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2-categories: definition

Definition. A 2-category is a category enriched over the monoidal
category Cat of small categories (in the latter the monoidal structure is
induced by the cartesian product).

This means that a 2-category C is given by the following data:

◮ objects of C ;

◮ small categories C(i, j) of morphisms;

◮ functorial composition C(j, k)× C(i, j)→ C(i, k);

◮ identity objects 1j;

which are subject to the obvious set of (strict) axioms.
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2-categories: terminology and the first example

Terminology.

◮ An object in C(i, j) is called a 1-morphism of C .

◮ A morphism in C(i, j) is called a 2-morphism of C .

◮ Composition in C(i, j) is called vertical and denoted ◦1.

◮ Composition in C is called horizontal and denoted ◦0.

Principal example. The category Cat is a 2-category.

◮ Objects of Cat are small categories.

◮ 1-morphisms in Cat are functors.

◮ 2-morphisms in Cat are natural transformations.

◮ Composition is the usual composition.

◮ Identity 1-morphisms are the identity functors.
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2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.

Indeed: If C is a category with one object ♣, then C(♣,♣) is a monoid
under composition.

If (S , ◦, e) is a monoid, we can form a category C = C(S,◦,e) as follows:

◮ The only object of C is ♣.

◮ C(♣,♣) := S .

◮ Composition in C is given by multiplication in S .

◮ The identity element of C(♣,♣) is e.
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2-categories: over monoids, part 2

Can we extend C to a 2-category?

Naive approach to try: Let X ⊂ S be some submonoid.

For s, t ∈ S set HomC(♣,♣)(s, t) := {x ∈ X : xs = t}.

Note! S is just a monoid, not a group, so HomC(♣,♣)(s, t) may be
empty or it may contain many elements.

Composition is given by multiplication in S .

Is composition well-defined?
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2-categories: over monoids, part 3

Vertical: xr = s and ys = t implies yxr = t OK

Horizontal: xs = t and x ′s ′ = t ′ implies xsx ′s ′ = tt ′

Need: xx ′ss ′ = tt ′ OK if X ⊂ Z (S)

From now on: X is a submonoid in the center Z (S) of S

All compositions are well-defined!!!

Is this a 2-category?

To check: Functoriality of composition.
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2-categories: over monoids, part 4: functoriality, part 1

One way:

r

x

��

r ′

x′

��

rr ′

xx′

��

rr ′

yy ′xx′

��

s

y

��

◦0 s ′

y ′

��

7→ ss ′

yy ′

��

◦17→

tt ′

t t ′ tt ′

Conclusion 1: (y ◦0 y ′) ◦1 (x ◦0 x ′) = yy ′xx ′.
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2-categories: over monoids, part 5: functoriality, part 2

Another way:
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′ ◦1 x ′) = yxy ′x ′.
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2-categories: over monoids, part 6: the interchange law

Need: the interchange law (y ◦1 x) ◦0 (y
′ ◦1 x ′) = (y ◦0 y ′) ◦1 (x ◦0 x ′).

• //
����
• //

����
•

◦1

• //
HH

��

• //
HH

��

•

= • //
��
HH

��

��

• //
��
HH

��

��

• = • //
��
HH

��

��

• ◦0 • //
��
HH

��

��

•

In our case: yxy ′x ′ = yy ′xx ′ ∀ x , y , x ′, y ′ ∈ X OK since X ⊂ Z (S).

Claim. The above defines on C the structure of a 2-category if and only
if X ⊂ Z (S).
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2-categories: over monoids, part 7: ordered monoids

S — monoid

≤ — compatible order on S (i.e. a ≤ b implies as ≤ bs and sa ≤ sb)

Define C(S,≤) — 2-category via

◮ C(S,≤) has one object ♣

◮ 1-morphisms: C(S,≤)(♣,♣) = S

◮ 2-morphisms: for s, t ∈ S set Hom(s, t) =

{

(s, t), s ≤ t;

∅, else.

