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My particular thanks to Phil Scott for reading all the slides and

providing notes.

Please email me with any questions or comments.
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With the collaboration of

John Fountain, Peter Hines, Anja Kudryavtseva, Johannes Kel-

lendonk, Daniel Lenz, Stuart Margolis, Pedro Resende, Phil Scott,

Aidan Sims, Ben Steinberg, Alina Vdovina and Alistair Wallis.

and developing ideas to be found in (amongst others)

Jean Renault, Alexander Kumjian, Alan Paterson, Ruy Exel, Hi-

roki Matui, . . .
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I shall deliver four linked talks:

1. Inverse semigroups.

2. Boolean inverse monoids.

3. Non-commutative Stone duality.

4. MV-algebras and Boolean inverse monoids (joint work with

Phil Scott).
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In today’s talk, I will introduce inverse semigroups from scratch

and also touch on the theory of groupoids (which are related to

the theory of inverse semigroups).

If you want to see proofs of some of the unproved assertions I

make today, please read my

Primer on inverse semigroups I, arXiv:2006.01628.
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On the one hand, inverse semigroups form an important class of

semigroups, but on the other hand, they have become important

in the theory of C∗-algebras.

Inverse semigroups generalize groups; essentially, bijections are

replaced by partial bijections — thus symmetries are replaced by

partial symmetries.
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Some terminology

A semigroup is a set equipped with an associative binary operation.

A monoid is a semigroup with an identity. Every monoid S has a group of
units U(S).

We shall also need the idea of a semigroup with zero (for which there is no
special term).

An idempotent in a semigroup is an element e such that e2 = e.

Distinguish between functions and partial functions.

If A ⊆ X, denote the identity function defined on A by 1A.

We use ∧ to mean meets, and ∨ to mean joins.

An ideal I in a semigroup S is a subset such that SI, IS ⊆ I. Ideals in
semigroups of the form SaS ∪ {a} are called principal ideals.
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1. Symmetric inverse monoids

If you understand these examples then everything that follows

will make sense. They are special kinds of pseudogroups of

transformations but without the topological luggage.

Let X be a non-empty set. The symmetric inverse monoid on X,

denoted by I(X), is the set of all partial bijections of X equipped

with the binary operation of composition of partial functions.

If X is finite and has n elements then we usually denote I(X) by

In.
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To make things concrete, let’s consider the case of I5, the set

of all partial bijections of the set X = {1,2,3,4,5}.

We can represent elements of I5 using two-row form. For ex-

ample (
1 2 3 4 5
− − 5 1 −

)
is the partial bijection of the set X with domain of definition

{3,4}, with image {1,5} and which does the following: 3 7→ 5

and 4 7→ 1.
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The identity is (
1 2 3 4 5
1 2 3 4 5

)
and the zero is (

1 2 3 4 5
− − − − −

)
We also have ‘inverses’(

1 2 3 4 5
− − 5 1 −

)−1

=

(
1 2 3 4 5
4 − − − 3

)
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If you compose (from right-to-left) a partial bijection with its

inverse you get an idempotent, but not usually the identity(
1 2 3 4 5
− − 5 1 −

)−1(
1 2 3 4 5
− − 5 1 −

)
=

(
1 2 3 4 5
− − 3 4 −

)
which is the identity function on the set {3,4}, and(

1 2 3 4 5
− − 5 1 −

)(
1 2 3 4 5
− − 5 1 −

)−1

=

(
1 2 3 4 5
1 − − − 5

)
which is the identity function on the set {1,5}.
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There is a partial order on partial bijections(
1 2 3 4 5
− − 5 − −

)
⊆
(

1 2 3 4 5
− − 5 1 −

)
⊆
(

1 2 3 4 5
− − 5 1 2

)
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But we cannot always take unions of partial bijections and get

partial bijections.

The union (
1 2 3 4 5
− − 5 1 −

)
∪
(

1 2 3 4 5
− − 4 1 −

)
is not a partial bijection because 3 7→ {4,5} and so the union is

a binary relation but not a partial bijection.

