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Abstract. Reaction-diffusion equations with degenerate nonlinear diffusion are in widespread use
as models of biological phenomena. This paper begins with a survey of applications to ecology,
cell biology and bacterial colony patterns. The author then reviews mathematical results on the
existence of travelling wave front solutions of these equations, and their generation from given
initial data. A detailed study is then presented of the form of smooth-front waves with speeds close
to that of the (unique) sharp-front solution, for the particular equation ut = (uux)x + u(1 − u).
Using singular perturbation theory, the author derives an asymptotic approximation to the wave,
which gives valuable information about the structure of smooth-front solutions. The approximation
compares well with numerical results.
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1. Nonlinear Diffusion in Biological Models
The first applications of reaction-diffusion equations in biology [8, 48] used standard linear diffu-
sion to model population spread. However, it is now clear that in a number of biological contexts,
motility varies with population density, requiring nonlinear diffusion terms. This was first realised
in ecological applications [12, 13, 45], and density-dependent dispersal is now a common feature
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of spatial modelling in ecology. This includes models that are spatially discrete [33, 53] and of
integrodifference equation type [51, 23], as well as reaction-diffusion equations (e.g. [9, 31, 52]).
Empirically, positive and negative density dependence are both well-documented in a range of
animal taxa [28, 22]; see [37, 49] for modelling studies comparing the two cases.

Reaction-diffusion models with nonlinear diffusion have also been applied extensively to eu-
karyotic cell biology. In particular, [40] performed a detailed comparison of linear and nonlinear
diffusion in a model of an in vitro experimental assay of cell migration and proliferation; they
compared simulated wave front profiles with experimental data, concluding that the diffusion term
giving the best fit with data depended on the cell type. A closely related study by [24] showed that
for an in vitro wound healing assay, nonlinear diffusion was suggested by the shape of experimen-
tal cell density profiles, but was not required for a good fit with data. Nonlinear diffusion has also
been used by a number of authors in models of interacting cell populations [41, 32, 47, 46], and has
been applied specifically to wound repair [42, 5, 50] and avascular tumour growth [10, 44, 2, 54].

A third application area for reaction-diffusion models with nonlinear diffusion is pattern for-
mation in bacterial colonies. For a number of bacteria species exhibiting pattern formation in in
vitro colonies, experimental observation of cell movement shows that it is an increasing function
of both cell density and nutrient concentration. A number of different reaction-diffusion models
have been proposed that incorporate this nonlinearity in cell motility (for example [20, 6, 27]).

In all three of these application areas, the key mathematical solution type is wave fronts. In
ecology, such fronts correspond to invasions, a phenomenon of key ecological importance [14],
which is occurring with increasing frequency as a result of climate change [15] in cell biology,
wave fronts correspond to the advancing edge of an expanding cell population, such as a growing
tumour; and in bacterial colonies, the tips extend as a wave front that is effectively one-dimensional
[20]. Wave front behaviour is particularly interesting when the nonlinearity in diffusion is “degen-
erate”, meaning that as the population density decreases towards zero, the diffusion coefficient does
also. This case is relevant to all three application areas, and raises the possibility of sharp-front
waves, as well as the smooth-front waves that arise in equations with linear diffusion (Figure 1).
The distinction between these front types is that in sharp-front waves, the population density de-
creases to zero at a finite point in space, rather than decaying to zero asymptotically; sharp-front
waves are sometimes known as “finite waves”. This paper concerns these wave fronts in a particu-
lar reaction-diffusion equation with degenerate nonlinear diffusion.

In §2 I briefly review the literature on wave fronts in scalar reaction-diffusion equations with de-
generate diffusion; there have been only a very few studies in corresponding systems of equations,
all in the context of applications to bacterial colonies (e.g. [39, 7]). In §3 I discuss the evolution
of travelling waves from given initial data, highlighting that numerical simulations suggest that the
selection of a sharp- or smooth-front wave depends on the rate of decay of the initial data towards
zero. §4 contains the major result of the paper, which involves using singular perturbation theory
to study the form of smooth-front waves moving with speeds very close to that of the sharp-front
wave. Finally, in §5, I discuss some extensions that could form the basis of future work.
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Figure 1: A schematic illustration of the qualitative form of (a) a sharp-front travelling wave, and
(b) a smooth-front travelling wave.

