$) transformations of $\{0,1, \ldots, n\}$.
$\left|\mathrm{C}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n}$ —the n-th Catalan number
$\Gamma=\Gamma_{n}:=1 \longrightarrow 2$

Theorem (A. Solomon): $\mathrm{HK}_{\Gamma_{n}} \cong \mathrm{C}_{n}$
Standard effective representations Φ of C_{n} :
$\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ basis of \mathbb{k}^{n}, action

$$
e_{i}\left(v_{j}\right)= \begin{cases}v_{j}, & j \neq i \\ v_{j-1}, & j=i>1 \\ 0, & j=i=1\end{cases}
$$

Path categories

Path categories

Γ - acyclic quiver (no loops but multiple edges allowed)

Path categories

Γ - acyclic quiver (no loops but multiple edges allowed)
$\mathbb{k} \Gamma$ - path category of Γ

Path categories

Γ - acyclic quiver (no loops but multiple edges allowed)
$\mathbb{k} \Gamma$ - path category of Γ

- objects: vertices of Γ

Path categories

Γ - acyclic quiver (no loops but multiple edges allowed)
$\mathbb{k} \Gamma$ - path category of Γ

- objects: vertices of Γ
- morphisms: linear combinations of paths in 「

Path categories

Γ - acyclic quiver (no loops but multiple edges allowed)
$\mathbb{k} \Gamma$ - path category of Γ

- objects: vertices of Γ
- morphisms: linear combinations of paths in 「
- composition: concatenation of paths

Path categories

Γ - acyclic quiver (no loops but multiple edges allowed)
$\mathbb{k} \Gamma$ - path category of Γ

- objects: vertices of Γ
- morphisms: linear combinations of paths in 「
- composition: concatenation of paths

Representation of $\mathbb{k} \Gamma$ - functor to \mathbb{k}-vector spaces, i.e.

Path categories

Γ - acyclic quiver (no loops but multiple edges allowed)
$\mathbb{k} \Gamma$ - path category of Γ

- objects: vertices of Γ
- morphisms: linear combinations of paths in 「
- composition: concatenation of paths

Representation of $\mathbb{k} \Gamma$ - functor to \mathbb{k}-vector spaces, i.e.

- objects \mapsto vector space

Path categories

Γ - acyclic quiver (no loops but multiple edges allowed)
$\mathbb{k} \Gamma$ - path category of Γ

- objects: vertices of Γ
- morphisms: linear combinations of paths in Γ
- composition: concatenation of paths

Representation of $\mathbb{k} \Gamma$ - functor to \mathbb{k}-vector spaces, i.e.

- objects \mapsto vector space
- paths in $\Gamma \mapsto$ linear map
\qquad
\qquad

Path categories

Γ - acyclic quiver (no loops but multiple edges allowed)
$\mathbb{k} \Gamma$ - path category of Γ

- objects: vertices of Γ
- morphisms: linear combinations of paths in 「
- composition: concatenation of paths

Representation of $\mathbb{k} \Gamma$ - functor to \mathbb{k}-vector spaces, i.e.

- objects \mapsto vector space
- paths in $\Gamma \mapsto$ linear map
- concatenation of paths \mapsto composition of linear maps
\qquad
\qquad

Path categories

Γ - acyclic quiver (no loops but multiple edges allowed)
$\mathbb{k} \Gamma$ - path category of Γ

- objects: vertices of Γ
- morphisms: linear combinations of paths in 「
- composition: concatenation of paths

Representation of $\mathbb{k} \Gamma$ - functor to \mathbb{k}-vector spaces, i.e.

- objects \mapsto vector space
- paths in $\Gamma \mapsto$ linear map
- concatenation of paths \mapsto composition of linear maps
$\mathbb{k} \Gamma-\bmod$ - category of locally finite dimensional representations (morphisms $=$ natural transformations of functors)

Path categories

Γ - acyclic quiver (no loops but multiple edges allowed)
$\mathbb{k} \Gamma$ - path category of Γ

- objects: vertices of Γ
- morphisms: linear combinations of paths in 「
- composition: concatenation of paths

Representation of $\mathbb{k} \Gamma$ - functor to \mathbb{k}-vector spaces, i.e.