◮ horizontal composition is given by multiplication in S ;

◮ vertical composition is uniquely defined.
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2-representations: 2-functors, part 1

A and C — two 2-categories

Definition. A 2-functor F : A → C is a functor which sends
1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way
that is coordinated with all the categorical structures (domains,
codomains, identities and compositions).

Example. For i ∈ C the functor C(i,−) : C → Cat sends

◮ an object j ∈ C to the category C(i, j),

◮ a 1-morphism F ∈ C(j, k) to the functor F ◦ − : C(i, j)→ C(i, k),

◮ a 2-morphism α : F → G to the natural transformation
α ◦0 − : F ◦ − → G ◦ −.
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2-representations: 2-functors, part 2
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2-representations: 2-representations

Definition: A 2-representation of a 2-category C is a 2-functor from C

to some “classical” 2-category.

Example: C(i,−) is the principal 2-representation of C in Cat.

“Classical” 2-representations:

◮ in Cat;

◮ in the 2-category Add of additive categories and additive functors;

◮ in the 2-subcategory add of Add consisting of all fully additive
categories with finitely many isoclasses of indecomposable objects;

◮ a the 2-category ab of abelian categories and exact functors.
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Decategorification: Grothendieck category

Definition. The (split) Grothendieck group [A] of a small additive
category A is the quotient of the free abelian group generated by objects
of A modulo relations [X ]− [Y ]− [Z ] whenever X ∼= Y ⊕ Z in A.

Note: If A is idempotent split with finitely many indecomposables, then
[A] is free abelian of finite rank with indecomposables/iso as basis.

Definition. A 2-category C is called locally finitary over a field k if each
C(i, j) is k-linear, additive, idempotent split with finitely many
indecomposables.

C — locally finitary

Definition. The (split) Grothendieck category [C ] of C is a (usual)
category with same objects as C , where [C ](i, j) = [C(i, j)] and
composition is induced from C .
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Decategorification: linear algebra

Main point: Forget the 2-level.

Note: For k-linear categories indecomposability is defined on the 2-level
(an object in indecomposable iff its endomorphism algebra is local).

Assume: C — locally finitary; F — 2-representation of C s.t.

◮ object i 7→ additive (abelian, triangulated) category Ci
◮ 1-morphism 7→ additive (exact, triangulated) functor

◮ 2-morphism 7→ natural transformation of functors

Then: The category [C ] acts on [C]

In particular: If C has 1 object ♣ then the monoid [C ](♣,♣) acts on
the abelian group [C]

Extending scalars: The algebra k[C ](♣,♣) acts on the vector space
k[C], that is we get a linear representation of the monoid [C ](♣,♣).
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the abelian group [C]

Extending scalars: The algebra k[C ](♣,♣) acts on the vector space
k[C], that is we get a linear representation of the monoid [C ](♣,♣).
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Decategorification: advantages

Assume: C is 2-represented on C

Decategorify: [C ] acts on [C]

Main point: C has non-trivial structure

Example 1: The group [C] might have many natural bases (e.g. given by
simple, injective, projective or tilting modules).

Example 2: The category C could have stratifications, e.g. by
Gelfand-Kirillov dimension of objects. This gives rise to filtrations on [C].

Example 3: The category C could be graded, which would give a “layered
upgrade” of [C] (e.g. Jones polynomial → Khovanov homology).
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Hecke-Kiselman semigroups: definition

Assume: Γ — simple digraph (no loops or multiple edges in the same
direction)

Definition: The Hecke-Kiselman monoid HKΓ has generators ei where i

is a vertex of Γ and relations

◮ eiejei = ejeiej if i
** jjj ;

◮ eiejei = ejeiej = eiej if i // j ;

◮ eiej = ejei if i j .

