
1. CLASSICAL STONE DUALITY

MARK V. LAWSON

Abstract. In this article, we explain classical Stone duality.

1. Boolean algebras

Boolean algebras may not rank highly in the pantheon of algebraic structures but
they are, in fact, both mathematically interesting and remarkably useful. Formally,
a Boolean algebra is a 6-tuple (B,∨,∧, ′ , 0, 1) consisting of a set B, two binary
operations ∨, called join, and ∧, called meet, one unary operation a 7→ a′, and two
constants 0 and 1 satisfying the following ten axioms:

(B1): (x ∨ y) ∨ z = x ∨ (y ∨ z).
(B2): x ∨ y = y ∨ x.
(B3): x ∨ 0 = x.
(B4): (x ∧ y) ∧ z = x ∧ (y ∧ z).
(B5): x ∧ y = y ∧ x.
(B6): x ∧ 1 = x.
(B7): x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
(B8): x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
(B9): x ∨ x′ = 1.
(B10): x ∧ x′ = 0.

The following lemma summarizes some important properties of Boolean algebras
that readily follow from these axioms.

Lemma 1.1. In a Boolean algebra B, the following hold for all x, y ∈ B.

(1) x ∨ x = x. Idempotence.
(2) x ∧ x = x. Idempotence.
(3) x ∧ 0 = 0. The element 0 is the zero for meet.
(4) 1 ∨ x = 1. The element 1 is the zero for join.
(5) x = x ∨ (x ∧ y). Absorption law.
(6) x ∨ y = x ∨ (y ∧ x′). Difference law.
(7) x′′ = x. Double complementation.
(8) (x ∨ y)′ = x′ ∧ y′. De Morgan.
(9) (x ∧ y)′ = x′ ∨ y′. De Morgan.

The theory of Boolean algebras is described in an elementary fashion in [7] and
from a more advanced standpoint in [12] and [17]. The first two chapters of [11]
approach the subject of Stone duality from the perspective of frame theory; the
whole book can be viewed as a study of Stone’s legacy.

Example 1.2. The basic example of a Boolean algebra that everyone knows is the
power set Boolean algebra which consists of the set of all subsets, P(X), of the set
X with the operations ∪, ∩ and A = X \ A and the two constants ∅, X. In the
finite case, each Boolean algebra is isomorphic to a power set Boolean algebra.
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Example 1.3. The 2-element Boolean algebra B is defined as follows. Put B =
{0, 1}. Define operations ′, ∧, and ∨ by means of the following tables:

x x′

1 0
0 1

x y x ∧ y
1 1 1
1 0 0
0 1 0
0 0 0

x y x ∨ y
1 1 1
1 0 1
0 1 1
0 0 0

You can check that B is essentially the same as the power set Boolean algebra on
a 1-element set. It is this Boolean algebra that is used in the design of computer
circuits [4], [16].

Example 1.4. The Lindenbaum algebra, named after Adolf Lindenbaum (1834–
1923), is constructed from propositional logic by identifying those well-formed for-
mulae which have the same truth table. It is used in more advanced work to prove
results about propositional logic in an algebraic way [20, Chapter 6].

Example 1.5. Boolean algebras are the basis of measure theory. A measure space
consists of a set X and a subset A of P(X) which contains ∅ and X and is closed
under ∪,∩ and complementation and under countable unions. Thus A is, what is
termed, a σ-complete Boolean algebra.

Example 1.6. Recall that a language over an alphabet A is said to be recognizable
if there is a finite-state automaton that accepts it. By Kleene’s theorem [13], the
set of recognizable languages over A is equal to the set of regular languages over
A. Denote the set of regular languages over A by Reg(A). This set is a Boolean
algebra, with extra operations. This Boolean structure can be exploited to provide
a sophisticated way of studying families of regular languages [18], [6].

Boolean algebras have their roots in the work of George Boole [2], though the
definition of Boolean algebras seems to have been inspired by his work rather than
originating there [8]. Until the 1930s, research on Boolean algebras was essentially
about axiomatics with the following example being typical.