2. Travelling Wave Fronts for Equations with Degenerate Dif-
fusion

Wave front solutions of reaction-diffusion equations with degenerate nonlinear diffusion were first
studied thirty years ago [1, 30]. More recent work was initiated by Sánchez-Garduño & Maini
[34], who studied the equation

∂u

∂t
=

∂

∂x

[
D(u)

∂u

∂x

]
+ f(u) (2.1)

with D(.) satisfying D(0) = 0 and D′(u) > 0, D′′(u) 6= 0 on [0, 1], and f(.) satisfying f(0) =
f(1) = 0, f ′(1) < 0 < f ′(0). They showed that travelling wave front solutions exist if and only
if the wave speed c ≥ c∗, with the wave being of sharp-front type if c = c∗ and smooth-front type
otherwise. Travelling wave solutions have the form u(x, t) = U(z) with z = x− ct, and therefore
satisfy

dU/dz = V

D(U)dV/dz = −cV −D′(U)V 2 − f(U) .

The singularity at U = V = 0 can be removed via the change of variable

ζ =

∫ z

s=0

ds

D(u(s))

[1, 36]. In the case of a smooth-front wave, this transformation maps the real line onto itself,
whereas for a sharp-front wave in which U becomes zero at z = zc, (−∞, zc) is mapped to R. The
resulting equations are

dU/dζ = D(U)V
(2.2)

dV/dζ = −cV −D′(U)V 2 − f(U).
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which has three steady states: (0, 0), (0,−c) and (1, 0). Straightforward linear analysis shows that
(1, 0) is a saddle point, so that there is exactly one trajectory, T say, leaving it and entering the
fourth quadrant. Sánchez-Garduño & Maini [34] showed that for some c∗, T terminates (0,−∞)
if c < c∗, so that there is no travelling wave solution, while if c > c∗, T terminates at (0, 0),
corresponding to a smooth-front travelling wave. If c = c∗, then T terminates at (0,−c∗); thus at
ζ = ∞, corresponding to z = zc, U = 0 and V = dU/dz is non-zero: the solution is a sharp-
front wave. Phase portraits of (2.2) for these three cases are shown in Figure 2 for D(u) = u and
f(u) = u(1− u).

The results of [34] have been extended to wider classes of functions D(.) and f(.) by [36, 29,
26]. The first two of these papers use the same basic approach of analysing the phase portrait of
(2.2), while the third uses a different method based on comparison techniques. Another approach to
the proof, using shooting and the Conley index, is presented in [38]. Further extension to reaction-
diffusion-convection equations has been considered in [11, 25]. These authors study (2.1) with an
additional term h(u)∂u/∂x on the left hand side. Again there are wave front solutions if and only
if the wave speed c ≥ c∗, and again the wave is of smooth-front type for c > c∗. However in
this case the minimum speed wave (c = c∗) can be of smooth- or sharp-front type, according to
whether c∗ > h(0) or c∗ = h(0) respectively. Malaguti & Marcelli [25] give sufficient conditions
for these two possibilities (and show that c∗ ≥ h(0) in all cases).

In contrast to this extensive study of the existence of travelling wave solutions, their generation
as the large-time limit as solutions of (2.1) with particular initial conditions has received relatively
little attention. Sherratt & Marchant [43] studied this question numerically for the case D(u) = u,
f(u) = u(1− u), for which c∗ = 1/

√
2 (see below). They considered initial conditions

u(x, 0) =

{
1 if x < 0
e−ξx if x > 0

(2.3)

(0 < ξ ≤ ∞), and found that (2.3) always evolved towards a travelling wave solution, whose speed
c depended on ξ via

c =

{
1/
√

2 if ξ ≥ √
2 (sharp-front wave)

1/ξ if ξ <
√

2 (smooth-front wave) .
(2.4)

This dependence of wave speed on initial conditions can by explained intuitively via the observa-
tion that in (2.2) with D(u) = u and f(u) = u(1 − u), the travelling wave trajectory approaches
(0, 0) along the eigenvector (−c, 1). (This eigenvector corresponds to an eigenvalue of zero, but
has a stable centre manifold). Subsequently Biró [4], Medvedev [29] and Hilhorst [16] have proved
that for particular classes of functions D(.) and f(.), solutions of (2.1) with compactly supported
initial data evolve towards the travelling wave solution with minimum speed (i.e. the sharp-front
wave). These results were extended by Kamin & Rosenau [18, 19] to initial data that decays at a
sufficiently fast rate at infinity. I am not aware of any rigorous work on convergence to smooth
front waves for reaction-diffusion equations with degenerate nonlinear diffusion.
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Figure 2: An illustration of the three basic qualitative forms of the phase portrait for the travelling
wave ODEs (2.2). The phase portraits shown are for D(u) = u and f(u) = u(1 − u) with (a)
c = 0.5 < c∗; (b) c = 1/

