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Introductions

1. Semigroups seem to be useful tools in study-
ing dynamical systems. The semigroups we
consider here are different from the Ellis
semigroups.

2. Our work deals with inverse semigroups.
These arise in studying certain C∗-algebras.
First, in the work of Renault (1980) and
then in that of Kellendonk (1997), as the
tiling semigroup of a tiling, and then in the
work of Lenz (2002). Steinberg, Margolis
and Lawson rendered Lenz’s work purely
algebraic. Patson’s book (1998) also played
an important role.

3. Why are inverse semigroups related to topo-
logical groupoids and so to C∗-algebras?
Classical Stone duality, when generalized
to a non-commutative setting, provides the
reason.
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Motivation

”Symmetry denotes that sort of con-

cordance of several parts by which they

integrate into a whole.” – Hermann Weyl

As groups are algebraic tools for studying sym-

metry, so inverse semigroups are tools for study-

ing partial symmetry. Symmetry is more than

groups.

Our main goal is to investigate the role of in-

verse semigroups in studying non-classical sym-

metries such as self-similarity and the symme-

try phenomena that arise in aperiodic tilings.

The role of inverse semigroups in C∗-algebras

à la Renault has been crucial to this.
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1. Pseudogroups of transformations

Let X be a topological space. A set S of partial
homeomorphisms between all the open subsets
of X is called a pseudogroup of transforma-
tions if it satisfies the following axioms:

(PT1) Closed under products.

(PT2) Closed under inverses.

(PT3) (Completeness) Closed under all non-
empty compatible unions.

• Associated with the work of Lie, Elie Car-
tan and Veblen & Whitehead and the foun-
dations of differential geometry.

• Often replaced by an associated étale groupoid
of germs.
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Example: the symmetric inverse monoid

Let X be a set equippped with the discrete

topology. Denote by I(X) the set of all partial

bijections of X. This is an example of a pseu-

dogroup called the symmetric inverse monoid.

If X is finite with n elements denote I(X) by

In.
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Formalizations

Groups of transformations led to the abstract

definiton of groups. How can one abstract the

notion of pseudogroups of transformations?

There were three independent approaches:

1. Charles Ehresmann (1905–1979) in France.

2. Gordon B. Preston (1925–2015) in the UK.

3. Viktor V. Vagner (1908–1981) in the USSR.

They all three converge on the definition of

‘inverse semigroup’.
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Inverse semigroups

A semigroup S is said to be inverse if for each

a ∈ S there exists a unique element a−1 such

that a = aa−1a and a−1 = a−1aa−1.

Theorem [Vagner-Preston] Symmetric inverse

monoids are inverse, and every inverse semi-

group can be embedded in a symmetric inverse

monoid.

We cannot quite say that inverse semigroups

are the abstractions of pseudogroups because

we have not dealt with completeness.
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The natural partial order

Let S be an inverse semigroup. Define a ≤ b if

a = ba−1a.

Proposition The relation ≤ is a partial order

with respect to which S is a partially ordered

semigroup.

It is called the natural partial order.

Example In symmetric inverse monoids the

natural partial order is nothing other than the

restriction ordering on partial bijections.
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Technicalities . . .

Let S be an inverse semigroup. Elements of
the form a−1a and aa−1 are idempotents. De-
note by E(S) the set of idempotents of S.

Remarks

1. E(S) is a commutative subsemigroup.

2. E(S) is an order ideal of S.

Observation Suppose that a, b ≤ c. Then
ab−1 ≤ cc−1 and a−1b ≤ c−1c. Thus a necessary
condition for a and b to have an upper bound
is that a−1b and ab−1 be idempotent.

Define a ∼ b if a−1b and ab−1 are idempotent.
This is the compatibility relation.

A non-empty subset is said to be compatible
if each pair of distinct elements in the set are
compatible.
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Example: symmetric inverse monoids

The idempotents in I(X) are the identity func-

tions defined on the subsets of X.

Denote them by 1A where A ⊆ X, called partial

identities. Then

1A ≤ 1B ⇐⇒ A ⊆ B

and

1A1B = 1A∩B.
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An inverse semigroup is said to have finite (resp.
infinite) joins if each finite (resp. arbitrary)
compatible subset has a join.

An inverse semigroup is said to be distribu-
tive if it has finite joins and multiplication dis-
tributes over such joins.

An inverse monoid is said to be a pseudogroup
if it has infinite joins and multiplication dis-
tributes over such joins.

We now have an abstract notion of a pseu-
dogroup of transformations.

The idempotents of a pseudogroup form a frame.
That is, a complete infinitely distributive lat-
tice.

In the case of transformation pseudogroups the
idempotents are just the partial identities on
the open subsets. Thus the topology of the
space is encoded in the set of idempotents.
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Pseudogroups and étale groupoids

A topological groupoid is said to be étale if its

domain and range maps are local homeomor-

phisms. Why étale? This is explained by the

following result.