Example 1.7. A non-empty set S is equipped with a binary operation ∨ and a
unary operation ′ such that only the following axioms hold:

(1) a ∨ (b ∨ c) = (a ∨ b) ∨ c.
(2) a ∨ b = b ∨ a.
(3) (a′ ∨ b′)′ ∨ (a′ ∨ b)′ = a.

Define a ∧ b = (a′ ∨ b′)′, 1 = a ∨ a′ and 0 = 1′. Then (S,∨,∧,′ , 0, 1) is a Boolean
algebra. For a proof, see [9, 10].]

Questions such as this are basic in any new branch of algebra but in the case of
Boolean algebras, there was also the problem that there was a plethora of ways of
axiomatizing them. With Stone’s paper [21], stability in the definition of Boolean
algebras emerges because he showed that each Boolean algebra could be regarded
as a (unital) ring in which each element was idempotent; rings such as this are
called Boolean rings. In the language of category theory, his result shows that the
category of Boolean algebras is isomorphic to the category of Boolean rings. The
following result describes how the correspondence between Boolean algebras and
Boolean rings works at the algebraic level.

Theorem 1.8.

(1) Let B be a Boolean algebra. Define a+b = (a∧b′)∨(a′∧b) and a ·b = a∧b.
Then (B,+, ·, 1) is a Boolean ring.
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(2) Let (R,+, ·, 1) be a Boolean ring. Define a ∨ b = a+ b+ a · b, a ∧ b = a · b
and a′ = 1− a. Then (R,∨,∧, ′ , 0, 1) is a Boolean algebra

(3) The constructions (1) and (2) above are mutually inverse.

The above result is satisfying since the definition of Boolean rings could hardly
be simpler but also raises the interesting question of why Marshall H. Stone (1903–
1989), a functional analyst, should have been interested in Boolean algebras in the
first place. the reason is that Stone worked on the spectral theory of symmetric
operators and this led to an interest in algebras of commuting projections. Such
algebras are naturally Boolean algebras. The following theorem [5] puts this con-
nection in a slightly wider context. If R is a ring (or semigroup) denote its set of
idempotents by E(R).

Theorem 1.9. Let R be a commutative ring. Then the set E(R) is a Boolean
algebra when we define e ∨ f = e+ f − ef , e ∧ f = e · f and e′ = 1− e.

By Theorem 1.8 and Theorem 1.9, it is immediate that each Boolean algebra
arises as the Boolean algebra of idempotents of a commutative ring.

So far we have viewed Boolean algebras as purely algebraic objects. But in fact
they come equipped with a partial order that underpins this algebraic structure.
Let B be a Boolean algebra. For x, y ∈ B, define x ≤ y if and only if x = x ∧ y.
The proofs of the following are routine.

Lemma 1.10. With the above definition, we have the following:

(1) ≤ is a partial order on B.
(2) x ≤ y if and only if y = x ∨ y.
(3) a ∧ b = glb{a, b} and a ∨ b = lub{a, b}.

A non-zero element x ∈ B of a Boolean algebra is called an atom if y ≤ x implies
that either x = y or y = 0.

Example 1.11. The following is the Hasse diagram for the finite Boolean algebra
P(X) where X = {a, b, c}. The atoms are the singleton subsets.

∅

{a} {b} {c}

{a, b} {a, c} {b, c}

X

2. Duality

In the previous section, we described a great variety of Boolean algebras from
a range of mathematical disciplines. What we would like mathematically is some
way of describing all Boolean algebras. The partial order defined at the end of the
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last section plays a crucial role in achieving this goal. We begin with the finite
case, where there is an easy description and which provides good motivation for the
general case.

2.1. Finite Boolean algebras. The description of finite Boolean algebras depends
crucially on the properties of atoms. Finiteness tells us that there are atoms but,
more strongly than that, each non-zero element of a finite Boolean algebra is either
itself an atom or lies above an atome in the partial order. Let B be a finite Boolean
algebra. Denote the set of atoms of B by X(B). For each a ∈ B denote by Ua the
set of all atoms in B below a. Observe that U0 = ∅, U1 = X(B) and Ua 6= ∅ if
a 6= 0. The following lemma provides the key properties of the atoms that we shall
need.