Examples:

◮ Γ — no edges ⇒ HKΓ is the Boolean of Γ0;

◮ Γ — Dynkin diagram (unoriented) ⇒ HKΓ is the 0-Hecke monoid;

◮ Γ = {1, . . . , n} with i → j iff i < j ⇒ HKΓ is Kiselman’s semigroup.
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Hecke-Kiselman semigroups: Catalan monoid

Catalan monoid: Cn — order preserving (i.e. a ≤ b ⇒ f (a) ≤ f (b))
and order decreasing (i.e. f (a) ≤ a) transformations of {0, 1, . . . , n}.

|Cn| =
1

n+1

(

2n
n

)

— the n-th Catalan number

Γ = Γn := 1 // 2 // . . . // n

Theorem (A. Solomon): HKΓn

∼= Cn

Standard effective representations Φ of Cn:

v = (v1, v2, . . . , vn) basis of kn, action

ei (vj) =











vj , j 6= i ;

vj−1, j = i > 1;

0, j = i = 1.
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Path categories

Γ — acyclic quiver (no loops but multiple edges allowed)

kΓ — path category of Γ

◮ objects: vertices of Γ

◮ morphisms: linear combinations of paths in Γ

◮ composition: concatenation of paths

Representation of kΓ — functor to k-vector spaces, i.e.

◮ objects 7→ vector space

◮ paths in Γ 7→ linear map

◮ concatenation of paths 7→ composition of linear maps

kΓ-mod — category of locally finite dimensional representations
(morphisms= natural transformations of functors)
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Projection functors

Γ — acyclic quiver, i ∈ Γ

Fi : kΓ-mod→ kΓ-mod —- projection functor
“factor out the maximal possible kΓ-invariant subspace at vertex i”

Theorem (Grensing). Projections functors satisfy:

◮ FiFj
∼= FjFi if i and j are not connected in Γ;

◮ FiFjFi
∼= FjFiFj

∼= FiFj if there is an arrow from i to j in Γ.

Difficulty. Projections functors are not exact.

Fact. Projections functors send injectives to injectives.

Way out. Let Gi be the unique left exact functor whose action on the
additive category of injective modules is isomorphic to that of Fi

Fact: Gi is exact
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Categorification of the Catalan monoid

Γ — acyclic quiver, Θ — underlying simple digraph

Definition: 2-category CΘ,Γ.

◮ Object: ♣ := kΓ-mod;
◮ 1-morphisms: Endofunctors on kΓ-mod isomorphic to a direct sum

of direct summands of compositions of the Gi ’th
◮ 2-morphisms: natural transformations of functors

The 2-category CΘ,Γ is given by its defining 2-representation, that is a
functorial action on kΓ-mod.

Theorem (Grensing-M): [CΓn,Γn
](♣,♣) ∼= Z[Cn].

Corollary: In the basis of simple modules, the action of [CΓn,Γn
](♣,♣)

on [kΓ-mod] gives Φ.

Consequence: In the basis of projective (injective) modules we get two
new (but equivalent) effective linear representations of Cn.
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Other Hecke-Kiselman monoids

Γ, Θ as above

Fact: Mapping ei to Gi gives a weak functorial action of HKΘ on
kΓ-mod.

Example: From [Kudryavtseva-M] it follows that if Θ is the full graph on
{1, 2, . . . , n} oriented from smaller to bigger vertices (i.e. HKΘ is the
Kiselman semigroup), then there exists Γ such that this action is faithful.

Difficulty: Composition of the Gi ’s may decompose!

Problem: What are indecomposable 1-morphisms in CΘ,Γ?

Known full answer: For Γn any composition of the Gi ’s is
indecomposable.

Known partial answer: For a Dynkin quiver of type A and any
orientation, indecomposable 1-morphisms in CΘ,Γ form a monoid T

(under composition) generated by idempotents (each → • → contributes
with one generator and each → • ← and ← • → with two generators).
There is a presentation for T and a realization of HKΘ inside Z[T ].
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Known full answer: For Γn any composition of the Gi ’s is
indecomposable.

Known partial answer: For a Dynkin quiver of type A and any
orientation, indecomposable 1-morphisms in CΘ,Γ form a monoid T

(under composition) generated by idempotents (each → • → contributes
with one generator and each → • ← and ← • → with two generators).
There is a presentation for T and a realization of HKΘ inside Z[T ].
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