The union (
1 2 3 4 5
− − 5 1 −

)
∪
(

1 2 3 4 5
1 − 5 − −

)
is not a partial bijection because {1,4} 7→ 1 and so the union is

a binary relation but not a partial bijection.
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2. Definition of inverse semigroups

Inverse semigroups arose by abstracting pseudogroups of transformations (see
below) — and so, in particular, symmetric inverse monoids — in the same
way that groups arose by abstracting groups of transformations.

There were three independent approaches:

1. Charles Ehresmann (1905–1979) in France.

2. Gordon B. Preston (1925–2015) in the UK.

3. Viktor V. Wagner (1908–1981) in the USSR.

All three converge on the definition of ‘inverse semigroup’.
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Definition. A semigroup S is said to be inverse if for each a ∈ S there exists
a unique element a−1 such that a = aa−1a and a−1 = a−1aa−1.

Observe that a−1a and aa−1 are idempotents.

Define d(a) = a−1a, which we call the domain of a, and r(a) = aa−1, which
we call the range of a.

Even in the monoid case, there is no reason for these idempotents to equal
the identity.

PICTURE

r(a)
a←− d(a)

We also write d(a) D r(a).

Think of the elements of an inverse semigroup as abstract partial bijections.
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The following theorem is basic. It was proved by Liber in the

USSR, and Munn & Penrose in the UK at pretty much the same

time. Penrose is the Penrose.

Theorem In an inverse semigroup, the idempotents commute

with each other.

For those of you with a ring theory background, it is impor-

tant to stress that the idempotents in an inverse semigroup

are not central, in general. When they are, the inverse

semigroup can be described as a ‘presheaf of groups’.
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We denote the set of idempotents of S by E(S). This set plays

an important rôle in the study of inverse semigroups.

Define a partial order on E(S) by e ≤ f if and only if e = ef(= fe).

Observe that ef = e∧ f , the greatest lower bound of e and f . In

this way, E(S) becomes a (meet) semilattice.

For this reason, the set E(S) is often called the semilattice of

idempotents of S.
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Inverses behave as you would expect them to behave.

Lemma Let S be an inverse semigroup.

1. (s−1)−1 = s.

2. (st)−1 = t−1s−1.

3. If e is an idempotent then ses−1 is an idempotent.
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Examples

1. Groups are inverse semigroups with a unique idempotent, and

all inverse semigroups with a unique idempotent are groups.

2. Meet semilattices are inverse semigroups in which every ele-

ment is an idempotent, and all inverse semigroups in which

every element is an idempotent are meet semilattices.

3. Pseudogroups are inverse semigroups (which is why inverse

semigroups were defined in the first place).
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As an aside, let me say a little about pseudogroups of transformations. Sym-
metric inverse monoids are special cases.

Let X be a topological space. A pseudogroup of transformations on X is
a collection Γ of homeomorphisms between the open subsets of X (called
partial homeomorphisms) such that the following four properties hold:

1. Γ is closed under composition.

2. Γ is closed under inverses.

3. Γ contains all the identity functions on the open subsets.

4. Γ is closed under arbitrary non-empty unions when those unions are partial
bijections.
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• Pseudogroups are important in the foundations of geometry; you might
have come across them in an introductory course on differential geometry.

• The idempotents in Γ are precisely the identity functions on the open
subsets of the topological space. They form a complete, infinitely dis-
tributive lattice or frame.

• The term pseudogroup harks back to the days when partial functions were
not clearly demarcated from functions. Pseudogroups were like groups
but not actually groups — whence the unfortunate prefix ‘pseudo’.

• Johnstone on the origins of frame theory:

It was Ehresmann . . . and his student Bénabou . . . who first took
the decisive step in regarding complete Heyting algebras as ‘gen-
eralized topological spaces’.

However, Johnstone does not say why Ehresmann was led to his frame-
theoretic viewpoint of topological spaces. The reason was pseudogroups.