Lemma 2.1. Let B be a finite Boolean algebra.

(1) Let a, b ∈ B such that a 6= b. Then there is an atom beneath one of a or b
that is not beneath the other.

(2) Let a be a non-zero element. For each atom x either x ≤ a or x ≤ a′ but
not both.

(3) Let x be an atom. If x ≤ a ∨ b then x ≤ a or x ≤ b.
(4) Let x and y be atoms. Then either x = y or x ∧ y = 0.
(5) Let x ≤ x1 ∨ . . . ∨ xn where all elements are atoms. Then x = xi for some

i.

Proof. (1) From the fact that a 6= b we deduce that (a � b) ∨ (b � a). We assume
without loss of generality that a � b. Then a ∧ b′ 6= 0 by basic Boolean algebra.
Let x ≤ a∧ b′ be an atom. Then x ≤ a and x ≤ b′ from which it follows that x � b.

(2) Suppose that x � a. Then x ∧ a′ 6= 0. It follows that x ≤ a′, as claimed.
(3) We have that x = (x ∧ a) ∨ (x ∧ b). Observe that x wedgea = 0 or x ≤ a.

There are various cases but they all devolve down to x ≤ a or x ≤ b.
(4) Straightforward.
(5) We have that x = (x ∧ x1) ∨ . . . ∨ (x ∧ xn). The result now follows by part

(4) above. �

The above lemma leads to easy proofs of the following.

Lemma 2.2. Let B be a finite Boolean algebra.

(1) Ua ∩ Ub = Ua∧b.
(2) Ua ∪ Ub = Ua∨b.
(3) Ua′ = Ua.

Theorem 2.3. Every finite Boolean algebra is isomorphic to the Boolean algebra
of subsets of a finite set.

Proof. Let B be a finite Boolean algebra. Define a function B → P(X(B)) by
a 7→ Ua. By Lemma 2.2, this is a morphism of Boolean algebras. By part (1) of
Lemma 2.9, it is injective. By part (5) of Lemma 2.9, it is surjective. �

In the light of the above result, it is tempting to conjecture that every Boolean
algebra is isomorphic to a powerset Boolean algebra. However, this turns out to be
false. Define a Boolean algebra to be atomic if each non-zero element is above an
atom. Define a Boolean algebra to be atomless if it has no atoms.

Example 2.4. The powerset Boolean algebra P(X) is always atomic with the
atoms being the singleton sets.

Example 2.5. Let X be the set R with the usual ordering with an adjoined max-
imum element ∞ and an adjoined minimum element −∞. The set of all finite
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unions of semi-open intervals [a, b), where a, b ∈ X, forms a Boolean algebra. This
is an example of what is called an interval algebra [15]. This Boolean algebra is
atomless.

Define a Boolean algebra to be complete if it has arbitrary joins with respect to
its partial order. The following was proved in [23]

Theorem 2.6. The powerset Boolean algebras are precisely the complete, atomic
Boolean algebras.

2.2. Arbitrary Boolean algebras. To describe arbitrary Boolean algebra we
have to adopt a different approach, and this was just what Stone did [22]. The
approach is symbolized below and can be viewed as a generalization of the finite
case described in the previous section.

atom
replaced by−→ ultrafilter

powerset
replaced by−→ topological space

atom x ≤ a replaced by−→ a ∈ F ultrafilter

Let B be an arbitrary Boolean algebra. We have seen above that B might not
have atoms so we have to find ‘atom substitutes’ that do always exist. A subset F
of a Boolean algebra B is called a filter if it satisfies the following conditions:

(1) 1 ∈ F .
(2) If a, b ∈ F then a ∧ b ∈ F .
(3) If a ∈ F and a ≤ b then b ∈ F .