√
2 = c∗; (c) c = 1 > c∗. The qualitative form is the same for all

c ∈ (0, 1/
√

2) and for all c > 1/
√

2. The ODEs were solved numerically using a Runge-Kutta-
Merson method.
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3. The Form of Smooth-Front Waves
In general, the minimum wave speed c∗ of travelling wave solutions of (2.1) is unknown (although
bounds have been derived: see [3, 26]. However for the special case D(u) = u, f(u) = u(1− u),
Aronson [1] showed that c∗ = 1/

√
2, and moreover that the sharp-front wave is given by

u∗(z) =

{
1− exp( z−zc√

2
) if z < zc

0 if z > zc .
(3.1)

This exact solution was exploited previously by Sánchez-Garduño & Maini [35], who used regular
perturbation theory to calculate the form of the sharp-front wave when small changes are made
to the nonlinear diffusion coefficient D(.). Here I fix D(.) and f(.), and consider the form of the
travelling wave solution when the wave speed c is close to c∗ = 1/

√
2. Specifically, I will derive

an asymptotic expansion for the smooth-front wave of speed ε + 1/
√

2 (ε > 0). The calculation is
a standard application of singular perturbation theory: for general presentations, see for example
the books by Hinch [17] and Kevorkian & Cole [21].

The wave is a solution of the travelling wave equation

U
d2U

dz2
+

(
1√
2

+ ε

)
dU

dz
+

(
dU

dz

)2

+ U(1− U) = 0 (3.2)

subject to the boundary conditions U(−∞) = 1 and U(+∞) = 0. This boundary value problem
does of course have a solution when ε = 0, namely the sharp-front travelling wave (3.1). Never-
theless, this is not a regular perturbation problem since the ε = 0 solution (3.1) is non-smooth at
z = zc. Therefore one expects the solution to have the form of two outer expansions on either side
of z = zc, with a corner layer centred on z = zc to give a smooth transition between these outer
solutions. Without loss of generality, and to simplify the algebra, I take zc = 0.

Inner and Outer Solutions

In the region z < zc = 0, I look initially for a solution of (3.2) with a simple power series form:

Uleft(z; ε) = Uleft, 0(z) + εUleft, 1(z) + ε2Uleft, 2(z) + . . . . (3.3)

Here the subscript left indicates that this solution applies in the outer region to the left of the corner
layer. I already know that Uleft, 0(z) = 1 − exp(z/

√
2), and substituting this together with the

expansion (3.3) into the governing equation (3.2), and equating powers of ε, gives a linear equation
for Uleft, 1(z):

d2Uleft, 1

dz2

(
1− ez/

√
2
)

+
dUleft, 1

dz

(
1√
2
−
√

2ez/
√

2

)
+ Uleft, 1

(
3

2
ez/

√
2 − 1

)
=

ez/
√

2

√
2

. (3.4)

One solution of the homogeneous equation corresponding to (3.4) can be found immediately by
inspection: Uleft, 1(z) = exp(z/

√
2). The other homogeneous solution can thus be found in a
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standard way by substituting Uleft, 1(z) = Ûleft, 1(z) exp(z/
√

2), and a particular integral can then
be constructed using the method of variation of parameters. Applying the boundary condition
Uleft, 1(−∞) = 0 removes one constant of integration, giving the following solution:

Uleft, 1 = Aleft, 1 ez/
√

2 +
ez/

√
2

9
√

2

[
3
√

2z − 6 log
(
1− ez/

√
2
)
− 2

]
. (3.5)

Here Aleft, 1 is the outstanding constant of integration.
The procedure for obtaining the outer solution in the region z > 0 is very similar. I look for a

solution of the form Uright(z; ε) = Uright, 0 + εUright, 1 + ε2Uright, 2 + . . . . In this case, Uright, 0 = 0,
and substituting into (3.2) gives a very simple equation for Uright, 1:

dUright, 1/dz = −
√

2Uright, 1 =⇒ Uright, 1(z) = Aright, 1 exp(−
√

2z) (3.6)

where Aright, 1 is a constant of integration.
I consider now the corner layer centred on z = 0. The rescaled variables in this layer will have

the form Ũ = U/µ(ε), z̃ = z/ν(ε), where µ(ε) = O(1) and ν(ε) = o(1) as ε → 0. Substituting
these rescalings into (3.2) shows clearly that the appropriate scaling has µ(ε) ∼ ν(ε), in which
case the equation becomes

