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Introduction

This talk will consist of four parts and a parting

shot:

1. Two important definitions

2. Motivation

3. Statement of main theorems, idea of proofs

and simple examples

4. Application to constructing Thompson groups

5. Envoi
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1. Two important definitions

• Inverse semigroups

• Topological groupoids
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A semigroup S is said to be inverse if for each

s ∈ S there exists a unique s−1 ∈ S such that

s = ss−1s and s−1 = s−1ss−1.

An inverse semigroup S is equipped with two

important relations.

s ≤ t is defined if and only if s = te for some

idempotent e. Despite appearances ambidex-

trous. Called the natural partial order. Com-

patible with multiplication.

s ∼ t if and only if st−1 and s−1t both idem-

potents. Called the compatibility relation. It

controls when pairs of elements are eligible to

have a join.

Examples Symmetric inverse monoids I(X)

and pseudogroups of transformations.

Intuitive idea Generalize groups replacing sym-

metries by partial symmetries.
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A groupoid G is a (for us, small) category with

every arrow invertible. The set of identities (or

objects) of G is denoted by Go. The ‘o’ stands

for ‘objects’.

Intuitive idea A groupoid is a ‘group with

many identities’.

If a groupoid G carries a topology making the

multiplication and inversion continuous, it is

called a topological groupoid.

The most important class of topological groupoids

are the étale groupoids. We use Resende’s

characterization to define them.

A topological groupoid G is étale if Go is an

open set and the product of any two open sets

in G is an open set.

N.B. Hausdorffness is not assumed.
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2. Motivation

This work draws on a number of sources

• The idea of a ‘non-commutative space’

• The 1980 book by Renault on the relation-

ship between topological groupoids and C∗-

algebras

• Paterson’s 1999 book on groupoids, in-

verse semigroups and operator algebras

• Work in the late 90’s by Johannes Kellen-

donk on tiling semigroups
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• Birget’s semigroup approach to construct-

ing the Thompson groups

• The work of Charles Ehresmann

• Frame theory

I shall talk about some of these informally.
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A major theme of contemporary mathematics

is non-commutative geometry.

The basis for this is Gel’fand’s theorem which

describes commutative C∗-algebras as function

spaces on locally compact spaces.

The idea is that a C∗-algebra should be re-

garded as a proxy for a non-commutative space.

But there are many examples of C∗-algebras

where this space is actualized: it is a topolog-

ical groupoid.

So, topological groupoids should be re-

garded as non-commutative spaces.
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This program is particularly associated with

the work of Jean Renault and his book

A groupoid approach to C∗-algebras, LNM 793,

Springer, 1980.

However, although the ostensible theme is the

relationship between topological groupoids and

C∗-algebras, inverse semigroups appear through-

out the book.

Well-known C∗-algebras, such as the Cuntz al-

gebras, are shown to be closely related to cer-

tain inverse semigroups.
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Passing from topological groupoids to inverse

semigroups is easy.

A local bisection A of a groupoid G is a subset

such that A−1A,AA−1 ⊆ Go. The set of all

open local bisections forms an inverse semi-

group, with extra properties.

Example Take the groupoid X × X with the

discrete topology. Then the inverse semigroup

of open local bisections is the symmetric in-

verse monoid on X.

This raises the question of the relationships

between

inverse semigroups, topological groupoids and

C∗-algebras

with my research focusing on the first two.

10



What was implicit in Renault’s book is explicit

in the book by Alan Paterson

Groupoids inverse semgroups and their opera-

tor algebras, Birkhäuser, 1999.

Paterson described a, for me, complicated pro-

cedure for constructing topological groupoids

from inverse semigroups.
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Renault’s work has been highly influential not
least on Johannes Kellendonk:

The Local Structure of Tilings and their Inte-
ger Group of Coinvariants, Commun. Math.
Phys. 187 (1997), 115–157.

Topological equivalence of tilings, J. Math. Phys.
38 (1997), 1823–1842.

His goal was to construct a C∗-algebra with
every aperiodic tiling, such as a Penrose tiling
and then compute invariants for the tiling from
the K0-group of the C∗-algebra.

But this involved constructing an inverse semi-
group, the tiling semigroup, with any tiling.
It can be viewed as the semigroup of partial
translational symmetries.

He also showed how to construct a topological
groupoid from a tiling semigroup.

