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We develop the theory of generalized Weierstrass σ- and ℘-functions defined on a general

trigonal curve of genus three. In particular, we give a list of the associated partial

differential equations satisfied by the ℘-functions, a proof that the coefficients of the

power series expansion of the σ-function are polynomials of coefficients of the defining

equation of the curve, and the derivation of two addition formulae.

1 Introduction

Constructive theories of Abelian and modular functions associated with algebraic

curves have seen an upsurge of interest in recent times. These classical functions have

been of crucial importance in mathematics since their definition at the hands of Abel,
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Jacobi, Poincaré and Riemann, but their relevance in physics and applied mathematics

has greatly developed over the past three decades. Algebraic curves are here intended as

Riemann surfaces, unless specified to be singular.

The study of the simplest hyperelliptic curves, namely curves of genus two,

goes back to the beginning of the 20th century, and these are treated in much detail

in advanced textbooks, see for example Baker (1907) [4] and more recently Cassels and

Flynn (1996) [12]. Not so much is known about the simplest trigonal curves, which have

genus three. The study of modular functions of these curves was originated by Picard,

and reprised recently by Shiga [27] and his school. In this article we study Abelian

functions associated with the general non-singular (3, 4)-curve. This is an (n,m)-curve

in the sense of Burchnall–Chaundy [11]

Our work is based on the realization of Abelian functions as logarithmic deriva-

tives of the multi-dimensional σ-function. This approach is due to Weierstrass and

Klein and was developed by Baker [1]; for recent developments of the theory of multi-

dimensional σ-functions, see Grant [19],Buchstaber, Enolskii, and Leykin [9],Buchstaber

and Leykin [7, 8], Eilbeck, Enolskii and Previato [17], Baldwin and Gibbons [5], and Ônishi

and Matsutani [26, 25] among others.

We shall adopt as a template the Weierstrass theory of elliptic functions, trying

to extend as far as possible these results to the case of the trigonal genus-three curve.

Let σ(u) and ℘(u) be the standard functions in Weierstrass elliptic function theory. They

satisfy the well-known formulae

℘(u) = −
d2

du2 log σ(u), (℘ ′)2
= 4℘3

− g2℘ − g3, ℘ ′′
= 6℘2

−
1
2g2 (1.1)

and the addition formula, which is a basic formula of the theory

−
σ(u + v)σ(u − v)

σ(u)2σ(v)2
= ℘(u) − ℘(v). (1.2)

We present here two additional formulae (Theorems 9.1 and 10.1). The first of

these is for the general trigonal curve of degree four, whereas the second is restricted to

a “purely trigonal” curve of degree four (see Equation (3.1)). The first main Theorem 9.1

is the natural generalization of Equation (1.2). The authors realized the existence of the

formula of the second main Theorem 10.1 from [25]. However we were not able to use that

article to establish our result, instead working from results by Cho and Nakayashiki [13],

Grant’s paper [19], p. 100, (1.6), or a calculation using [10]. The crucial part is to identify

the coefficients of the right hand sides of these two formulae. To calculate these, we used
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a power-series expansion of the σ-function, stimulated by the works of Buchstaber and

Leykin [7] for hyperelliptic case and of Baldwin and Gibbons [5] for a purely trigonal

curve of genus four.

The σ-functional realization of Abelian functions of trigonal curve of arbitrary

genus g was previously developed in [10] and [16]. Using these results in the case of

g = 3 we present explicit formulae for six canonical meromorphic differentials and

the symmetric bi-differential which allow us to derive a set of relations for trigonal ℘-

functions, generalizing the above relations for the Weierstrass ℘-function.

