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1. Idea

We want to construct groups.

Groups are abstract versions of groups of bi-

jections.

How should we construct bijections?

Construct bijections by gluing together partial

bijections.

But, partial bijections can only be glued to-

gether if they are compatible.

Thus, we can construct bijections by gluing

together compatible sets of partial bijections.
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Where do partial bijections come from?

One possible source of examples is provided

by cancellative monoids. For example, we can

multiply by an element on the left — this is a

partial bijection.

More generally, we can replace cancellative monoids

by cancellative categories (where we view a

category as a ‘monoid with many identities’).
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The goal of this talk is therefore to show how

to construct groups from certain cancellative

categories.

The cancellative categories in question are the

higher rank graphs.

These really are categories (not graphs).

They generalize free categories, in that each

element of the category is assigned a ‘length’

(better: ‘size’) not from N, as in free cate-

gories, but from Nk instead.

4



2. Inverse semigroups as the abstract

theory of partial bijections.

As groups are to bijections, so inverse semi-
groups are to partial bijections.

“Symmetry denotes that sort of con-
cordance of several parts by which they
integrate into a whole.” – Hermann Weyl

Inverse semigroups arose by abstracting pseu-
dogroups of transformations in the same way
that groups arose by abstracting groups of trans-
formations. There were three independent ap-
proaches: Gordon B. Preston (1925–2015) in
the UK; Charles Ehresmann (1905–1979) in
France; Viktor V. Wagner (1908–1981) in the
USSR.

They all three converge on the definition of
‘inverse semigroup’.
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A semigroup S is said to be inverse if for each

a ∈ S there exists a unique element a−1 such

that a = aa−1a and a−1 = a−1aa−1.

Observe that aa−1 and a−1a are idempotents.

The idempotents in an inverse semigroup al-

ways commute with each other.

Groups are the inverse semigroups having ex-

actly one idempotent.

The image of an inverse semigroup under a

semigroup homomorphism is always inverse. If

θ is a semigroup homomorphism with domain

an inverse semigroup and θ(a) is an idempo-

tent, then there is an idempotent e such that

θ(e) = θ(a).
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Define a ≤ b if a = ba−1a. This is a partial

order called the natural partial order. It has

some nice properties:

• If a ≤ b and c ≤ d then ac ≤ bd.

• If a ≤ b then a−1 ≤ b−1.

• If a ≤ e and e is an idempotent then a is an

idempotent.

• If a, b ≤ c then ab−1 and a−1b are idempo-

tents.

Define a ∼ b, and say that a and b are compat-

ible, if a−1b and ab−1 are both idempotents.
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Example: the symmetric inverse monoid

Let X be a set equipped with the discrete

topology. Denote by I(X) the set of all partial

bijections of X. This is an example of an in-

verse semigroup called the symmetric inverse

monoid.

• The inverse of the partial bijection f is f−1.

• The idempotents are the identity functions

on the subsets of X.

• The product of two idempotents is the idem-

potent defined on the intersection of their

domains of definition.
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Crucially, we have the following:

• f ≤ g if and only if f ⊆ g.

• f ∼ g if and only if f∪g is a partial bijection.
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The fact that inverse semigroups really are

the abstract theory of partial bijections is ex-

pressed by the following which is the analogue

of Cayley’s theorem.

Theorem [Wagner-Preston] Every inverse semi-

group can be embedded in a symmetric inverse

monoid.
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3. Groups from inverse semigroups.

Recall that groups are inverse semigroups with

exactly one idempotent.

If S is an inverse semigroup, define a σ b if there

exists c ≤ a, b. If e and f are idempotents then

ef ≤ e, f . So, all idempotents are identified by

σ.

Then σ is a congruence on S, the inverse semi-

group S/σ is a group, and if ρ is any congruence

on S such that S/ρ is a group, then σ ⊆ ρ.

Thus, σ is the most efficient way of getting a

group out of an inverse semigroup.
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BUT the problem with the above construction

is that if S (always a monoid) contains a zero

then the group above is trivial.

This suggests that we look at ‘large’ elements

of S, which exclude the zero. In this talk large

means the following.