His work at the algebraic level was extremely
interesting.
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Kellendonk’s work directly influenced Daniel

Lenz in his paper, available as a preprint from

2002:

On an order-based construction of a topologi-

cal groupoid from an inverse semigroup, Proc.

Edinb. Math. Soc. 51 (2008), 387–406.

This directly influenced my current research.
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To lead you to an overwhelming question

. . .

What is the exact nature of the relationship

between inverse semigroups and topological groupoids?

I shall answer this question providing a frame-

work for all of the above work and, at the same

time, providing connections with group theory.
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3. Statement of main theorems, idea of

proofs and simple examples

Lattices need not have 1’s but always have 0’s.

If they have 1’s they will be called unital.

Thus: distributive lattices vs. unital distribu-

tive lattices; Boolean algebras vs. unital Boolean

algebras.

A distributive inverse semigroup is one which

has joins of compatible pairs of elements and

multiplication distributes over such joins.

A Boolean inverse semigroup is a distributive

inverse semigroup with a Boolean algebra of

idempotents.

A Boolean inverse ∧-semigroup is a Boolean

inverse semigroup with the additional property

that all pairs of elements have a meet.
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Let P be a poset with zero 0.

A subset F ⊆ P is a filter if it is downwardly

directed and upwardly closed.

It is proper if 0 /∈ F ; all filters will be proper.

An ultrafilter is a maximal proper filter.

A filter F is prime if a∨b ∈ F implies that a ∈ F

or b ∈ F .
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A topological space is said to be sober if each

point of the space is uniquely determined by

the open sets that contain it (plus a bit more.)

A topological space X is said to be spectral

if it is sober and has a basis of compact-open

sets that is closed under finite non-empty in-

tersections.

We do not assume that X is compact.
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An étale groupoid is called spectral if its space

of identities is a spectral space.

A étale groupoid is called Boolean if its space

of identities is Boolean.

To avoid piling on definitions, morphisms will

be kept in the background throughout this talk

— they can be defined so that things work.
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Classical theorems.

Theorem [Stone duality for distributive lat-

tices] The category of distributive lattices and

their proper homomorphisms is dually equiv-

alent to the category of spectral spaces and

their coherent continuous maps.

A Hausdorff spectral space is called a Boolean

space.

Theorem [Stone duality for Boolean algebras]

The category of Boolean algebras and their

proper homomorphisms is dually equivalent to

the category of Boolean spaces and their co-

herent continuous maps.
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The starting point of our work.

Theorem [Stone duality for distributive inverse

semigroups] The category of distributive in-

verse semigroups is dually equivalent to the

category of spectral groupoids.

Theorem [Stone duality for Boolean inverse

semigroups] The category of Boolean inverse

semigroups is dually equivalent to the category

of Boolean groupoids.

Theorem [Stone duality for Boolean inverse ∧-

semigroups] The category of Boolean inverse

∧-semigroups is dually equivalent to the cate-

gory of Hausdorff Boolean groupoids.
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Proof sketch

Let G be a spectral groupoid.

The set of all compact-open local bisections

of a spectral groupoid is a distributive inverse

semigroup.

Let S be a distributive inverse semigroup.

Let P be a prime filter. Define d(P ) = (P−1P )↑

and r(P ) = (PP−1)↑. Define the partial prod-

uct P · Q to be (PQ)↑ iff d(P ) = r(P ). In

this way, the set of prime filters becomes a

groupoid GP (S).

Let s ∈ S. Define Xs to be the set of all prime

filters that contain s. These sets form the basis

of a topology on GP (S).
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Examples

Let G be a finite discrete groupoid. The set

of all local bisections of G is a finite Boolean

inverse ∧-semigroup I(G) and all finite inverse

∧-semigroups are of this form.

Write G =
⊔m
i=1Gi where the Gi are the con-

nected components of G. Then

I(G) ∼= I(G1)× . . .× I(Gm).

Let G be a finite connected discrete combina-

torial groupoid and put Go = X. Then I(G) ∼=
I(X), a finite symmetric inverse monoid.

The fundamental finite Boolean inverse

∧-semigroups are therefore of the form

I(X1)× . . .× I(Xm).

Call these semisimple.