Note that we have recently developed a parallel, but more limited theory, for

purely trigonal curves of genus four in [6], a paper which draws heavily on the re-

sults presented here. It is perhaps useful to compare and contrast these two cases. As

demonstrated in Schilling’s generalization of the Neumann system [28], there are basi-

cally two cases of trigonal cyclic covers, the order of a related linear differential oper-

ator that commutes with the given one of order three being congruent to 1 or 2 mod-

ulo 3, respectively. In each case, the action variables of the integrable system param-

eterize a family of curves of the same type, thus the family of curves in the (3, 4)-case

cannot be obtained as a limit of that in the (3, 5)-case, as they have different dimen-

sions. In the present article, we develop the method and prove the addition formulae,

together with the characterizing differential equations, for the former case, in that the

highest power of x appearing in the equation of the curve is 4 (≡ 1 modulo 3); this

corresponds to the “base” case of the Boussinesq equation, the smallest-genus spectral

curve of an algebro-geometric third-order operator. In [6], the case where the highest

power of x appearing in the equation of the curve is 5 (≡ 2 modulo 3) is addressed.

The differences in the two cases manifest themselves in a number of ways, for exam-

ple the parity of the σ-function is different in the two cases, and the two-term ad-

dition formulae are antisymmetric in the genus 3 case and symmetric in the genus 4

case. Also the results are given for the general (3, 4)-curve here, whereas only for the

purely trigonal (3, 5)-case in [6]. It may be possible with some work to relate the (3, 5)-

case to the (3, 4)-case, but this would not be straightforward and we have not yet at-

tempted this.

Our study is far from complete, and a number of questions still remain. One

of the first problems still to be considered should be the explicit recursive construc-

tion of the σ-series generalizing the one given by Weierstrass; for a hyperelliptic curve

of genus two, this result was found by Buchstaber and Leykin [7], who also devised a
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procedure to derive such recursions for the whole family of (n,m)-curves [7], [8]. An-

other problem is the deeper understanding of the algebraic structure of the addition

theorems developed here, in order to generalize results to higher genera. As a pat-

tern one can consider the addition formula of [9] for hyperelliptic σ-functions of ar-

bitrary genera written in terms of certain Pfaffians. Also, the description of Jacobi

and Kummer varieties as projective varieties, whose coordinates are given in terms

of (derivatives of) trigonal ℘-functions, is far from complete. We hope the results

we present to be the first steps towards a general theory of trigonal curves of arbi-

trary genus, as well as a tool in the study of projective varieties which are images of

Jacobians.

The article is organized as follows. We first discuss the basic properties of

the general (3, 4)-curve in Section 2, and define a restricted version of this curve, the

“purely trigonal case”, in Section 3. In Section 4, we introduce the σ-function for the

general curve, and in Section 5 the Abelian functions ℘ij and their derivatives. Section

6 of the article is devoted to the various differential relations satisfied by these Abelian

functions, and the series expansion of the σ-function is discussed in Section 7, in which

the result (Theorem 7.1) is new, is proved quite constructively, and is the key for the rest

of the article. Let Θ[2] be the standard theta divisor, namely the image of the Abelian map

of the symmetric square of the curve that we consider, in its Jacobian variety J. The basis

of the spaces Γ(J,O(nΘ[2])) of functions on J whose poles are at most of order n along

Θ[2] are discussed in Section 8, as a preliminary to the two main addition Theorems in

Sections 9 and 10, respectively. The first addition theorem is a two-term relation for the

general (3, 4)-curve, and the second a three-term relation for the “purely trigonal” (3, 4)-

curve. Appendix A has some formulae for the fundamental bi-differential, and Appendix

B has a list of quadratic 3-index relations for the “purely trigonal” case only, as the full

relations would require too much space. The web site [15] contains more details of the

relations omitted through lack of space.

While Sections 2 and 3 overlap somewhat with material in [25], we believe that

the results are useful to make the present article reasonably self-contained.