We say that a non-zero idempotent e is essen-

tial if ef ̸= 0 whenever f is a non-zero idem-

potent. We say that the element a ∈ S is

essential if both a−1a and aa−1 are essential

idempotents.

The essential part, Se, of the inverse semigroup

S consists of all the essential elements of S. It

is easy to show that Se is always an inverse sub-

semigroup of S. Define the group associated

with S as follows:

G (S) = Se/σ.

12



4. Inverse semigroups from cancellative

categories.

We shall now find a source of examples of in-
verse semigroups to which we can apply the
above construction.

Let C be a category.

Recall that we regard categories as being al-
gebraic structures; thus, every element is an
arrow (amongst which are the special arrows
called identities). The set of identities of C is
denoted by Co.

If a ∈ C then d(a) is the unique identity such
that ad(a) = a, and similarly r(a)a = a.

If a, b ∈ C then ab is defined if and only if d(a) =
r(b).

Think of arrows comme ça: d(a)
a−→ r(a).
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A category C is said to be cancellative if

ab = ac ⇒ b = c

and

ba = ca ⇒ b = c.

An invertible element in a category is an el-

ement x for which there exists an element y

such that yx = d(x) and xy = r(x). A cate-

gory in which the only invertible elements are

the identities is said to be conical.

It is convenient to assume that from now on

all our categories are cancellative and conical.
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A subset R ⊆ C is said to be a right ideal if

r ∈ R and c ∈ C and the product rc is defined

implies that rc ∈ R.

If X ⊆ C is any subset then XC is the right

ideal generated by X. If X is a finite set we

say that XC is a finitely generated right ideal.

We call aC the principal right ideal generated

by a.

We say that the category X is finitely aligned

if aC ∩ bC is always a finitely generated right

ideal.

15



Example

Let C be a category. When is it finitely gener-

ated as a right ideal?

Suppose, first, that the set of identities, Co, is

finite. Then C = CoC (since each arrow ends

in an identity). Thus C is finitely generated as

a right ideal.

Suppose that C is finitely generated as a right

ideal. Then there is a finite set X such that

C = XC. But, then, each identity of C must

equal an identity of X, but X is a finite set.

We have proved that a category C is finitely

generated as a right ideal if and only if it has

a finite number of identities.
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Let R1 and R2 be right ideals of the category

C. A function θ : R1 → R2 is a morphism if

d(θ(r)) = d(r) for all r ∈ R1 and θ(rc) = θ(r)c

for all c ∈ C where the product is defined.

Morphisms are analogous to the homomorphisms

between right R-modules in ring theory.
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Theorem Let C be a cancellative finitely aligned

category with a finite number of identities. Then

R(C), the set of all bijective morphisms be-

tween the finitely generated right ideals of C,

is an inverse monoid. The group associated

with C is

G (C) = R(C)e/σ.
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We can say more about the structure of the

inverse monoid R(C)e.

An inverse semigroup S is said to be E-unitary

if e ≤ a, where e is an idempotent, implies that

a is an idempotent.

Lemma An inverse semigroup S is E-unitary

if and only if σ =∼.

Proposition The inverse monoid R(C)e is E-

unitary.
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5. Projective right ideals.

To say something about the group we get, we

need to add more conditions.

Let C be a category. Elements a and b are said

to be independent if aC ∩ bC = ∅. Otherwise

they are said to be dependent.

A finite set of independent elements will be

called a code.

A code X is said to be maximal if every element

of C is dependent on an element of X

A right ideal generated by a code is said to be

projective. The idea to study projective right

ideals is due to Fountain.

A category C is said to be strongly finitely

aligned if aC ∩ bC ̸= ∅ is projective.
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Example

Let A be a finite (non-empty) set that we call
an alphabet.

The free monoid, A∗, on A consists of all finite
strings over the alphabet A with concatenation
as the semigroup operation.

It is a category with exactly one identity (the
empty string) having a trivial group of units.

If a and b are strings, then either aA∗∩bA∗ = ∅
or one of a or b is a prefix of the other.

It follows that A∗ is finitely aligned. In fact,
aA∗ ∩ bA∗ is either empty or of the form cA∗.

By a code is meant a finite prefix code.

Each finitely generated right ideal of A∗ is gen-
erated by a finite prefix code.