- objects \mapsto vector space
- paths in $\Gamma \mapsto$ linear map
- concatenation of paths \mapsto composition of linear maps
$\mathbb{k} \Gamma-\bmod$ - category of locally finite dimensional representations (morphisms $=$ natural transformations of functors)

Projection functors

Projection functors

Γ - acyclic quiver, $i \in \Gamma$
"factor out the maximal possible
Theorem (Grensing).

Projection functors

Γ - acyclic quiver, $i \in \Gamma$
$\mathrm{F}_{i}: \mathbb{k} \Gamma-\bmod \rightarrow \mathbb{k} \Gamma$-mod —- projection functor
"factor out the maximal possible $\mathbb{k} \Gamma$-invariant subspace at vertex i "
Theorem (Grensing). Projections functors satisfy:

Projection functors

Γ - acyclic quiver, $i \in \Gamma$
$\mathrm{F}_{i}: \mathbb{k} \Gamma-\bmod \rightarrow \mathbb{k} \Gamma$-mod —- projection functor
"factor out the maximal possible $\mathbb{k} \Gamma$-invariant subspace at vertex i "
Theorem (Grensing). Projections functors satisfy:

Projection functors

Γ - acyclic quiver, $i \in \Gamma$
$\mathrm{F}_{i}: \mathbb{k} \Gamma-\bmod \rightarrow \mathbb{k} \Gamma$-mod —- projection functor
"factor out the maximal possible $\mathbb{k} \Gamma$-invariant subspace at vertex i "
Theorem (Grensing). Projections functors satisfy:

- $\mathrm{F}_{i} \mathrm{~F}_{j} \cong \mathrm{~F}_{j} \mathrm{~F}_{i}$ if i and j are not connected in Γ;

Difficulty. Projections functors are not exact

Projection functors

Γ - acyclic quiver, $i \in \Gamma$
$\mathrm{F}_{i}: \mathbb{k} \Gamma-\bmod \rightarrow \mathbb{k} \Gamma$-mod —- projection functor
"factor out the maximal possible $\mathbb{k} \Gamma$-invariant subspace at vertex i "
Theorem (Grensing). Projections functors satisfy:

- $\mathrm{F}_{i} \mathrm{~F}_{j} \cong \mathrm{~F}_{j} \mathrm{~F}_{i}$ if i and j are not connected in Γ;
- $\mathrm{F}_{i} \mathrm{~F}_{j} \mathrm{~F}_{i} \cong \mathrm{~F}_{j} \mathrm{~F}_{i} \mathrm{~F}_{j} \cong \mathrm{~F}_{i} \mathrm{~F}_{j}$ if there is an arrow from i to j in Γ.

Difficulty. Projections functors are not exact
Fact. Projections functors send injectives to injectives.

Projection functors

Γ - acyclic quiver, $i \in \Gamma$
$\mathrm{F}_{i}: \mathbb{k} \Gamma-\bmod \rightarrow \mathbb{k} \Gamma$-mod —- projection functor
"factor out the maximal possible $\mathbb{k} \Gamma$-invariant subspace at vertex i "
Theorem (Grensing). Projections functors satisfy:

- $\mathrm{F}_{i} \mathrm{~F}_{j} \cong \mathrm{~F}_{j} \mathrm{~F}_{i}$ if i and j are not connected in Γ;
- $\mathrm{F}_{i} \mathrm{~F}_{j} \mathrm{~F}_{i} \cong \mathrm{~F}_{j} \mathrm{~F}_{i} \mathrm{~F}_{j} \cong \mathrm{~F}_{i} \mathrm{~F}_{j}$ if there is an arrow from i to j in Γ.