2 Trigonal Curves of Genus Three

Let C be the curve defined by f (x, y) = 0, where

f (x, y) = y3
+ (µ1x + µ4)y2

+ (µ2x2
+ µ5x + µ8)y

− (x4
+ µ3x3

+ µ6x2
+ µ9x + µ12), (µj are constants),

(2.1)
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with the unique point ∞ at infinity. This curve is of genus 3, if it is nonsingular. We

consider the set of 1-forms

ω1 =
dx

fy(x, y)
, ω2 =

xdx
fy(x, y)

, ω3 =
ydx

fy(x, y)
, (2.2)

where fy(x, y) =
∂
∂y f (x, y). This is a basis of the space of differentials of the first kind on

C. We denote the vector consisting of the forms (2.2) by

ω = (ω1,ω2,ω3). (2.3)

We know, by the general theory, that for three variable points (x1, y1), (x2, y2), and (x3, y3)

on C, the sum of integrals from ∞ to these three points

u = (u1,u2,u3)

=

∫ (x1,y1)

∞

ω +

∫ (x2,y2)

∞

ω +

∫ (x3,y3)

∞

ω
(2.4)

fills the whole space C3. We denote the points in C3 by u and v etc., and their natural co-

ordinates in C3 by the subscripts (u1,u2,u3), (v1, v2, v3). We denote the lattice generated

by the integrals of the vector (2.3) along any closed paths on C by Λ. We denote the man-

ifold C3/Λ, by J, the Jacobian variety over C of C. We denote by κ the natural map to the

quotient group,

κ : C3 → C3/Λ = J. (2.5)

We have Λ = κ−1
(
(0, 0, 0)

)
. We define for k = 1, 2, 3, . . . , the map

ι : Symk(C) → J,

(P1, · · · , Pk) �→
(∫ P1

∞

ω + · · · +
∫ Pk

∞

ω

)
mod Λ,

(2.6)

and denote its image by W [k]. (W [k] = J for k ≥ 3 by the Abel–Jacobi theorem.) Let

[−1](u1,u2,u3) = (−u1,−u2,−u3), (2.7)

and

Θ[k]
:= W [k] ∪ [−1]W [k]. (2.8)
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We call this Θ[k] the k-th standard theta subset. In particular, if k = 1, then (2.6) gives an

embedding of C:

ι :C → J

P �→
∫ P

∞

ω mod Λ.
(2.9)

We note that

Θ[2]
= W [2], Θ[1] �= W [1], (2.10)

differing from the genus-3 hyperelliptic case in a suitable normalization [9]. If u =

(u1,u2,u3) varies on the inverse image κ−1ι(C) = κ−1(W [1]) of the embedded curve, we

can take u3 as a local parameter at the origin (0, 0, 0). Then we have (see [25], e.g.) Laurent

expansions with respect to u3 as follows:

u1 =
1
5 u3

5
+ · · · , u2 =

1
2 u3

2
+ · · · (2.11)

and

x(u) =
1

u3
3

+ · · · , y(u) =
1

u3
4

+ · · · . (2.12)

We introduce a weight for several variables as follows:

DEFINITION 2.1. We define a weight for constants and variables appearing in our rela-

tions as follows. The weights of the variables u1, u2, u3 for every u = (u1,u2,u3) of

W [k], (k = 1, 2, . . . ) are 5, 2, 1, respectively, and the weight of each coefficient µj in (2.1)

is −j, the weights of x and y of each point (x, y) of C are −3 and −4, respectively. So, the

weights of the variables are nothing but the order of zero at ∞, while the weight assigned

to the coefficients is a device to render f (x, y) homogeneous. This is the reason why µ7,

µ10, µ11 are absent.

We remark that the weights of the variables uk are precisely the Weierstrass gap

numbers of the Weierstrass gap sequence at ∞, whilst the weights of monomials of x(u)

and y(u) correspond to the Weierstrass nongap numbers in the sequence. In particular,

in the case considered the Weierstrass gap sequence is of the form

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .

where orders of existing functions of the form xpyq, p, q ∈ N ∪ {0} are overlined.
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The definition above is compatible, for instance, with the Laurent expansion of

x(u) and y(u) with respect to u3, etc. for u ∈ W [1]. Moreover, all the equalities in this

article are homogeneous with respect to this weight.