The maximal codes are the maximal finite pre-
fix codes.
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Theorem Let C be a cancellative strongly finitely

aligned category with a finite number of iden-

tities. Then P(C), the set of all bijective mor-

phisms between the projective right ideals of

C, is an inverse monoid. The inverse monoid

P(C)e consists of all the morphisms between

the projective right ideals generated by max-

imial codes.

We now add in one extra assumption.

Theorem Let C be a cancellative strongly finitely

aligned conical category with a finite number

of identities. Suppose that every essential finitely

generated right ideal contains an essential pro-

jective right ideal. Then

G (C) = P(C)e/σ.
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6. Higher rank graphs.

We shall now define some categories that sat-

isfy our conditions (and so can be used to build

groups).

A countable category C is said to be a higher

rank graph or a k-graph if there is a functor

d : C → Nk, called the degree map, satisfy-

ing the unique factorization property (UFP):

if d(a) = m + n then there are unique ele-

ments a1 and a2 in C such that a = a1a2 where

d(a1) = m and d(a2) = n. We call d(x) the de-

gree of x.

You should regard higher rank graphs as gen-

eralizations of free categories: in fact, the 1-

graphs are precisely the countable free cate-

gories.
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It can be proved that, if C is a k-graph, then:

1. C is cancellative.

2. C is conical.

3. The elements of C of degree 0 are precisely

the identities.
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I will add a couple of further assumptions (fa-

miliar to C*-algebra theorists).

A higher rank graph C has no sources if for

each identity e of C and element m ∈ Nk there

exists an arrow x ∈ C such that r(x) = e and

d(x) = m.

A higher rank graph C is row finite if for each

identity e of C, the number of elements of eC

of degree m is finite.
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Example

Let G be a finite directed graph.

Denote by G∗ the free category generated by

G.

(In the case of the free monoid, G is just a

‘bouquet of circles’).

Then, G∗ has no sources means that the in-

degree of every vertex of G is at least 1.

G∗ is automatically row finite.
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We now have the following results:

• A higher rank graph that is row finite is

finitely aligned.

• If m ∈ Nk then the set of all elements of C

of degree m is a maximal code.

• Every finitely generated essential right ideal

contains a right ideal generated by a max-

imal code.
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We now come to the main theorem of this talk.

Theorem Let C be a higher rank graph such

that the following properties hold:

• C has a finite number of identities.

• C has no sources.

• C is row-finite.

Then, we may construct a group G (C) as P(C)e/σ

which is also isomorphic to R(C)e/σ.
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Presumably the group G (C) is telling us some-

thing about the structure of maximal codes in

C.

This is where algebra meets geometry.
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The following theorem is more advanced and

requires a knowledge of étale groupoids.

Theorem Let C be a higher rank graph as

above:

1. The group G (C) is a topological full group.

2. If the higher rank graph C is also aper-

odic and cofinal then G (C) is a topological

full group of an étale groupoid which is

Hausdorff, effective and minimal. If G (C)

is countably infinite then it is isomorphic to

a subgroup of the group of automorphisms

of the Cantor set.

The second result above justifies (via Matui)

the use of K0-groups of the associated C*-

algebras as invariants of the groups.
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7. An example.

Let A be an alphabet with exactly two ele-

ments. Denote by A∗ the free monoid on A

(as before).

This is a higher rank graph where the degree

functor is simply the length homomorphism.

The group G (A∗) is the Thompson group V or

G2,1.

It is the group of units of a simple Boolean

inverse ∧-monoid C2 (called the Cuntz inverse

monoid). Under non-commutative Stone du-

ality, this is isomorphic to the topological full

group of a Hausdorff, effective minimal étale

groupoid the identity space of which is the

Cantor space.

31



The above example and its connections with

classical group theory are discussed in

M. V. Lawson, The polycyclic inverse monoids

and the Thompson groups revisited, in (P. G.

Romeo, A. R. Rajan eds) Semigroups, cate-

gories and partial algebras ICSAA 2019, Springer,

Proc. in Maths and Stats, volume 345.

The motivation for this example comes from

J.-C. Birget, The groups of Richard Thompson

and complexity, IJAC 14 (2004), 569–626.
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