Ũ
d2Ũ

dz̃2
+

1√
2

dŨ

dz̃
+

(
dŨ

dz̃

)2

+ ε
dŨ

dz̃
+ ν(ε)Ũ − ν(ε)2Ũ2 = 0 . (3.7)

Again I look for a power series expansion

Ũ(z̃; ε) = Ũ0(z̃) + εŨ1(z̃) + ε2Ũ2(z̃) + . . . . (3.8)

Substituting into (3.7) gives an equation for Ũ0 which can easily be solved; the solution has the
implicit form

Ã0 − z̃/
√

2 = Ũ0 + B̃0 log
∣∣∣Ũ0 − B̃0

∣∣∣ . (3.9)

Here Ã0 and B̃0 are constants of integration. I am looking for a solution in which z̃ runs continu-
ously from −∞ to +∞, with Ũ0 always positive. Simple sketching of the z̃–Ũ0 graph implied by
(3.9) shows that B̃0 must be positive, and that Ũ0 decreases monotonically from +∞ to B̃0 as z̃
increases from −∞ to ∞; the form of Ũ0 is illustrated in Figure 3.

Matching and Intermediate Terms

I expect the four outstanding constants of integration to be determined by matching the outer and
corner layer solutions. In order to consider this matching, I must obtain the forms of Ũ0 as z̃ →
±∞ in more detail. Consider first the z̃ → +∞ limit, for which Ũ0 ∼ B̃0. I let γ(z̃) = Ũ0 − B̃0.
Substituting this into the implicit equation (3.9) which defines Ũ0 gives γ+B̃0 log γ = Ã0− z̃/

√
2.

Thus
Ũ0(z̃) = B̃0 +Os

[
exp

(
−z̃/B̃0

√
2
)]

as z̃ → +∞ . (3.10)
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Figure 3: An illustration of the qualitative form of Ũ0(z̃), defined by the implicit formula (3.9).

A similar procedure of successive approximation shows that

Ũ0(z̃) = −z̃/
√

2− B̃0 log(−z̃) +
(
Ã0 + B̃0 log

√
2
)

+O [log(−z̃)/z̃] as z̃ → −∞ . (3.11)

I am now in a position to consider matching the outer and layer solutions. For this purpose
I introduce an intermediate variable zη = z/η(ε) = z̃ · ν(ε)/η(ε) with ν(ε) ¿ η(ε) ¿ 1. For
notational simplicity, I will simply write ν and η, without the “(ε)”, henceforth. The conditions for
matching to some order M(ε) are then

[
Uright(ηzη; ε)− νŨ(ηzη/ν)

]
= o [M(ε)] as ε → 0 with zη > 0 fixed

and
[
Uleft(ηzη; ε)− νŨ(ηzη/ν)

]
= o [M(ε)] as ε → 0 with zη < 0 fixed.

Explicitly, the first of these conditions is

Uright, 0︷︸︸︷
0

εUright, 1︷ ︸︸ ︷
+εAright, 1 − Aright, 1

√
2εηzη +O(εη2) +

ε2Uright, 2 + . . .︷︸︸︷
o(ε)

= νB̃0 +O
(
ν exp

[
−ηzη/(νB̃0

√
2)

])

︸ ︷︷ ︸
νŨ0

−B̃0

√
2εηzη + o(εη)︸ ︷︷ ︸

νεŨ1 + . . .

+o [M(ε)] (3.12)

as ε → 0 with zη > 0 fixed. Here I have used (3.10), and I have expanded the outer solutions
(3.6) in Taylor series about z = 0. I have also included the leading order contributions of the O(ε)
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terms in the corner layer series (3.8), to emphasise that these contributions do match other terms in
the outer expansion. These terms do of course require calculation. The equation determining Ũ1 is
most conveniently expressed as

Ũ0
d2Ũ1

dz̃ 2
+

(
B̃0

√
2

Ũ0

− 1√
2

)
dŨ1

dz̃
+

B̃0(Ũ0 − B̃0)

2Ũ3
0

Ũ1 =
1√
2
− Ũ0 − B̃0

Ũ0

√
2

. (3.13)

Since I have already calculated the behaviour of Ũ0 as z̃ → ±∞, (3.13) can be used, without
determining a full solution, to find the corresponding behaviour of Ũ1. For this I use a method
of successive approximation similar to that used in deriving (3.10) and (3.11). This rather crude
method works because any particular integral of (3.13) dominates the solution of the corresponding
homogeneous equation both as z → +∞ and as z → −∞.