In the next section, we use the discriminant of C. Heuristically, the discriminant

D of C is defined as (one of) the simplest polynomial(s) in the µj’s such that D = 0 if

and only if C has a singular point. Here we are regarding C as a family of curves over Z.

While no concrete expression of the discriminant is necessary for the main results in this

article, we put forward a conjecture based on the results of experimentation on special

cases of C using computer algebra.

CONJECTURE 2.2. Let

R1 = rsltx
(
rslty

(
f (x, y), fx(x, y)

)
, rslty

(
f (x, y), fy(x, y)

))
,

R2 = rslty
(
rsltx

(
f (x, y), fx(x, y)

)
, rsltx

(
f (x, y), fy(x, y)

))
,

R3 = gcd(R1,R2),

(2.13)

where rsltz represents the resultant, namely, the determinant of the Sylvester matrix

with respect to the variable z. Then R3 is of weight 144 and a perfect square in the ring

Z[µ1,µ4,µ2,µ5,µ8,µ3,µ6,µ9,µ12]. �

Unfortunately checking this condition directly is a computing task presenting

considerable difficulties due to the size of the intermediate expressions involved. We

leave this as a conjecture and remark only that work on a full calculation is continuing.

This result is not crucial to this paper, but we will adopt it as a working hypothesis (see

Remark 7.2). To continue, we define here the discriminant D of C by a square root of R3:

D =
√

R3. (2.14)

We comment on the choice of this root in Remark 7.2. If the conjecture is true, D is of

weight 72. For the convenience of the reader we give R3

R3 =
(
256µ12

3
− 27µ12

2µ3
4

− 128µ12
2µ6

2
+ 144µ12

2µ6µ3
2

− 192µ12
2µ9µ3 + 16µ12µ6

4

− 80µ12µ9µ6
2µ3 − 4µ12µ3

2µ6
3

+ 18µ12µ9µ3
3µ6 + 144µ12µ9

2µ6 − 6µ12µ9
2µ3

2

− 4µ9
2µ6

3
− 4µ9

3µ3
3

+ µ9
2µ3

2µ6
2

+ 18µ9
3µ6µ3 − 27µ9

4
)6

for the special case of µ1 = µ2 = µ4 = µ5 = µ8 = 0 (see Section 3).
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DEFINITION 2.3. The 2-form Ω((x, y), (z,w)) on C × C is called fundamental 2-from of the

second kind or (fundamental second kind bi-differential) if it is symmetric, namely,

Ω((x, y), (z,w)) = Ω((z,w), (x, y)), (2.15)

it has its only pole (of second order) along the diagonal of C × C, and in the vicinity of

each point (x, y) it is expanded in power series as

Ω((x, y), (z,w)) =

(
1

(ξ − ξ ′)2
+ O(1)

)
dξdξ ′ (as (x, y) → (z,w)), (2.16)

where ξ and ξ ′ are local coordinates of points (x, y) and (z,w).

We shall look for a realization of Ω((x, y), (z,w)) in the form

Ω((x, y), (z,w)) =
F((x, y), (z,w))dxdz

(x − z)2fy(x, y)fw(z,w)
, (2.17)

where F((x, y), (z,w)) is a polynomial in its variables.

LEMMA 2.4 (Fundamental 2-form of the second kind). Let Σ
(
(x, y), (z,w)

)
be the mero-

morphic function on C × C,

Σ
(
(x, y), (z,w)

)
=

1
(x − z)fy(x, y)

3∑
k=1

y3−k

[
f (Z,W)
W3−k+1

]
W

∣∣∣∣
(Z,W)=(z,w)

, (2.18)

where [ ]W means removing the terms of negative powers with respect to W. Then there

exist differentials ηj = ηj(x, y) (j = 1, 2, 3) of the second kind that have their only pole at

∞ such that the fundamental 2-form of the second kind is given as1,

Ω((x, y), (z,w)) =

(
d

dx
Σ((z,w), (x, y)) +

3∑
k=1

ωk(z,w)
dz

ηk(x, y)
dx

)
dxdz. (2.19)

