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1. Classical Stone duality

A Boolean algebra is an algebraic structure (B,+, ·, ,̄0,1) of
type (2,2,1,0,0) satisfying the following axioms:

(B1) (x+ y) + z = x+ (y + z).

(B2) x+ y = y + x.

(B3) x+0 = x.

(B4) (x · y) · z = x · (y · z).

(B5) x · y = y · x.

(B6) x · 1 = x.

(B7) x · (y + z) = x · y + x · z.

(B8) x+ (y · z) = (x+ y) · (x+ z).

(B9) x+ x̄ = 1.

(B10) x · x̄ = 0.
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Although this is an algebraic structure, we can also define a

partial order by

y ≤ x ⇔ y = y · x.

An element x is called an atom if y ≤ x implies either that y = x

or y = 0.

A Boolean algebra is said to be atomless if it has no atoms.
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A topological space X is called a Boolean space if it is compact,

Hausdorff and 0-dimensional (that is, it has a base of clopen

sets).

• If B is a Boolean algebra, then one can construct a Boolean

space, X(B), called the Stone space of B.

• If X is a Boolean space, then one can construct a Boolean

algebra, B(X), of the clopen subsets of X.
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Theorem (Stone, 1937) Classical Stone duality.

1. For any Boolean algebra B, we have that B ∼= B(X(B)).

2. For any Boolean space X, we have that X ∼= X(B(X)).
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Examples

1. If B is a finite Boolean algebra, then X(B) is a finite set

regarded as a discrete topological space consisting of all the

atoms of B.

2. If B is a (=the) countably infinite atomless Boolean algebra

(which I call the Tarski algebra) then X(B) is the Cantor

space.
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Proofs There are two kinds of proof:

1. Use prime filters (=ultrafilters). See Givant and Halmos.

2. Use locales and then specialize. See Johnstone.
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2. Ideas behind non-commutative Stone duality

1. Replace the Boolean algebra by some kind of semigroup which has a
‘Boolean character’. The algebraic structure will be used to define a
partial order. The · of the Boolean algebra will become the semigroup
operation, and the + will become a partially defined join. The ‘Boolean
character’ will be reflected in the fact that a set of idempotents will be
required to form a Boolean algebra.

2. Replace the topological space by a (1-sorted) topological category. This
is a small category equipped with a topology with respect to which the
operations d (dom), r (cod), m (multiplication) are required to be con-
tinuous. In addition, we require that the space of identities is open and
forms a Boolean space.
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3. Non-commutative Stone duality

The generalization of Boolean algebras.

We shall replace Boolean algebras by a class of monoids called

Boolean right restriction monoids.

We shall motivate this abstract class of monoids with a concrete

example.
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Denote by PT(X) the set of all partial functions defined on the

(non-empty) set X.

An element of PT(X) has the form f : A → X where A ⊆ X.

We call the subset A the domain of definition of f denoted by

dom(f).

Denote by f∗ the identity function defined on dom(f). Whereas

identity functions defined on subsets of X are idempotents, it is

not true that all idempotents have this form. Idempotents that

are identity functions defined on subsets are called projections.

The set of projections of PT(X) is denoted by Proj(PT(X)).
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Partial functions f and g can be compared using subset inclusion.

We say that f ⊆ g precisely when g restricted to the domain of

definition of f is f itself. In fact, f ⊆ g if and only if f = gf∗.
Thus we do not have to impose a partial order from the outside

since the order can be defined purely algebraically.

If f, g ∈ PT(X), it is not true in general that f∪g ∈ PT(X) since f∪
g might not be a partial function. It is a partial function precisely

when for all x ∈ dom(f) ∩ dom(g) we have that f(x) = g(x).

This means precisely that f(f∗g∗) = g(f∗g∗) which simplifies to

fg∗ = gf∗. We shall say that f and g are left-compatible if

fg∗ = gf∗. The partial functions f and g are left-compatible

precisely when f ∪ g is also a partial function.
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Observe that the set of projections is a commutative, idempotent

subsemigroup. In fact, the set of projections forms a Boolean

algebra since it is isomorphic to the powerset of X with respect

to subset inclusion.

There is a map f 7→ f∗ from PT(X) to Proj(PT(X)). Thus we

regard PT(X) as an algebra of type (2,1). Observe that ff∗ = f

and that f∗g = g(fg)∗.
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We now abstract the above example.