Matching to order unity, so that M(ε) ∼ 1, is automatic, and higher order matching clearly
requires ν(ε) = ε. In this case, (3.12) with M(ε) = ε implies that Aright, 1 = B̃0. However, in
the corresponding matching condition to the left of the corner layer, matching to order ε is not
possible, because there is an unbalanced term of order ν log ν = ε log ε in the layer solution. To
deal with this I introduce the additional intermediate term ε log ε Uleft, log(z) into the expansion
(3.3) for Uleft. Such intermediate terms are a common feature of matched asymptotic expansions:
see §5.2 of [17] or §2.3-2.4 of [21] for general discussions. A separate equation must be solved
for Uleft, log. This equation is in fact the homogeneous equivalent of (3.4), and with the boundary
condition Uleft, log(−∞) = 0, the solution is Uleft, log(z) = Aleft, log exp(z/

√
2), where Aleft, log is a

constant of integration. Expanding this in a Taylor series about z = 0 gives the following amended
matching condition to the left of the layer

Uleft, 0︷ ︸︸ ︷
−ηzη/

√
2− η2z2

η/4 +O(η3)

ε log ε Uleft, log︷ ︸︸ ︷
+Aleft, logε log ε +

(
Aleft, log/

√
2
)

ηzηε log ε +O(η2ε log ε)

εUleft, 1 (continued on next line)︷ ︸︸ ︷
+εAleft, 1 + εηAleft, 1zη/

√
2 +O(εη2)− ε

√
2/9 + εηzη/18− (

√
2/3)ε log

(
−zη/

√
2
)

εUleft, 1 (continued from previous line)︷ ︸︸ ︷
−(
√

2/3)ε log η − (1/3)εηzη log η − (1/3)εηzη log
(
−zη/

√
2
)

+O(εη2) +

ε2Uleft, 2 + . . .︷︸︸︷
o(ε) =

νŨ0︷ ︸︸ ︷
−ηzη/

√
2− εB̃0 log η + εB̃0 log ε− εB̃0 log(−zη) + ε

(
Ã0 + B̃0 log

√
2
)

+O [
(ε2/η) log η

]

ενŨ1 + . . .︷ ︸︸ ︷
−η2z2

η/4−
(
B̃0zη/

√
2
)

εη log(−ηzη/ε) +
[
Ã0 + B̃0 log

√
2 + 7B̃0/2−

√
2
]
εηzη/

√
2 + o(εη)

+o [M(ε)] (3.14)
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The conditions for matching to order ε, so that M(ε) ∼ ε, are thus Aleft, log = B̃0, B̃0 =
√

2/3 and
Aleft, 1 = Ã0 +

√
2/9. This last relation is obtained by equating coefficients of ε. The constant Ã0

is not determined, and corresponds to an O(ε) translation in the wave coordinate z. (Recall that
both the equation (3.2) and the boundary conditions are autonomous, although z is fixed at O(1)
by the specification of zc).

Composite Expansion and Conclusions

Having matched the outer and corner layer solutions, I can calculate a leading order composite
generalised asymptotic expansion in the usual way, by adding the two solutions and subtracting
the common matched values. The defining property of this composite expansion Ucomp(z) is that
the difference between Ucomp(z) and the outer solution is o(ε) as ε → 0 with z fixed, while the
difference between Ucomp(z) and the corner layer solution is o(ε) as ε → 0 with z̃ = z/ε fixed.
The form of Ucomp is:

Ucomp(z) =





Outer solution︷ ︸︸ ︷
ε(
√

2/3)e−z
√

2

Corner layer solution︷ ︸︸ ︷
+εH(z/ε)

−Matched values︷ ︸︸ ︷
−(
√

2/3)ε





z > 0

Outer solution (continued on next line)︷ ︸︸ ︷
1− ez/

√
2 +

√
2ez/

√
2

3
ε log ε +

εez/
√

2

9
√

2

[
3
√

2z − 6 log
(
1− ez/

√
2
)
− 2

]

+
ε
√

2

9
ez/

√
2

︸ ︷︷ ︸
Outer soln

(contd from
previous line)

+εH (z/ε)︸ ︷︷ ︸
Corner layer

solution

+
z√
2

+
ε
√

2

3
log

[ −z

ε
√

2

]

︸ ︷︷ ︸
−Matched values





z < 0

(3.15)
Here I have taken Ã0 = 0. The function H(ξ) is the unique solution on (

√
2/3,∞) of

√
2H(ξ) + (2/3) log

[
H(ξ)−

√
2/3

]
+ ξ = 0 .