Theorem [Resende] A topological groupoid is

étale if and only if its set of open subsets forms

a monoid under multiplication of subsets.

This establishes a link with quantales that will

not be discussed here.

Theorem 1 [Lawson & Lenz and Resende]

There is an adjunction between the category

of pseudogroups and the dual of the category

of étale topological groupoids.
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The proof relies on two concepts: completely

prime filters and open local bisections.

• Pseudogroups → completely prime filters

→ étale groupoids

• Etale groupoids → open local bisections →
pseuodgroups
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A space is sober if its open sets determine

points. A pseudogroup is spatial if its elements

are determined by completely prime filters.

Corollary 2 [Lawson & Lenz] The category

of spatial pseudogroups is equivalent to the

dual of the category of sober étale topoological

groupoids.

The above theorem is the main tool in what

follows.
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2. Boolean inverse semigroups

Pseudogroups appear in the rest of the talk in

a disguised form which we now explain.

Let S be a pseudogroup. An element a ∈ S

is said to be finite if a =
∨
i∈I ai implies a =∨n

i=1 ai for some n (and possible relabelling).

Denote the set of finite elements of S by K(S).

If this is a distributive inverse semigroup we

say that S is coherent.

Theorem 3 [Lawson & Lenz] The category of

distributive inverse semigroups is equivalent to

the category of coherent pseudogroups.
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A distributive inverse semigroup is said to be

Boolean if its set of idempotents forms a Boolean

algebra.

Why are Boolean inverse semigroups of espe-

cial interest?

Theorem [Paterson, Wehrung] Let S be a

subsemigroup of a ring with involution R such

that S is an inverse semigroup with respect to

the involution. Then there is a Boolean inverse

semigroup T such that S ⊆ T ⊆ R.

The above result is significant when viewing

inverse semigroups in relation to C∗-algebras.

Theorem 4 [Lawson & Lenz] Every inverse

semigroup can be embedded in a universal Boolean

inverse semigroup.
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3. Theorems on Boolean inverse monoids

commutative non-commutative

frames pseudogroups
distributive lattices distributive inverse monoids
Boolean algebras Boolean inverse monoids

The monoids in the right-hand column are both

non-idempotent and non-commutative.

We view the theory of Boolean inverse monoids

as that of non-commutative Boolean algebras.

A Boolean inverse ∧-monoid is a Boolean in-

verse monoid in which each pair of elements

has a meet.

Example Symmetric inverse monoids are Boolean

inverse ∧-monoids.
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Key definitions

• An inverse monoid is factorizable or unit
regular if each element is below an element
in the group of units. Example: symmetric
inverse monoids are factorizable if and only
if they are finite.

• An inverse semigroup is fundamental if the
only elements that centralize the idempo-
tents are themselves idempotents. Exam-
ple: symmetric inverse monoids are funda-
mental.

• A ∨-ideal in a Boolean inverse monoid is an
ideal closed under finite compatible joins.
A Boolean inverse monoid is 0-simplifying
if it contains no non-trivial ∨-ideals. Ex-
ample: symmetric inverse monoids are 0-
simplifying.
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Why fundamental?

Theorem [Vagner] An inverse semigroup is
fundamental if and only if it is isomorphic to an
inverse semigroup of partial homeomorphisms
between the open subsets of a T0 space where
the domains of definition of the elements form
a basis for the space.

• Fundamental inverse semigroups should there-
fore be viewed as inverse semigroups of
partial homeomorphisms.

• Each inverse semigroup is an extension of
an inverse semigroup with central idempo-
tents by a fundamental one; inverse semi-
groups with central idempotents are presheaves
of groups.

• Being fundamental or being 0-simplifying
are both different kinds of ‘simplicity’.
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Finite Boolean algebras can be completely and

easily classified. So, too, can finite Boolean

inverse monoids in an analogous way.

Theorem 5 [Lawson]

1. The finite 0-simplifying, fundamental Boolean

inverse monoids are precisely the finite sym-

metric inverse monoids.

2. The finite fundamental Boolean inverse monoids

are precisely the finite direct products of fi-

nite symmetric inverse monoids.

3. The finite Boolean inverse monoids are iso-

morphic to the inverse monoids of local bi-

sections of finite discrete groupoids.
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We call finite fundamental Boolean inverse monoids

semisimple. They have the form In1× . . .× Inr.

They are therefore the Boolean inverse monoid

analogues of finite dimensional C∗-algebras.
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Theorem 6 [Lawson & Scott]

1. The countable, locally finite factorizable

fundamental Boolean inverse monoids are

precisely the direct limits of semisimple in-

verse monoids.

2. They can be classified by means of dimen-

sion groups and constructed using Bratteli

diagrams.

3. They are factorizable (and fundamental)

and their groups of units are direct limits

of finite direct products of finite symmetric

groups and block diagonal maps.