May construct AF inverse monoids from Brat-

teli diagrams and injective morphisms between

semisimple inverse monoids.
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Constructing distributive inverse

semigroups

Let S be an inverse semigroup. Let a ∈ S and

b1, . . . , bm ≤ a. We say that the set of elements

{b1, . . . , bm} is a (tight) cover of a if for each

0 6= x ≤ a there exists bi such that 0 6= z ≤ x, bi
for some z.

A tight filter is a filter A such that if a ∈ A and

{b1, . . . , bm} covers a then bi ∈ A for some i.

A semigroup homomorphism θ:S → T to a

distributive inverse semigroup is said to be a

tight map if for each element a ∈ S and tight

cover {a1, . . . , an} of a we have that θ(a) =
∨n
i=1 θ(ai).
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Intuitive idea

The idea is to present distributive inverse semi-

groups by means of generators and relations.

The generating set is in fact an inverse semi-

group S.

The relations are given by the tight covers —

if {b1, . . . , bm} is a (tight) cover of a, then THINK

a =
m
∨

i=1

bi.
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Theorem [Tight completions] Let S be an in-

verse semigroup.

1. There is a distributive inverse semigroup

Dt(S) and a tight map δ:S → Dt(S) which

is universal for tight maps from S to dis-

tributive inverse semigroups.

2. There is an order isomorphism between the

poset of tight filters in S and the poset of

prime filters in Dt(S) under which ultrafil-

ters correspond to ultrafilters.

We call the distributive inverse semigroup Dt(S)

the tight completion of S.
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If the tight completion of an inverse semigroup

is actually Boolean we say that the semigroup

is pre-Boolean.

It can be proved that every ultrafilter is a tight

filters.

Theorem An inverse semigroup is pre-Boolean

if and only if every tight filter is an ultrafilter.

26



4. Application to constructing the

Thompson groups

The polycyclic monoid Pn, where n ≥ 2, is de-

fined as a monoid with zero generated by the

variables a1, . . . , an, a
−1
1 , . . . , a−1

n subject to the

relations

a−1
i ai = 1and a−1

i aj = 0, i 6= j.

Every non-zero element of Pn is of the form

yx−1 where x and y are elements of the free

monoid on {a1, . . . , an}.

The product of two elements yx−1 and vu−1

is zero unless x and v are prefix-comparable in

which case

yx−1 · vu−1 =

{

yzu−1 if v = xz for some z

y(uz)−1 if x = vz for some z
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The polycyclic monoid Pn is a pre-Boolean in-

verse monoid.

The set {a1a
−1
1 , . . . , ana−1

n } is a tight cover of

the identity, and in some sense, determines all

other tight covers.
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Theorem The Boolean completion of Pn is

called (here) the Cuntz inverse monoid Cn.

1. This monoid is congruence-free.

2. Its group of units is the Thompson group

Vn,1.

3. Its associated groupoid is the groupoid also

associated with the Cuntz C∗-algebra Cn.
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• All Thompson-Higman groups Vn,r can be

constructed in a similar way.

• Self-similar groups actions give rise to gen-

eralizations of the polycyclic inverse monoids

which are also pre-Boolean.

• Finite directed graphs can be used to con-

struct pre-Boolean inverse semigroups.

• AF inverse monoids are generated by pre-

Boolean inverse monoids.

• O. Bratteli, P. E. T. Jorgensen, Iterated

function systems and permutation repre-

sentations of the Cuntz algebra, Memoirs

of the A.M.S. No. 663, (1999) is, in fact,

a study of tight maps from Pn to I(X).
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Our theory can be used to construct interest-

ing groups of the Thompson-Higman variety.

Intuitively, the elements of the group are ob-

tained by glueing together partial bijections.

Thus our theory can be used to construct in-

teresting groups from inverse semigroups.

31



Envoi

A frame is a complete infinitely distributive lat-

tice.

The open subsets of a topological space form

a frame.

points −→ topological spaces

open sets −→ frames

Main idea

Inverse semigroup theory should be viewed

as (part of) non-commutative frame

theory. This approach provides natural

connections with the theories of topoi,

quantales and C∗-algebras.
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Edinburgh workshop on semigroup

representations 2013

When? 10th April to 12th April

Where? ICMS Edinburgh

Who? Ruy Exel, Johannes Kellendonk, Daniel

Lenz, Walter Mazorchuk amongst others

How? Please register via the ICMS website
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