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I use categories but am not a category theorist (Disclaimer).

I will have questions for you, too.

On a point of notation, I compose functions from right-to-left.
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Categories arise in two ways in this talk:

1. Big categories of structures and arrows.

2. Small categories which should be regarded as generalizations

of monoids. They are always 1-sorted.
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1. Classical/Commutative Stone duality

A topological space X is called a Boolean space if it is compact, Hausdorff
and 0-dimensional (that is, it has a base of clopen sets).

Theorem: Classical/Commutative Stone duality. (Stone).

1. With each Boolean algebra B, we can associate a Boolean space X(B),
called the Stone space of B. It is a set of ultrafilters.

2. With each Boolean space X, we can associate a Boolean algebra, B(X),
of clopen subsets.

3. B ∼= B(X(B)) for each Boolean algebra B.

4. X ∼= X(B(X)) for each Boolean space X.

5. The category of Boolean algebras is dually equivalent to the category of
Boolean spaces.
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2. Idea behind non-commutative Stone duality

We shall generalize this duality as follows:

1. Replace the Boolean algebra by an inverse monoid which has

a ‘Boolean character’.

2. Replace the topological space by a topological groupoid which

generalizes a Boolean space. This idea originated in the the-

ory of C∗-algebras.
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3. Boolean inverse monoids

An inverse monoid is a monoid in which for each element s there

is a unique element t such that s = sts and t = tst. We usually

denote t by s−1 and refer to the inverse of s.

The idempotents in an inverse monoid commute with each other.

The best example of an inverse monoid is the symmetric inverse

monoid I(X) consisting of all partial bijections of the set X.

The idempotents are the identity functions defined on the sub-

sets of X.

6



Partial bijections can be ordered.

If f and g are partial bijections of the set X then we write f ≤ g
if the restriction of g to the domain of definition of f is f itself.

This can be defined purely algebraically:

f ≤ g iff f = gf−1f.
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This motivates the definition of the natural partial order on an
arbitrary inverse monoid:

s ≤ t iff s = ts−1s.

Inverse monoids are partially ordered with respect to the natural
partial order.

If s ≤ t then s−1 ≤ t−1.

An important property: if a ≤ c and b ≤ c then ab−1 and a−1b are
idempotents. Thus, a necessary condition for elements a and b

to have an upper bound is that a−1b and ab−1 be idempotents.

This leads to the compatibility relation a ∼ b defined by the
condition that a−1b and ab−1 be idempotents.
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An inverse monoid is said to be Boolean if it satisfies three

conditions:

1. The idempotents form a Boolean algebra w.r.t. the natural

partial order.

2. If s ∼ t then s ∨ t exists.

3. If s ∨ t exists then u(s ∨ t) = us ∨ ut and (s ∨ t)u = su ∨ tu for

any u ∈ S.
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A morphism θ : S → T of Boolean inverse monoids is a monoid

homomorphism that preserves binary joins.

A morphism of Boolean inverse monoids is said to be proper if

each t ∈ T we can write t =
∨n
i=1 ti where ti ≤ θ(si) for some

si ∈ S.

A morphism of Boolean inverse monoids is said to be weakly

meet preserving if t ≤ θ(a), θ(b) there exists c ≤ a, b such that

t ≤ θ(c).

A morphism of Boolean inverse monoids is said to be callitic if

it is both proper and weakly meet preserving. The rationale for

this definition will be made later.
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4. Boolean groupoids

A topological groupoid is said to be étale if domain and range

maps are local homeomorphisms and the space of identities is

open.

Pedro Resende proved that if G is an étale groupoid then Ω(G)

(open sets) is a monoid.

A Boolean groupoid is an étale groupoid whose space of identities

is a Boolean space.
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5. The duality

Let G be a groupoid. A local bisection is a subset A ⊆ G such

that if a, b ∈ A and d(a) = d(b) (resp. r(a) = r(b)) implies that

a = b.

Proposition Let G be a Boolean groupoid. Then the set of

all compact-open local bisections KB(G) is a Boolean inverse

monoid.
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Let S be a Boolean inverse monoid.

If X is any subset of S then X↑ is the set of all elements above

an element of X.

A subset A ⊆ S is called a filter if for all a, b ∈ A there exists

c ∈ A such that c ≤ a, b, and if a ∈ A and a ≤ b then b ∈ A. It is

proper if 0 /∈ A. A maximal proper filter is called an ultrafilter.

Denote by G(S) the set of all ultrafilters of S.

Proposition Let S be a Boolean inverse monoid. Then G(S),

the Stone groupoid of S, is a Boolean groupoid.
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Here is some insight into this result.

If A is an ultrafilter define

d(A) = (A−1A)↑ and r(A) = (AA−1)↑.

Let A and B be ultrafilters. Define

A ·B = (AB)↑ if d(A) = r(B).

(G(S), ·) is a groupoid.
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Let A be an ultrafilter that contains an idempotent. We shall

call these idempotent ultrafilters. Then A∩E(S) is an ultrafilter

in the Boolean algebra E(S).

Let A be an arbitrary ultrafilter. Then A = (ad(A))↑ where d(A)

is an idempotent ultrafilter.

We can say that (approximately) every ultrafilter in S is a coset

of an ultrafilter in E(S).
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We shall consider functors α : G→ H between Boolean groupoids

which are continuous covering functors that are also coherent

in the sense that the inverse image of compact-open sets are

compact-open.
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Theorem: Non-commutative Stone duality I. (Lawson and

Lenz).