Difficulty. Projections functors are not exact.
Fact. Projections functors send injectives to injectives.
\qquad additive category of injective modules is isomorphic to that of F

Projection functors

Γ - acyclic quiver, $i \in \Gamma$
$\mathrm{F}_{i}: \mathbb{k} \Gamma-\bmod \rightarrow \mathbb{k} \Gamma$-mod —- projection functor
"factor out the maximal possible $\mathbb{k} \Gamma$-invariant subspace at vertex i "
Theorem (Grensing). Projections functors satisfy:

- $\mathrm{F}_{i} \mathrm{~F}_{j} \cong \mathrm{~F}_{j} \mathrm{~F}_{i}$ if i and j are not connected in Γ;
- $\mathrm{F}_{i} \mathrm{~F}_{j} \mathrm{~F}_{i} \cong \mathrm{~F}_{j} \mathrm{~F}_{i} \mathrm{~F}_{j} \cong \mathrm{~F}_{i} \mathrm{~F}_{j}$ if there is an arrow from i to j in Γ.

Difficulty. Projections functors are not exact.
Fact. Projections functors send injectives to injectives.
\qquad

Projection functors

Γ - acyclic quiver, $i \in \Gamma$
$\mathrm{F}_{i}: \mathbb{k} \Gamma-\bmod \rightarrow \mathbb{k} \Gamma$-mod —- projection functor
"factor out the maximal possible $\mathbb{k} \Gamma$-invariant subspace at vertex i "
Theorem (Grensing). Projections functors satisfy:

- $\mathrm{F}_{i} \mathrm{~F}_{j} \cong \mathrm{~F}_{j} \mathrm{~F}_{i}$ if i and j are not connected in Γ;
- $\mathrm{F}_{i} \mathrm{~F}_{j} \mathrm{~F}_{i} \cong \mathrm{~F}_{j} \mathrm{~F}_{i} \mathrm{~F}_{j} \cong \mathrm{~F}_{i} \mathrm{~F}_{j}$ if there is an arrow from i to j in Γ.

Difficulty. Projections functors are not exact.
Fact. Projections functors send injectives to injectives.
Way out. Let G_{i} be the unique left exact functor whose action on the additive category of injective modules is isomorphic to that of $\mathrm{F}_{\boldsymbol{i}}$

Projection functors

Γ - acyclic quiver, $i \in \Gamma$
$\mathrm{F}_{i}: \mathbb{k} \Gamma-\bmod \rightarrow \mathbb{k} \Gamma$-mod —- projection functor
"factor out the maximal possible $\mathbb{k} \Gamma$-invariant subspace at vertex i "
Theorem (Grensing). Projections functors satisfy:

- $\mathrm{F}_{i} \mathrm{~F}_{j} \cong \mathrm{~F}_{j} \mathrm{~F}_{i}$ if i and j are not connected in Γ;
- $\mathrm{F}_{i} \mathrm{~F}_{j} \mathrm{~F}_{i} \cong \mathrm{~F}_{j} \mathrm{~F}_{i} \mathrm{~F}_{j} \cong \mathrm{~F}_{i} \mathrm{~F}_{j}$ if there is an arrow from i to j in Γ.

Difficulty. Projections functors are not exact.
Fact. Projections functors send injectives to injectives.
Way out. Let G_{i} be the unique left exact functor whose action on the additive category of injective modules is isomorphic to that of $\mathrm{F}_{\boldsymbol{i}}$

Fact: $\mathrm{G}_{\boldsymbol{i}}$ is exact

Projection functors

Γ - acyclic quiver, $i \in \Gamma$
$\mathrm{F}_{i}: \mathbb{k} \Gamma-\bmod \rightarrow \mathbb{k} \Gamma$-mod —- projection functor
"factor out the maximal possible $\mathbb{k} \Gamma$-invariant subspace at vertex i "
Theorem (Grensing). Projections functors satisfy:

- $\mathrm{F}_{i} \mathrm{~F}_{j} \cong \mathrm{~F}_{j} \mathrm{~F}_{i}$ if i and j are not connected in Γ;
- $\mathrm{F}_{i} \mathrm{~F}_{j} \mathrm{~F}_{i} \cong \mathrm{~F}_{j} \mathrm{~F}_{i} \mathrm{~F}_{j} \cong \mathrm{~F}_{i} \mathrm{~F}_{j}$ if there is an arrow from i to j in Γ.