The filter F is said to be proper if 0 /∈ F .

Example 2.7. Let a ∈ B. Define a↑ = {b ∈ B : a ≤ b}. Then a↑ is a filter called
the principal filter generated by a .

Let X ⊆ B be any subset of the Boolean algebra A. Define X∧ to be the set of
all finite meets of elements of X; we say that X has the finite intersection property
if 0 /∈ X∧. Define X↑ to be the set of all elements that are above an element of X.
Define F(X) to be the set (X∧)↑ The proof of the following is straightforward.

Lemma 2.8. For each X ⊆ B the set F(X) is a filter. It is proper if X has the
finite intersection property.

A proper filter F is said to be prime if a∨ b ∈ F implies that a ∈ F or b ∈ F . A
maximal filter is called an ultrafilter.

Lemma 2.9. The following are equivalent for a filter F in a Boolean algebra B.

(1) F is an ultrafilter.
(2) For each non-zero a ∈ F either a ∈ F or a′ ∈ F .
(3) F is a prime filter.

Proof. (1)⇒(2). Let F be an ultrafilter. Suppose that a /∈ F . Then F ⊂ F(F ∪
{a}) = B. It follows that 0 ∈ F(F ∪ {a}). Thus by Lemma 2.8, there is b ∈ F such
that b∧ a = 0. Now 1 = a∨ a′. Thus b = (b∧ a)∨ (b∧ a′). So, b = b∧ a′. It follows
that b ≤ a′ giving a′ ∈ F , as required.

(2)⇒(3). We prove that F is a prime filter. Suppose that a /∈ F and b /∈ F .
Then a′ ∈ F and b′ ∈ F so that a′ ∧ b′ ∈ F . Thus (a ∨ b)′ ∈ F .

(3)⇒(1). Suppose that a /∈ F . Then a′ ∈ F , since F is prime and 1 ∈ F . It
follows that the filter F(F ∪ {a}) contains 0. �

We can now connect atoms with special kinds of ultrafilters.

Proposition 2.10. Let B be a Boolean algebra. The principal filter F = a↑ is an
ultrafilter if and only if a is an atom.
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Proof. Suppose that a is an atom and that b ∨ b′ ∈ F . Then a ≤ b ∨ b′. Thus
a = (a ∧ b) ∨ (a ∧ b′); in particular, it cannot happen that both a ∧ b = 0 and
a∧ b′ = 0. Also a∧ b ≤ a and a∧ b′ ≤ a. But a is an atom. If a∧ b = a then a ≤ b
and b ∈ F ; if a∧ b = 0 then a∧ b′ = a implying that a ≤ b′ and so b′ ∈ F . It follows
by Lemma 2.9 that F is an ultrafilter.

Suppose that F is an ultrafilter. We prove that a is an atom. Suppose not. Then
there is 0 < b < a where b is an atom. Then b↑ is an ultrafilter and F ⊆ b↑. But
this contradicts the assumption that F is an ultrafilter. It follows that a must be
an atom. �

The above lemma is only interesting in the light of the following result. The
routine proof uses Zorn’s Lemma or see [12, Chapter 1, Proposition 2.16].

Theorem 2.11 (Boolean Prime Ideal Theorem). A subset of a Boolean algebra is
contained in an ultrafilter if and only if it has the finite intersection property.

The first corollary is the analogue of the result for finite Boolean algebras that
every non-zero element is above an atom.

Corollary 2.12. Every non-zero element of a Boolean algebra is contained in an
ultrafilter.

The second corollary says that there are enough ultrafilters to separate points;
this is the analogue of the result that says in a finite Boolean algebra each element
is a join of the atoms below it.

Corollary 2.13. Let a and b be distinct non-zero elements of a Boolean algebra.
Then there is an ultrafilter that contains one of the elements and omits the other.