• Pseudogroups are usually replaced by their groupoids of germs but pseu-
dogroups nevertheless persist. The algebraic part of pseudogroup theory
became inverse semigroup theory.
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If T is an inverse semigroup and S ⊆ T is a subset closed under

the binary operation and inverses then we say that S is an inverse

subsemigroup of T .

Homomorphisms between inverse semigroups are just semigroup

homomorphisms.

Monoid homomorphisms between inverse monoids map the iden-

tity to the identity.

If both semigroups have a zero, we expect homomorphisms to

map the zero to the zero.
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Lemma Let θ : S → T be a homomorphism between inverse
semigroups.

1. θ(s−1) = θ(s)−1.

2. If e is an idempotent then θ(e) is an idempotent.

3. If θ(s) is an idempotent then there is an idempotent e ∈ S
such that θ(s) = θ(e).

4. The image of θ is an inverse subsemigroup of T .

5. If U is an inverse subsemigroup of T then θ−1(U) is an inverse
subsemigroup of S.
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We know that groups are the abstract version of symmetric

groups because Cayley’s theorem tells us that every group can

be embedded in a symmetric group.

There is an analogue of Cayley’s theorem for inverse semigroups.

It is called the Wagner-Preston representation theorem.

Theorem Every inverse semigroup can be embedded into a sym-

metric inverse monoid.
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3. The natural partial order

So far, we have dealt with the algebraic structure on symmetric

inverse inverse monoids: the binary operation and inverses.

But there is also a partial order f ⊆ g on the elements of I(X).

Remarkably, this can be defined purely algebraically: f ⊆ g if

and only if f = gf−1f . This serves as the basis for the following

definition.

Let S be an inverse semigroup. Define s ≤ t if and only if

s = ts−1s.
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The following results show us that the definition of the above
relation is ambidextrous.

Lemma Let S be an inverse semigroup. Then the following
assertions are equivalent:

1. s ≤ t.

2. s = te for some idempotent e.

3. s = ft for some idempotent f .

4. s = ss−1t.
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Proposition Let S be an inverse semigroup.

1. The relation ≤ is a partial order.

2. If s ≤ t then s−1 ≤ t−1.

3. If a ≤ b and c ≤ d then ac ≤ bd.

4. If e is an idempotent and a ≤ e then a is an idempotent.

5. The restriction of ≤ to the semilattice of idempotents is the

usual order there.

27



We call ≤ the natural partial order.

Let me stress that the natural partial order is defined internally

using only the algebraic structure and is not imposed from out-

side.

Every inverse semigroup is partially ordered with respect to the

natural partial order.

The natural partial order is usually interesting:

Lemma The natural partial order on an inverse semigroup S is

the equality relation if and only if S is a group.
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An inverse monoid S is said to be factorizable if for each s ∈ S
there exists a unit g such that s ≤ g.

Lemma The symmetric inverse monoid I(X) is factorizable if

and only if X is finite.

Don’t think that the study of factorizable inverse monoids can

be reduced to that of groups; we do not say that the unit above

is unique.
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4. The compatibility relation

We begin with an observation.

Suppose that a, b ≤ c; that is, a and b have an upper bound.

Then a−1 ≤ c−1 and b−1 ≤ c−1.

Thus a−1b ≤ c−1c and ab−1 ≤ cc−1.

It follows that a−1b and ab−1 are idempotents; that is, a necessary

condition for a and b to have an upper bound is that a−1b and

ab−1 are idempotents.

There are no preconditions for the existence of meets.
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Define a ∼ b if and only if a−1b and ab−1 are idempotents. We

call this the compatibility relation. If a ∼ b we say that a and b

are compatible.

A subset of an inverse semigroup is said to be compatible if each

pair of elements in the subset is compatible.
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Lemma Let S be an inverse semigroup. If s ∼ t then s∧ t exists

and d(s ∧ t) = d(s) ∧ d(t) and r(s ∧ t) = r(s) ∧ r(t).