Difficulty. Projections functors are not exact.
Fact. Projections functors send injectives to injectives.
Way out. Let G_{i} be the unique left exact functor whose action on the additive category of injective modules is isomorphic to that of $\mathrm{F}_{\boldsymbol{i}}$

Fact: $\mathrm{G}_{\boldsymbol{i}}$ is exact

Categorification of the Catalan monoid

Categorification of the Catalan monoid

Γ - acyclic quiver, Θ - underlying simple digraph

Categorification of the Catalan monoid

Γ - acyclic quiver, Θ - underlying simple digraph
Definition: 2-category $\mathscr{C}_{\Theta, \Gamma}$.

Categorification of the Catalan monoid

Γ - acyclic quiver, Θ - underlying simple digraph
Definition: 2-category $\mathscr{C}_{\Theta, \Gamma}$.

- Object: $\boldsymbol{\alpha}:=\mathbb{k} \Gamma$-mod;

Categorification of the Catalan monoid

Γ - acyclic quiver, Θ - underlying simple digraph
Definition: 2-category $\mathscr{C}_{\Theta, \Gamma}$.

- Object: $\boldsymbol{\alpha}:=\mathbb{k} \Gamma$-mod;
- 1-morphisms: Endofunctors on $\mathbb{k} \Gamma$-mod isomorphic to a direct sum of direct summands of compositions of the G^{\prime} 'th

Categorification of the Catalan monoid

Γ - acyclic quiver, Θ - underlying simple digraph
Definition: 2-category $\mathscr{C}_{\Theta, \Gamma}$.

- Object: $\boldsymbol{\&}:=\mathbb{k} \Gamma$-mod;
- 1-morphisms: Endofunctors on $\mathbb{k} \Gamma$-mod isomorphic to a direct sum of direct summands of compositions of the G_{i} 'th
- 2-morphisms: natural transformations of functors

Categorification of the Catalan monoid

Γ - acyclic quiver, Θ - underlying simple digraph
Definition: 2-category $\mathscr{C}_{\Theta, \Gamma}$.

- Object: \& $:=\mathbb{k} \Gamma$-mod;
- 1-morphisms: Endofunctors on $\mathbb{k} \Gamma$-mod isomorphic to a direct sum of direct summands of compositions of the G_{i} 'th
- 2-morphisms: natural transformations of functors

The 2-category $\mathscr{C}_{\Theta, \Gamma}$ is given by its defining 2-representation, that is a functorial action on $\mathbb{k} \Gamma$-mod.

Theorem (Grensing-M): Corollary:

Categorification of the Catalan monoid

Γ - acyclic quiver, Θ - underlying simple digraph
Definition: 2-category $\mathscr{C}_{\Theta, \Gamma}$.

- Object: \& $:=\mathbb{k} \Gamma$-mod;
- 1-morphisms: Endofunctors on $\mathbb{k} \Gamma$-mod isomorphic to a direct sum of direct summands of compositions of the G_{i} 'th
- 2-morphisms: natural transformations of functors

The 2-category $\mathscr{C}_{\Theta, \Gamma}$ is given by its defining 2-representation, that is a functorial action on $\mathbb{k} \Gamma$-mod.

Theorem (Grensing-M): $\left[\mathscr{C}_{\Gamma_{n}, \Gamma_{n}}\right](\mathbb{Q}, \boldsymbol{\&}) \cong \mathbb{Z}\left[\mathbf{C}_{n}\right]$.

Consequence:

Categorification of the Catalan monoid

Γ - acyclic quiver, Θ - underlying simple digraph
Definition: 2-category $\mathscr{C}_{\Theta, \Gamma}$.

- Object: $\boldsymbol{\infty}:=\mathbb{k} \Gamma$-mod;
- 1-morphisms: Endofunctors on $\mathbb{k} \Gamma$-mod isomorphic to a direct sum of direct summands of compositions of the G^{\prime} 'th
- 2-morphisms: natural transformations of functors

The 2-category $\mathscr{C}_{\Theta, \Gamma}$ is given by its defining 2-representation, that is a functorial action on $\mathbb{k} \Gamma$-mod.