This composite expansion approximates well with the numerically calculated travelling wave pro-
file provided ε is small (Figure 4a). However the relatively large leading order correction (O(ε log ε))
means that the quality of the approximation decreases relatively rapidly as ε increases (Figure 4b).

The leading order composite solution (3.15) is the net result of our matched asymptotics.
Higher order corrections could of course be obtained in a similar way. One application of this
solution is as an approximation to the true wave form, although the algebraic complexity of (3.15)
means that this has little practical advantage over a numerical approximation, which can easily be
found as explained above. A much more significant application of (3.15) is the insight it gives
into the structure of the smooth-front travelling waves of speed close to the minimum speed. The
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Figure 4: A comparison of the leading order composite expansion Ucomp(z) (points) with the
numerically calculated travelling wave (solid curve), for ε = 0.1 and ε = 0.5. There is almost no
visible difference in the former case, but when ε is as large as 0.5 there is a significant difference.
Note that ε = 0.5 gives a wave speed that is about 70% greater than the minimum speed of
1/
√

2. The numerically calculated wave was determined by integrating the partial differential
equation (2.1) with D(u) = u and f(u) = u(1 − u) from initial conditions satisfying (2.3) with
ξ = 1/(ε + 1/

√
2). I solved on the domain −23 < x < 50 up to time t = 40/c, where c is

the expected wave speed, given by (2.4), so that c = ε + 1/
√

2. This solution time is sufficiently
long to allow the wave form to establish, but short enough that there is no significant interaction
between the wave and the boundary at x = 50. An appropriate translation in space was applied
prior to plotting. The numerical method was the method of lines and Gear’s method
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simple fact that there is a corner layer of width ε in which the solution is of order ε is the most
noticeable aspect of this. But perhaps more significant is the requirement to introduce an inter-
mediate term to the left of the layer. A simple implication of this is that the maximum difference
between the smooth-front and sharp-front waves is Os(ε log ε) as ε → 0.

4. Possible Extensions for Future Work
To the best of my knowledge, the work presented here is the first detailed investigation of the
form of smooth-front wave solutions of a reaction-diffusion equation with degenerate nonlinear
diffusion, and it raises a number of challenges for future work. Firstly, my results apply only to the
specific case D(u) = u, f(u) = u(1− u). A natural extension would be to consider more general
D(.) and f(.). This is a more difficult problem due to the lack of an exact leading order solution,
but may be within reach given the detailed knowledge of the phase portraits of the travelling wave
equations (2.2) [34, 36, 29]. A key question is whether changes in D(.) and f(.) can alter the
dependence on ε of the leading order correction to the wave form, which isO(ε log ε) for the case I
have considered. A second natural extension would be to reaction-diffusion-convection equations.
For various equations of this type, Gilding & Kersner [11] give exact solutions for the minimum
speed wave, which would enable studies directly parallelling that presented here. Again, a key
question concerns the dependence on ε of the leading order correction to the wave form, and in
particular how this varies with the convection coefficient. A third and much more challenging area
for future work is the proof of rigorous results on the evolution of slowly decaying initial data to
smooth-front waves.

Acknowledgements
This work was supported in part by a Leverhulme Trust Research Fellowship. I am very grateful
to Ben Marchant for initiating my interest in this problem.

References
[1] D.G. Aronson. Density dependent interaction systems. In: W.H. Steward et al. (eds.) Dynam-

ics and Modelling of Reactive Systems, pp. 1161-176. Academic Press, New York, 1980.

[2] B.P. Ayati, G.F. Webb, A.R.A. Anderson. Computational methods and results for structured
multiscale models of tumor invasion. Multiscale Modeling & Simulation, 5 (2006), 1-20.

[3] R.D. Benguria, M.C. Depassier. Speed of fronts of the reaction-diffusion equation. Phys. Rev.
Lett., 77 (1996), 1171-1173.

74



J.A. Sherratt Form of Smooth-Front Waves
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