The set of differentials {η1, η2, η3} is determined modulo the space spanned by the ωjs of

(2.2). �

PROOF. The 2-form

d
dz

Σ
(
(x, y), (z,w)

)
dxdz (2.20)

1Since x and y are related, we do not use ∂.
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satisfies the condition on the poles as a function of (x, y), indeed one can check that (2.20)

has only a second order pole at (x, y) = (z,w) whenever (z,w) is an ordinary point or

a Weierstrass point; at infinity the expansion (2.12) should be used. However, the form

(2.20) has unwanted poles at infinity as a form in the (z,w)-variables. To restore the

symmetry given in (2.15) we complement (2.20) by the second term to obtain (2.19) with

polynomials ηj(x, y) which should be found from (2.15). That results in a system of linear

equations for coefficients of ηj(x, y) which is always solvable. As a result, the polynomials

ηi(x, y) as well as F((x, y), (z,w)) are obtained explicitly. �

REMARK 2.5. The 1-form

Π
(z2,w2)
(z1,w1)(x, y) = Σ((x, y), (z1,w1))dx − Σ((x, y), (z2,w2))dx

is the differential of the third kind, with first order poles at points (x, y) = (z1,w1) and

(x, y) = (z2,w2), and residues +1 and −1 correspondingly.

REMARK 2.6. The realization of the fundamental 2-form in terms of the Schottky–Klein

prime-form and θ-functions is given in [1], no. 272, and the theory based on the

θ-functional representation is developed in [18]. Here we deal with an equivalent alge-

braic representation of the fundamental 2-form which goes back to Klein and exhibit

an algebraic expression for it, that is also mentioned by Fay in [18] where the prime-

form was defined. The above derivation of the fundamental 2-form is done in [1], around

page 194, and it was reconsidered in [16] for a large family of algebraic curves. The case

of a trigonal curve of genus four was developed in [5], pp. 3617–3618.

It is easily seen that the ηj above is written as

ηj(x, y) =
hj(x, y)
fy(x, y)

dx, j = 1, 2, 3, (2.21)

where hj(x, y) ∈ Q[µ1,µ2,µ4,µ5,µ8,µ3,µ6,µ9,µ12][x, y], and hj is of homogeneous weight.

The differentials ηj are defined modulo the space of holomorphic differentials

with the same weight, but it is possible to choose the standard ηj s uniquely by requiring

that for each j = 1, 2, 3 the polynomial hj(x, y) do not contain monomials corresponding

to nongaps with bigger j. Moreover there exist precisely 2g = 6 monomials defining

standard differentials, for more details see [8], Chapter 4.
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In particular, straightforward calculations lead to the following expressions

h3(x, y) = −x2,

h2(x, y) = −2xy + µ1x2,

h1(x, y) = −(5x2
+ (µ1µ2 − 3µ3)x + µ2µ4 + µ6)y + µ2y2

+ 3µ1x3

−(µ2
2

+ 2µ3µ1 − 2µ4)x2
− (µ5µ2 + µ6µ1 + µ3µ4)x +

3
4µ1fx(x, y)

−
(

1
3µ2 −

1
4µ1

2
)

fy. (2.22)

The orders of monomials defining standard differentials are printed in bold:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . ,

these can be written as 3i + 4j, 0 ≤ i ≤ 2, 0 ≤ j ≤ 1. We remark that the last two terms

in the definition of h1(x, y) are chosen to provide the standard differentials described

above. The polynomial F
(
(x, y), (z,w)

)
in (2.17) is of homogeneous weight (weight −8),

and is given explicitly in Appendix A.