It is natural to call such inverse monoids AF.
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Let S be a Boolean inverse monoid. Define an
equivalence relation on E(S) by e ≡ f if and
only if e = a−1a and f = aa−1 for some a ∈ S.
Equivalence class containing e denoted by [e].
Denote by T(S) the set {[e] : e ∈ E(S)}. Define
partial addition on T(S) by [e]⊕ [f ] = [e′∨ f ′] if
there exist e′ ≡ e and f ′ ≡ f such that e′f ′ = 0.

The structure T(S) is the inverse monoid ver-
sion of a construction used by Elliott in 1976
(‘abelian local semigroups’).

Proposition 7 [Lawson & Scott]

1. T(S) is a partial commutative monoid.

2. T(S) is an effect algebra if and only if S is
factorizable.

3. T(S) is an MV algebra if and only if S is
factorizable and S/J , the poset of princi-
pal ideals, is a lattice.
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In lieu of a definition: MV algebras are to

multiple-valued logic as Boolean algebras are

to classical two-valued logic.

Theorem 8 [Lawson & Scott] Every countable

MV algebra is isomorphic to a T(S) where S is

AF.

Wehrung (2015) has generalized this result to

arbitrary MV algebras.

Example The direct limit of I1 → I2 → I4 →
I8 → . . . is the CAR inverse monoid whose as-

sociated MV algebra is that of the dyadic ra-

tionals in [0,1].

Remark The partial commutative monoid T(S)

has been studied by Kudyravtseva, Lawson,

Lenz and Resende in relation to the existence

of invariant means on Boolean inverse monoids

and abstract Banach-Tarski theory.
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”A localization may profitably be viewed

as a non-commutative analog (sic) of

a countable basis; its affiliated inverse

semigroup is to be viewed as the analog

(sic) of a topology.” Alexander Kumjian,

1984.

A Boolean space is a compact Hausdorff space

with a basis of clopen subsets.

The following can be deduced from Corollary

2.
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Theorem 9 [Lawson, Lawson & Lenz]

1. Boolean inverse monoids are in duality with
étale topological spaces with a Boolean space
of identities.

2. (Countable) Boolean inverse ∧-monoids are
in duality with (second countable) Haus-
dorff étale topological spaces with a Boolean
space of identities.

Example There is a family of Boolean inverse
∧-monoids Cn, where n ≥ 2, called Cuntz in-
verse monoids which are congruence-free and
whose groups of units are the Thompson groups
Vn. Their associated groupoids are the ones
derived from Cuntz C∗-algebras.

This is where the lecture as given ended due
to mutual exhaustion on the part of audience
and lecturer.
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The ideas that follow were partly inspired by
work of Matui.

• A Boolean inverse monoid is basic if each
element is a join of a finite number of in-
finitesimals and idempotents.

• A groupoid is principal if it is derived from
an equivalence relation.

• A topological groupoid G is minimal if ev-
ery G-orbit is a dense subset of the space
of identities.

• A topological groupoid is effective if Iso(G)◦

is equal to the space of identities. Here
Iso(G) is the union of the local groups.

Example The finite symmetric inverse monoids
are basic; AF inverse monoids are basic.
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Theorem 10 [Lawson]

Boolean inverse ∧-monoid étale groupoid

fundamental effective
0-simplifying minimal

basic principal

We call the countable atomless Boolean alge-

bra the Tarski algebra. Under Stone duality

the Tarski algebra corresponds to the Cantor

space.

A Tarski inverse monoid is a countable Boolean

inverse ∧-monoid whose set of idempotents

forms a Tarski algebra.
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Theorem 11 [Lawson] There are bijective cor-

respondences between the following three classes

of structures.

1. Fundamental (0-simplifying) Tarski inverse

monoids.

2. Second countable Hausdorff étale topolog-

ical effective (minimal) groupoids with a

Cantor space of identities.

3. Cantor groups: full countable (minimal)

subgroups of the group of homeomorphisms

of the Cantor space in which the support

of each element is clopen.
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Theorem 12 [Lawson after Krieger] There is a

bijective correspondence between the following

two classes of structures.

1. Basic locally finite factorizable Tarski in-

verse monoids (they are AF).

2. Ample groups: locally finite Cantor groups

in which the fixed-point set of each ele-

ment is clopen.
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A Boolean inverse monoid is said to be piece-

wise factorizable if each element s can be writ-

ten s =
∨n
i=1 si where each si ≤ gi, a unit.

Theorem 13 [Lawson] A 0-simplifying Tarski

inverse monoid is piecewise factorizable.
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4. Further questions

• Classify Tarski inverse monoids. Can non-

classical symmetry phenomena be shown

to arise in this way?

• Develop a Morita theory for Boolean in-

verse monoids.

• Study the classifying topos (respectively,

space) of a Boolean inverse monoid.

• What is the ‘logic’ of Boolean inverse monoids?
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• What is the nature of the relationship be-

tween inverse semigroups and C∗-algebras

(and von Neumann algebras)?

• Develop the theory of coverings on inverse

semigroups (not discussed here, but impor-

tant in constructing Boolean inverse monoids

in specific contexts, such as from tilings).
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