1. S ∼= KB(G(S)) for each Boolean inverse monoid S.

2. G ∼= G(KB(G)) for each Boolean groupoid G.

3. The category of Boolean inverse monoids and callitic mor-

phisms is dually equivalent to the category of Boolean groupoids

and coherent continuous covering functors.
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First question

Let θ : S → T be a callitic morphism between Boolean inverse

monoids. This induces a coherent continuous covering functor

G(T )→ G(S). How should we denote this functor?

Second question

Let α : G→ H be a coherent continuous covering functor between

Boolean groupoids. This induces a callictic morphism KB(H)→
KB(G). How should we denote this morphism?
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The following table is part of a dictionary that translates beween

Boolean inverse monoids and Boolean groupoids:

Boolean inverse monoid Boolean groupoid

Group of units of monoid Topological full group

Countable Second-countable

Tarski algebra of idempotents Cantor space of identities

Semisimple Discrete

Meet monoid Hausdorff

Fundamental Effective

Basic Principal and Hausdorff

0-simplifying Minimal

Simple Minimal and effective
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We, Franceso Tesolin (PhD student), Ganna Kudryavtseva and

me have generalized the duality.

What corresponds to morphisms between Boolean inverse monoids?
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Define a covering relational functor as follows: these are sub-
groupoids φ ⊆ G × H between topological groupoids satisfying
the following properties:

1. For each identity e ∈ G there exists a unique identity f ∈ H
such that (e, f) ∈ φ.

2. If (a, c), (b, c) ∈ φ and d(a) = d(b) then a = b.

3. If (e, f) ∈ φ, where e and f are identities, and d(t) = f then
there exists s such that d(s) = e and (s, t) ∈ φ.

4. If V is open in H then φ−1(V ) is open in G.
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Third question

What should we call covering relational functors?
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Theorem The category of Boolean inverse monoids and their

morphisms is dually equivalent to the category of coherent cov-

ering relational functors and Boolean groupoids.

The obvious question is whether we can say more.

Can this result be generalized?

Can étale correspondences be included in a dual equivalence?
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Extending the duality beyond inverse monoids to other classes

of monoids.
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6. Non-commutative Stone duality: beyond inverse monoids

We now replace groupoids by categories.

We say that a category is étale if its domain and range maps are

both local homeomorphisms and the space of identities is open.

A category is said to be Boolean if it is étale and the space of

identities is a Boolean space.

We replace inverse monoids by bi-restriction monoids (see next

slide). One approach to understanding these semigroups is that

they are defined by axiomatizing the behaviour of the idempo-

tents s−1s and ss−1 in an inverse semigroup.
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We define a monoid S to be a right restriction monoid if it is equipped with
a unary operation a 7→ a∗ satisfying the following axioms:

(RR1) (s∗)∗ = s∗.

(RR2) (s∗t∗)∗ = s∗t∗.

(RR3) s∗t∗ = t∗s∗.

(RR4) ss∗ = s.

(RR5) (st)∗ = (s∗t)∗.

(RR6) t∗s = s(ts)∗.

Those elements a such that a∗ = a are called projections. The element a∗ in
fact axiomatizes the domain of definition of a partial function.

We define a left restriction monoid, dually, and use a 7→ a+ for the unary
operation.

A bi-restriction monoid is a monoid which is both a left and right restriction

monoid and the sets of projections are the same.
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Let S be a bi-restriction monoid. Define

y ≤ x iff y = xy∗ equivalently y = y+x.

This is a partial order with respect to which the monoid is partially ordered.
This is called the natural partial order.

A bi-restriction monoid is said to be Boolean if it satisfies three conditions:

1. The projections form a Boolean algebra wrt the natural partial order.

2. If st∗ = ts∗ and s+t = t+s then s ∨ t exists.

3. If s ∨ t exists then u(s ∨ t) = us ∨ ut and (s ∨ t)u = su ∨ tu for any u ∈ S.
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Theorem: Non-commutative Stone duality II. (Kudryavtseva and Law-
son).

1. With each Boolean bi-restriction monoid S, we can associate a Boolean
category C(S), called the Stone category of S.

2. With each Boolean category C, we can associate a Boolean bi-restriction
monoid, KB(C), of compact-open local bisections.

3. S ∼= KB(C(S)) for each Boolean bi-restriction monoid S.

4. C ∼= C(KB(G)) for each Boolean category C.
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7. Non-commutative Stone duality: beyond the beyond

We now replace étale categories by domain-étale categories where

we only require the domain map to be a local homeomorphism.

A Boolean domain-étale category is a domain-étale category

whose space of identities is a Boolean space.
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Let S be a right restriction monoid. Define

y ≤ x iff y = xy∗.

This is a partial order with respect to which the monoid is partially ordered.
This is called the natural partial order.

A right restriction is said to be Boolean if it satisfies three conditions:

1. The projections form a Boolean algebra wrt the natural partial order.

2. If st∗ = ts∗ then s ∨ t exists.

3. If s ∨ t exists then u(s ∨ t) = us ∨ ut and (s ∨ t)u = su ∨ tu for all u ∈ S.
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Theorem: Non-commutative Stone duality III. (Cockett
and Garner).

1. With each Boolean right restriction monoid S, we can asso-
ciate a Boolean domian-etale category C(S), called the Stone
category of S.

2. With each Boolean domain-etale category C, we can asso-
ciate a Boolean right restriction monoid, KS(C), of compact-
open local sections.

3. S ∼= KS(C(S)) for each Boolean right restriction monoid S.

4. C ∼= C(KS(C)) for each Boolean domain-etale category C.
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8. In conclusion . . .

• Garner showed that the Boolean right restriction monoids

are intimately connected with those varieties (in the sense of

universal algebra) which are Cartesian closed.

• The work of Cockett and Garner suggests that we may gen-

eralize non-commutative Stone duality further, perhaps by

using some ideas of Resende.
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