3 Purely Trigonal Curve of Degree Four

In Section 10 of this article, we restrict ourselves to the curve

C : y3
= x4

+ µ3x3
+ µ6x2

+ µ9x + µ12 (3.1)

specialized from (2.1). We also restrict results given in Appendix B to this case to save

space. This curve is called a purely trigonal curve of degree four. Equivalently we can

represent the curve (2.1) in the form

C : y3
=

4∏
k=1

(x − ak), (3.2)

and evaluate the discriminant D according to (2.14) as

D =
∏

1≤i<j≤4
(ai − aj)4. (3.3)

The curve C is smooth if and only if ai �= aj for all i, j = 1, . . . 4. While we assume this to

be the case, results in the singular cases are obtained by suitable limiting process.
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For the curve (3.1), the basis (2.2) of differential forms of first kind and the

function Σ in (2.18) can be written explicitly as

ω1 =
dx
3y2

, ω2 =
xdx
3y2

, ω3 =
ydx
3y2

=
dx
3y

, (3.4)

and

Σ
(
(x, y), (z,w)

)
=

y2 + yw + w2

3(x − z)y2
, (3.5)

respectively. The function σ(u) is defined by using these. Let

ζ = e2π
√

−1/3.

The curve C has an automorphism (x, y) �→ (x, ζy), and for u = (u1,u2,u3) ∈ κ−1ι(C), ζ j

acts by

[ζ j]u = (ζ ju1, ζ
ju2, ζ

2ju3) =

∫ (x, ζjy)

∞

(du1,du2,du3). (3.6)

This action naturally induces an action on κ−1Θ[k], (k = 2, 3, . . . ), implying that the set

Θ[k] is stable under the action of [ζ j].

4 The σ-function

We construct here the σ-function

σ(u) = σ(u1,u2,u3) (4.1)

associated with C for u ∈ C3 (see also [9], Chapter 1). We choose closed paths

αi,βj (1 � i, j � 3) (4.2)

on C which generate H1(C,Z) such that their intersection numbers are αi · αj = βi · βj = 0,

αi · βj = δij.

Define the period matrices by

[
ω ′ ω ′′]

=

[∫
αi

ωj

∫
βi

ωj

]
i, j=1,2,3

,
[
η ′ η ′′]

=

[∫
αi

ηj

∫
βi

ηj

]
i, j=1,2,3

. (4.3)
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We can combine these two matrices into

M =

[
ω ′ ω ′′

η ′ η ′′

]
. (4.4)

Then M satisfies

M

[
−13

13

]
tM = 2π

√
−1

[
−13

13

]
. (4.5)

This is the generalized Legendre relation (see (1.14) on p. 11 of [9]). In particular, ω ′−1ω ′′

is a symmetric matrix. We know also that

Im (ω ′−1
ω ′′) is positive definite. (4.6)

By looking at (2.2), we see the canonical divisor class of C is given by 4∞ and we are

taking ∞ as the base point of the Abel map (2.6) the Riemann constant is an element of(
1
2Z

)6
(see [22], Corollary 3.11, p. 166). Let

δ :=

[
δ ′

δ ′′

]
∈

(
1
2Z

)6
(4.7)

be the theta characteristic which gives the Riemann constant with respect to the base

point ∞ and to the period matrix [ω ′ ω ′′]. Note that we use δ ′, δ ′′ as well as n in (4.8) as

columns, to keep the notation a bit simpler. We define

σ(u) = σ(u; M) = σ(u1,u2,u3; M)

= c exp(− 1
2uη ′ω ′−1 tu)ϑ[δ] (ω ′−1 tu; ω ′−1

ω ′′)

= c exp(− 1
2uη ′ω ′−1 tu)

∑
n∈Z3

× exp
[
2πi

{
1
2

t(n + δ ′)ω ′−1
ω ′′(n + δ ′) +

t(n + δ ′)(ω ′−1 tu + δ ′′)
}]
, (4.8)

where

c =
1

8
√

D

(
π3

|ω ′|

)1/2

(4.9)

with D from (2.14). Here the choice of a root of (4.9) is explained in the Remark 7.2 below.