The compatibility relation is reflexive and symmetric. It is not

always transitive. Define an inverse semigroup to be E-unitary if

e ≤ a, where e is an idempotent, implies that a is an idempotent.

Proposition Let S be an inverse semigroup. Then the compat-

ibility relation is transitive if and only if S is E-unitary.
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In lieu of a quiz

The following concepts are important:

• Inverse semigroups.

• The semilattice of idempotents.

• The natural partial order.

• The compatibility relation.

33



5. Fundamental inverse semigroups

We shall now single out an important class of inverse semigroups.

We begin with a construction method.

Let (P,≤) be a partially ordered set. If x ∈ P define x↓ to be the

set of all y ∈ P such that y ≤ x. We call x↓ a principal order-ideal

of P .

Let E be a (meet) semilattice. Define TE to be the set of

all order-isomorphisms between the principal order-ideals of E.

This is an inverse subsemigroup of I(E). It is called the Munn

semigroup of the semilattice E.
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Let θ : S → T be a homomorphism between inverse semigroups.

The restriction of θ to E(S) induces a homomorphism from E(S)

to E(T ). If this restricted homomorphism is injective we say that

θ is idempotent-separating.

Let S be an inverse subsemigroup of the inverse semigroup T . If

E(T ) = E(S) we say that S is a wide inverse subsemigroup. The

following is the Munn representation theorem.

Theorem Let S be an inverse semigroup. Then there is an

idempotent-separating homomorphism δ : S → TE(S) whose image

is a wide inverse subsemigroup.
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An inverse semigroup S is said to be fundamental if and only if the

only elements that commute with all idempotents are themselves

idempotents.

Theorem Let S be an inverse semigroup. Then S is fundamental

if and only if it is isomorphic to a wide inverse subsemigroup of

the Munn semigroup TE(S).

Fundamental inverse semigroups really are ‘fundamental’.
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6. Groupoids

Groupoids play a starring rôle in our non-commutative Stone

duality.

They arise naturally as soon as inverse semigroups are studied.

It is also true that inverse semigroups arise naturally as soon as

groupoids are studied. See:

Jean Renault, A groupoid approach to C∗-algebras, Springer-

Verlag, Lecture Notes in Mathematics 793, 1980.
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A category is usually regarded as a category of structures of some

kind, such as the category of sets or the category of groups.

A (small) category can, however, also be regarded as an algebraic

structure; that is, as a set equipped with a partially defined binary

operation satisfying certain axioms.

We shall need both perspectives.

We view categories as 1-sorted structures (over sets): everything

is an arrow. Objects are identified with identity arrows.
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To define the algebraic notion of a category, we begin with a set

C equipped with a partial binary operation.

We write ∃ab to mean that the product ab is defined.

An identity in such a structure is an element e such that if ∃ae
then ae = a and if ∃ea then ea = a.

The set of identities of C is denoted by Co.
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A category is a set equipped with a partial binary operation satisfying the
following axioms:

(C1) ∃a(bc) if and only if ∃(ab)c and when one is defined so is the other and
they are equal.

(C2) ∃abc if and only if ∃ab and ∃bc.

(C3) For each a there is an identity e, perforce unique, such that ∃ae, and
there exists an identity f , perforce unique, such that ∃fa.

You can check that ∃ab if and only if d(a) = r(b).

Think of categories as graphs with a multiplication between edges that abut.
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A category with one identity is a monoid; thus, categories are

monoids with many identities.

Homomorphisms between categories are called functors.
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An element a of a category is said to be invertible if there exists

an element b such that ab and ba are identities.

If such an element b exists it is unique and is called the inverse

of a; we denote the inverse of a when it exists by a−1.

Definition. A category in which every element is invertible is

called a groupoid. This is the category theory meaning, not the

meaning in universal algebra.

Groupoids are useful everywhere. The suffix ‘oid’ is just as unfor-

tunate as the prefix ‘pseudo’. Groups get preferential treatment

. . .
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We shall need the following notation for the maps involved in

defining a groupoid (not entirely standard).

Define d(g) = g−1g and r(g) = gg−1.