Proof. Since a 6= b then either a � b or b � a. Suppose that a � b. Then it
is a simple exercise to check that a ∧ b′ 6= 0. Thus by Corollary 2.12 there is an
ultrafilter F that contains a ∧ b′. It follows that a ∈ F and b /∈ F . �

Ultrafilters are the first step in generalizing the theory of finite Boolean algebras
to arbitrary Boolean algebras. The second is to introduce topological spaces. A
topological space is said to be 0-dimensional if it has a base of clopen sets. A
compact Hausdorff space which is 0-dimensional is called a Boolean space.

Proposition 2.14. The clopen subsets of a Boolean space form a Boolean algebra.

Proof. Let X be a Boolean space and denote by B(X) the set of all clopen subsets
of X. Observe that ∅, X ∈ B(X). If A,B ∈ B(X) then A ∩ B,A ∪ B ∈ B(X).
Finally, if A ∈ B(X) then A ∈ B(X). �

Let B be a Boolean algebra. Define X(B) to be the set of ultrafilters on B. If
a ∈ B denote by Ua the set of ultrafilters containing a. The proof of the following
lemma is routine.

Lemma 2.15. Let B be a Boolean algebra.

(1) U0 = ∅.
(2) U1 = X(B).
(3) Ua ∩ Ub = Ua∧b.
(4) Ua ∪ Ub = Ua∨b.
(5) Ua′ = Ua.

The above lemma tells us that we may define a topology σ on X(B) whose open
sets are unions of sets of the form Ua. We shall first of all determine the salient
properties of the topological space (X(B), σ). We shall refer to the elements of X(B)
as points.



1. CLASSICAL STONE DUALITY 7

Theorem 2.16. For each Boolean algebra B the space (X(B), σ) is Boolean.

Proof. The fact that (X(B), σ) is 0-dimensional follows by part (5) of Lemma 2.15.
Let A and B be distinct ultrafilters. Then there exists a ∈ A \ B. Observe that
A ∈ Ua, B ∈ Ua′ and Ua ∩Ua = ∅. Thus (X(B), σ) is Hausdorff. Finally, we prove
that (X(B), σ) is compact. Let C = {Ua : a ∈ I} be a cover of X(B). Suppose
that no finite subset of U covers X(B). Then for any a1, . . . , an ∈ I we have that
Ua1
∪ . . . ∪ Uan

6= X(B). It follows that a1 ∨ . . . ∨ an 6= 1 and so a′1 ∧ . . . ∧ a′n 6= 0.
Thus the set I ′ = {a′ : a ∈ I} has the finite intersection property. By Theorem 2.11,
there is an ultrafilter F such that I ′ ⊆ F . By assumption, F ∈ Ua for some a ∈ I
and so a, a′ ∈ F , which is a contradiction. �

The topological space X(B) is called the Stone space of the Boolean algebra B.
We can now assemble Proposition 2.14 and Theorem 2.16 into the main result

of this article.

Theorem 2.17.

(1) Let B be a Boolean algebra. Then B ∼= BX(B).
(2) Let S be a Boolean space. Then S ∼= XB(S).

Proof. (1) Define α : B → BX(B) by a 7→ Ua. By Lemma 2.15 this is a homomor-
phism of Boolean algebras. It is injective by Corollary 2.13. It is surjective because
a closed subset of a compact space is compact.

(2) Let x ∈ X. Define Ox to be the set of all clopen sets that contain x. It
is easy to check that this is an ultrafilter in B(X) and so Ox ∈ XB(X). Define
β : X → XB(X) by x 7→ Ox the set of all clopen sets that contain x. Since both
spaces are compact and Hausdorff, to prove that β is a homeomorphism it is enough
to prove that it is bijective and continuous. Suppose that Ox = Oy. If x 6= y then
by the fact that X is Hausdorff we could find disjoint open sets U and V such that
x ∈ U and y ∈ V . But X is 0-dimensional and so we can assume, without loss of
generality, that U and V are clopen from which we would deduce that Ox 6= Oy.
It follows that β is injective. Next, let F be any ultrafilter in B(X). Then this is
an ultrafilter consisting of clopen subsets of a compact space; here we shall only
need that these subsets are closed. Since F is a filter, it has the property that
the intersection of every finite set of elements is non-empty. By [19, Chapter 4,
Theorem D], it follows that there is an element x in the intersection of all the
elements of F . Thus F ⊆ Ox. But F is an ultrafilter and so F = Ox. Finally, we
prove continuity. Let U be an open subset of XB(X). Then U is a union of the
basic open sets which are clopen. These have the form UA where A is a clopen
subset of X. Thus it is enough to calculate β−1(UA). But Ox ∈ UA if and only if
x ∈ A. Thus β−1(UA) = A. �

Example 2.18. Let B be a finite Boolean algebra. Then, as we have seen, the
ultrafilters of B are in bijective correspondence with the atoms of B. We may
therefore identify the set of points X(B) with the set of atoms of B. Let a ∈ B.
We describe the set Ua in terms of atoms. The ultrafilter b↑ ∈ Ua if and only is
b ≤ a. So, the set Ua is in bijective correspondence with the set of atoms below
a. It follows that the Boolean space X(B) is homeomorphic with the the discrete
space of atoms of B. In this way, the classical theory of finite Boolean algebras can
be derived from Stone duality.

Example 2.19. Tarski proved that any two atomless, countably infinite Boolean
algebras are isomorphic [7, Chapter 16, Theorem 10]. It makes sense, therefore, to
define the Tarski algebra1 to be an atomless, countably infinite Boolean algebra.

1Not an established term
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An element x of a topological space is said to be isolated if {x} open. Suppose that
a is an atom of the Boolean algebra B. Then Ua is the set of all ultrafilters that
contain a. But a↑ is an ultrafilter containing a and, evidently, the only one. Thus
Ua is an open set containing one point and so the point a↑ is isolated. Suppose
that Ua contains exactly one point F . Then F is the only ultrafilter containing
a. Suppose that a were not an atom. Then we could find 0 6= b < a. Thus
a = b ∨ (a ∧ b′). Let F1 be an ultrafilter containing b and let F2 be an ultrafilter
containing a ∧ b′. Then F1 6= F2 but both contain a. This is a contradiction. It
follows that a is an atom. Observe that B is an atomic Boolean algebra if and only
if the isolated points in its Stone space form a dense subset. We deduce that the
Stone space associated with an atomless Boolean algebra has no isolated points. If
B is countable then its Stone space is second-countable. The Stone space of the
Tarski algebra is therefore a second-countable, 0-dimensional, compact Hausdorff
space with no isolated points; such a space is homeomorphic to the Cantor space.
It follows that the Stone space of the Tarski algebra is the Cantor space.

Example 2.20. We construct the Stone spaces of the powerset Boolean algebras
P(X). The isolated points of the Stone space of P(X) form a dense subset of the
Stone space which is homeomorphic to the discrete space X. Thus the Stone space
of P(X) is a compact Hausdorff space that contains a copy of the discrete space
X. In fact, the Stone-Čech compactification of the discrete space X is precisely the
Stone space of P(X).

It remains to say a few words about maps. Let B be a Boolean algebra. Then
there is a bijective map between the ultrafilters in B and the Boolean algebra
homomorphisms from B to B, the 2-element Boolean algebra. This bijection as-
sociates with the ultrafilter F its characteristic function χF . Let θ : B1 → B2 be
a homomorphism between Boolean algebras. Let F ∈ (X)(B2) be an ultrafilter.
Then χF θ is the characteristic function of an ultrafilter in B2. In this way, we
can map homomomorphisms B1 → B2 to continuous functions X(B1) ← X(B2)
with a consequent reversal of arrows. In the other direction, let φ : X1 → X2 be
a continuous function. Then φ−1 maps clopen sets to clopen sets. In this way, we
can map continuous functions X1 → X2 to homomorphisms B(X1) ← B(X2). If
Theorem 2.17 is combined with our observations on maps above, we can say the
following: the category of Boolean algebras is dually equivalent to the category of
Boolean spaces.
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