Theorem (Grensing-M): $\left.\mathscr{C}_{\Gamma_{n}, \Gamma_{n}}\right](\boldsymbol{\phi}, \boldsymbol{\&}) \cong \mathbb{Z}\left[C_{n}\right]$.
Corollary: In the basis of simple modules, the action of $\left[\mathscr{C}_{\Gamma_{n}, \Gamma_{n}}\right](\boldsymbol{Q}, \boldsymbol{Q})$ on $[\mathbb{k} \Gamma$-mod] gives Φ.

Categorification of the Catalan monoid

Γ - acyclic quiver, Θ - underlying simple digraph
Definition: 2-category $\mathscr{C}_{\Theta, \Gamma}$.

- Object: $\boldsymbol{\infty}:=\mathbb{k} \Gamma$-mod;
- 1-morphisms: Endofunctors on $\mathbb{k} \Gamma$-mod isomorphic to a direct sum of direct summands of compositions of the G_{i} 'th
- 2-morphisms: natural transformations of functors

The 2-category $\mathscr{C}_{\Theta, \Gamma}$ is given by its defining 2-representation, that is a functorial action on $\mathbb{k} \Gamma$-mod.

Theorem (Grensing-M): $\left.\mathscr{C}_{\Gamma_{n}, \Gamma_{n}}\right](\boldsymbol{\phi}, \boldsymbol{\&}) \cong \mathbb{Z}\left[C_{n}\right]$.
Corollary: In the basis of simple modules, the action of $\left[\mathscr{C}_{\Gamma_{n}, \Gamma_{n}}\right](\boldsymbol{Q}, \boldsymbol{Q})$ on $[k \Gamma-\bmod]$ gives Φ.

Consequence: In the basis of projective (injective) modules we get two new (but equivalent) effective linear representations of \mathbb{C}_{n}.

Categorification of the Catalan monoid

Γ - acyclic quiver, Θ - underlying simple digraph
Definition: 2-category $\mathscr{C}_{\Theta, \Gamma}$.

- Object: $\boldsymbol{\infty}:=\mathbb{k} \Gamma$-mod;
- 1-morphisms: Endofunctors on $\mathbb{k} \Gamma$-mod isomorphic to a direct sum of direct summands of compositions of the G_{i} 'th
- 2-morphisms: natural transformations of functors

The 2-category $\mathscr{C}_{\Theta, \Gamma}$ is given by its defining 2-representation, that is a functorial action on $\mathbb{k} \Gamma$-mod.

Theorem (Grensing-M): $\left.\mathscr{C}_{\Gamma_{n}, \Gamma_{n}}\right](\boldsymbol{\phi}, \boldsymbol{\&}) \cong \mathbb{Z}\left[C_{n}\right]$.
Corollary: In the basis of simple modules, the action of $\left[\mathscr{C}_{\Gamma_{n}, \Gamma_{n}}\right](\boldsymbol{Q}, \boldsymbol{Q})$ on $[k \Gamma-\bmod]$ gives Φ.

Consequence: In the basis of projective (injective) modules we get two new (but equivalent) effective linear representations of \mathbb{C}_{n}.

Other Hecke-Kiselman monoids

Other Hecke-Kiselman monoids

Γ, Θ as above

Other Hecke-Kiselman monoids

Г, Θ as above
Fact: Mapping e_{i} to G_{i} gives a weak functorial action of HK_{\ominus} on $\mathbb{k} \Gamma$-mod.

Other Hecke-Kiselman monoids

Γ, Θ as above
Fact: Mapping e_{i} to G_{i} gives a weak functorial action of $\mathbf{H K}_{\ominus}$ on $\mathbb{k} \Gamma$-mod.
Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on $\{1,2, \ldots, n\}$ oriented from smaller to bigger vertices (i.e. $\mathbf{H K}_{\ominus}$ is the Kiselman semigroup), then there exists Γ such that this action is faithful.

Difficulty: Composition of the C
Problem: What are indecomposable 1-morphisms in

Other Hecke-Kiselman monoids

Γ, Θ as above
Fact: Mapping e_{i} to G_{i} gives a weak functorial action of $\mathbf{H K}_{\ominus}$ on $\mathbb{k} \Gamma$-mod.

Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on $\{1,2, \ldots, n\}$ oriented from smaller to bigger vertices (i.e. $\mathbf{H K}_{\ominus}$ is the Kiselman semigroup), then there exists Γ such that this action is faithful.
Difficulty: Composition of the G^{\prime} 's may decompose!
Problem: What are indecomposable 1-morphisms in
Known full answer: For Γ_{n} any composition of the

Other Hecke-Kiselman monoids

Γ, Θ as above
Fact: Mapping e_{i} to G_{i} gives a weak functorial action of $\mathbf{H K}_{\ominus}$ on $\mathbb{k} \Gamma$-mod.

Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on $\{1,2, \ldots, n\}$ oriented from smaller to bigger vertices (i.e. $\mathbf{H K}_{\ominus}$ is the Kiselman semigroup), then there exists Γ such that this action is faithful.
Difficulty: Composition of the G^{\prime} 's may decompose!
Problem: What are indecomposable 1-morphisms in $\mathscr{C}_{\Theta, \Gamma}$?

Other Hecke-Kiselman monoids

Г, Θ as above
Fact: Mapping e_{i} to G_{i} gives a weak functorial action of $\mathbf{H K}_{\ominus}$ on $\mathbb{k} \Gamma$-mod.

Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on $\{1,2, \ldots, n\}$ oriented from smaller to bigger vertices (i.e. $\mathbf{H K}_{\Theta}$ is the Kiselman semigroup), then there exists Γ such that this action is faithful.
Difficulty: Composition of the G^{\prime} 's may decompose!
Problem: What are indecomposable 1-morphisms in $\mathscr{C}_{\Theta, \Gamma}$?
Known full answer: For Γ_{n} any composition of the $\mathrm{G}_{\boldsymbol{i}}$'s is indecomposable.

Other Hecke-Kiselman monoids

Г, Θ as above
Fact: Mapping e_{i} to G_{i} gives a weak functorial action of HK_{\ominus} on $\mathbb{k} \Gamma$-mod.

Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on $\{1,2, \ldots, n\}$ oriented from smaller to bigger vertices (i.e. $\mathbf{H K}_{\ominus}$ is the Kiselman semigroup), then there exists Γ such that this action is faithful.
Difficulty: Composition of the G_{i} 's may decompose!
Problem: What are indecomposable 1-morphisms in $\mathscr{C}_{\Theta, \Gamma}$?
Known full answer: For Γ_{n} any composition of the $\mathrm{G}_{\boldsymbol{i}}$'s is indecomposable.

Known partial answer: For a Dynkin quiver of type A and any orientation, indecomposable 1-morphisms in $\mathscr{C}_{\Theta, \Gamma}$ form a monoid T (under composition) generated by idempotents (each $\rightarrow \bullet \rightarrow$ contributes with one generator and each $\rightarrow \bullet \leftarrow$ and $\leftarrow \bullet \rightarrow$ with two generators). There is a presentation for T and a realization of $\mathbf{H K}_{\Theta}$ inside $\mathbb{Z}[T]$.

Other Hecke-Kiselman monoids

Г, Θ as above
Fact: Mapping e_{i} to G_{i} gives a weak functorial action of HK_{\ominus} on $\mathbb{k} \Gamma$-mod.

Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on $\{1,2, \ldots, n\}$ oriented from smaller to bigger vertices (i.e. $\mathbf{H K}_{\ominus}$ is the Kiselman semigroup), then there exists Γ such that this action is faithful.
Difficulty: Composition of the G_{i} 's may decompose!
Problem: What are indecomposable 1-morphisms in $\mathscr{C}_{\Theta, \Gamma}$?
Known full answer: For Γ_{n} any composition of the $\mathrm{G}_{\boldsymbol{i}}$'s is indecomposable.

Known partial answer: For a Dynkin quiver of type A and any orientation, indecomposable 1-morphisms in $\mathscr{C}_{\Theta, \Gamma}$ form a monoid T (under composition) generated by idempotents (each $\rightarrow \bullet \rightarrow$ contributes with one generator and each $\rightarrow \bullet \leftarrow$ and $\leftarrow \bullet \rightarrow$ with two generators). There is a presentation for T and a realization of $\mathbf{H K}_{\Theta}$ inside $\mathbb{Z}[T]$.

[^0]: Principal example.