Put

G ∗G = {(g, h) ∈ G×G : d(g) = r(h)}.

Define m : G ∗G→ G by (g, h) 7→ gh, the multiplication map, and

i : G→ G by g 7→ g−1, the inversion map.

PICTURE

r(g)
g←− d(g)
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Examples

1. Groups can be regarded as groupoids. A groupoid with one identity is a
group; thus, groupoids are groups with many identities.

2. Sets can be regarded as a groupoids. They are the groupoids in which
every element is an identity.

3. Equivalence relations can be regarded as groupoids. They correspond to
principal groupoids; that is, those groupoids in which given any identities
e and f there is at most one element g of the groupoid such that f

g←− e.
A special case of such groupoids are the pair groupoids, X × X, which
correspond to equivalence relations having exactly one equivalence class.

4. Group actions can be regarded as groupoids. Let G × X → X be a left
group action of the group G on the set X. We can construct a groupoid
G n X, called a transformation groupoid. The groupoid represents the
pictures you would naturally draw when thinking about group actions.
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We now show how to construct all groupoids.

Let G be a groupoid. We say that elements g, h ∈ G are con-

nected, denoted g ≡ h, if there is an element x ∈ G such that

d(x) = d(h) and r(x) = d(g). The ≡-equivalence classes are

called the connected components of the groupoid. If ∃gh then

necessarily g ≡ h.

It follows that G =
∐
i∈I Gi, the disjoint union, where the Gi are

the connected components of G.
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It remains to describe the structure of all connected groupoids.

Let X be a non-empty set and let H be a group. The set of triples

X×H×X becomes a groupoid when we define (x, h, x′)(x′, h′, x′′) =

(x, hh′, x′′) and (x, h, y)−1 = (y, h−1, x). It is easy to check that

X×H×X is a connected groupoid. All connected groupoids are

isomorphic to groupoids of this type.

We now describe a special case. Let X be any non-empty set.

Then X ×X is a connected groupoid when we define d(x, y) =

(y, y), r(x, y) = (x, x), (x, y)−1 = (y, x) and (x, y)(y, z) = (x, z).

We call this the pair groupoid.
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We shall need to following definition in Lecture 3.

For each identity e in a groupoid, define the set Le of all elements

g such that e = d(g).

Let α : G→ H be a functor. For each identity e in G, the functor

α induces a map from Le to Lα(e). If these restricted maps are

bijections for all identities e we say that α is a covering functor.
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Groupoids and inverse semigroups

Let G be a groupoid. A subset A ⊆ G is called a partial bisection

if A−1A,AA−1 ⊆ Go.

Lemma Let G be a groupoid. A subset A ⊆ G is a partial

bisection if and only if a, b ∈ A and d(a) = d(b) implies that a = b

and r(a) = r(b) implies that a = b.

Proposition The set of all partial bisections of a groupoid forms

an inverse monoid under subset multiplication.
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A subset A ⊆ G of a groupoid is called a bisection if

A−1A,AA−1 = Go.

Corollary The set of bisections of a groupoid forms a group

which is the group of units of the inverse monoid of all partial

bisections of that groupoid.

The inverse monoid of partial bisections of the pair groupoid

X×X is isomorphic with the symmetric inverse monoid on X, and

the group of bisections of the pair groupoid X ×X is isomorphic

with the symmetric group on X.
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Let S be an inverse semigroup. Define the restricted product a ·b
to be equal to ab when d(a) = r(b), and undefined otherwise.

Proposition An inverse semigroup with respect to its restricted

product is a groupoid in which the identities are the idempotents.
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Books

I first learnt about inverse semigroups from Chapter V of

J. M. Howie, An introduction to semigroup theory, Academic
Press, 1976.

There are two books exclusively dedicated to inverse semigroups:

Mario Petrich, Inverse semigroups, John Wiley & Sons, 1984

and

Mark V. Lawson, Inverse semigroups: the theory of partial sym-
metries, World Scientific, 1998.

END OF LECTURE 1
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