We define a monoid S to be a right restriction monoid if it is equipped with
a unary operation a 7→ a∗ satisfying the following axioms:

(RR1) (s∗)∗ = s∗.

(RR2) (s∗t∗)∗ = s∗t∗.

(RR3) s∗t∗ = t∗s∗.

(RR4) ss∗ = s.

(RR5) (st)∗ = (s∗t)∗.

(RR6) t∗s = s(ts)∗.

The unary operation s 7→ s∗ is called star. Denote by Proj(S) those elements
a such that a∗ = a and call them projections.

We define a left restriction monoid, dually.

A bi-restriction monoid is a monoid which is both a left and right restriction

monoid and the sets of projections are the same.
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Let S be a right restriction monoid. Define

y ≤ x iff y = xy∗.

This is a partial order with respect to which the monoid is par-

tially ordered. This is called the natural partial order.

If a, b ≤ c then ab∗ = ba∗. More generally, we say that a and b are

left compatible if ab∗ = ba∗. Being left compatible is therefore a

necessary condition to have a join.
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A Boolean right restriction monoid is a right restriction monoid

that satisfies the following three conditions:

1. Left compatible elements have joins.

2. Multiplication distributes over any joins that exist.

3. The set of projections forms a Boolean algebra with respect

to the natural partial order.

The monoids PT(X) are Boolean right restriction monoids.
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The generalization of Boolean spaces.

A topological category is said to be domain-étale if d is a local
homeomorphism. Dually, we talk about range-étale, and étale if
both.

A domain-étale catgeory is said to be Boolean if its space of
identities is a Boolean space.

We now have all the ingredients we need for non-commutative
Stone duality:

• Boolean restriction monoids.

• Boolean domain-étale topological caegories.
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We sketch out how to construct a Boolean domain-étale topo-

logical category C(S) from a Boolean restriction monoid S.

Put C(S) equal to the prime filters in S.

If A is a prime filter, put

d(A) = (A∗)↑ and r(A) = {e ∈ Proj(S): eA ⊆ A}↑.

Both of these are also prime filters.

If A and B are prime filters and d(A) = r(B) define

A ·B = (AB)↑.

This gives us a category on C(S).
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If a ∈ S let Xa be all the prime filters of S that contain a.

Put β = {Xa : a ∈ S}. This is the base for a topology on C(S).

Theorem If S is a Boolean right restriction monoid then C(S)

is a Boolean domain-étale topological category.
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We now go in the opposite direction.

Let C be a Boolean domain-étale topological category. A subset

A ⊆ C is called a local section if a, b ∈ A and d(a) = d(b) then

a = b.

Denote by KS(C) the set of all compact-open local sections of

C.

Theorem If C is a Boolean domain-étale topological category

then KS(C) is a Boolean right restriction monoid.
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Theorem Non-commutative Stone duality.

1. If S is a Boolean right restriction monoid then S ∼= KS(C(S)).

2. If C is a Boolean domain-étale topological category then

C ∼= C(KS(C)).

This was first proved by Cockett and Garner (2021) using locales;

the proof I have sketched using prime filters is Lawson (2024).
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4. The étale case

Let S be a Boolean right restriction monoid. We can ask the

question when C(S) is a groupoid.

We say that a ∈ S is a partial unit if there exists b ∈ S such that

ab = b∗ and ba = a∗.

The set of partial units is denoted by Inv(S) and is a Boolean

inverse monoid.

We say that a Boolean right restriction monoid is étale if each

element is a finite join of left-compatible partial units.
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Theorem (Garner) Let S be a Boolean right restriction monoid.

Then C(S) is a groupoid iff S is étale.

Theorem (Lawson, 2024) The structure of an étale Boolean

right restriction monoid S is completely determined by Inv(S).
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5. Other special cases

• Boolean inverse monoids and Boolean étale topological groupoids

are imporant in the theory of C∗-algebras. Resende, 2007,

Lawson, 2010, and Lawson & Lenz, 2013. Proved using

prime filters.

• Boolean bi-restriction monoids and Boolean étale topological

categories. Kudryavtseva & Lawson, 2017. Proved using

locales.
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6. Applications

• The duality between Boolean inverse monoids and Boolean

groupoids is bound up with the theory of a class of groups,

called topological full groups, that includes the Thompson-

Higman groups. See the papers by Lawson, Sims & Vdovina,

2020, 2024.

• Garner proved that the category of Cartesian closed univer-

sal algebras is equivalent to the category of Boolean right

restriction monoids.
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