The series (4.8) converges because of (4.6).
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In what follows, for a given u ∈ C3, we denote by u ′ and u ′′ the unique elements

in R3 such that

u = u ′ω ′
+ u ′′ω ′′. (4.10)

Then for u, v ∈ C3, and � (= � ′ω ′ + � ′′ω ′′) ∈ Λ, we define

L(u, v) := u(η ′tv ′
+ η ′′tv ′′),

χ(�) := exp
[
π
√

−1
(
2(� ′δ ′′

− � ′′δ ′) + � ′t� ′′
)]

(∈ {1, −1}). (4.11)

In this situation the most important properties of σ(u; M) are as follows:

LEMMA 4.1. The function σ(u) is an entire function. For all u ∈ C3, � ∈ Λ and γ ∈
Sp(6,Z), we have

σ(u + �; M) = χ(�)σ(u; M) exp L(u +
1
2 �, �), (4.12)

σ(u; γM) = σ(u; M), (4.13)

u �→ σ(u; M) has zeroes of order 1 along Θ[2], (4.14)

σ(u; M) = 0 ⇐⇒ u ∈ Θ[2]. (4.15)
�

PROOF. The function σ is clearly entire from its definition and from the known property

of theta series. The formula (4.12) is a special case of the equation from [1] (p. 286 in

the 1995 reprint, �.22). The statement (4.13) is easily shown by using the definition of

σ(u) since γ corresponds to changing the choice of the paths of integration given in (4.3).

The statements (4.14) and (4.15) are explained in [1], (p. 252). These facts are partially

described also in [9], (p. 12, Theorem 1.1 and p. 15). �

LEMMA 4.2. The function σ(u) is either odd or even, i.e.

σ([−1]u) = −σ(u) or σ([−1]u) = σ(u). (4.16)
�

PROOF. We fix a matrix M satisfying (4.5) and (4.6). Therefore the bilinear form L( , )

is fixed. Then the space of the solutions of (4.12) is one dimensional over C, because

the Pfaffian of the Riemann form attached to L( , ) is 1 (see [24], Lemma 3.1.2 and

[20], p. 93, Theorem 3.1). Hence, such nontrivial solutions automatically satisfy (4.13)

and (4.15); while (4.14) requires the constant factor to be the same, this is guaranteed
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by the definition of σ and the fact that (4.9) is independent of γ. In this sense, (4.12)

characterizes the function σ(u) up to a constant, which depends only on the µjs. Now

considering the loop integrals for ω in the reverse direction, we see that

[−1]Λ = Λ.

Hence u �→ σ([−1]u) satisfies (4.12) also. So there exists a constant K such that

σ([−1]u) = K σ(u).

Since [−1]2 is trivial, it must be K2 = 1. �

REMARK 4.3. In fact σ(u) is an odd function as we see in the Theorem 7.1.

We need the power series expansion of σ(u) with respect to u1, u2, u3. To get

the expansion, first of all, we need to investigate Abelian functions given by logarithmic

(higher) derivatives of σ(u). We shall examine this in the next Section.

5 Standard Abelian Functions

DEFINITION 5.1. A meromorphic function u �→ P(u) on C3 is called a standard Abelian

function if it is holomorphic outside κ−1(Θ[2]) and is multi-periodic, namely, if it satisfies

P(u + ω ′n + ω ′′m) = P(u) (5.1)

for all integer vectors n,m ∈ Z and all u �∈ κ−1(Θ[2]).

To realize the standard Abelian functions in terms of the σ-function, we first let

∆i =
∂

∂ui
−

∂
∂vi

(5.2)

for u = (u1,u2,u3) and v = (v1, v2, v3). This operator occurs in what is now known as

Hirota’s bilinear operator, but in fact was introduced much earlier in the PDE case by

Baker ([3], p. 151, [4], p. 49) (see also [14]). We define fundamental Abelian functions on J

by

℘ij(u) = −
1

2σ(u)2 ∆i∆j σ(u)σ(v)|v=u = −
∂2

∂ui∂uj
log σ(u). (5.3)
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It follows from (4.16) that these functions are even. For the benefit of the reader famil-

iar with the genus one case, we should point out that the Weierstrass function ℘(u) de-

scribed in Equation (1.1) would be written as ℘11(u) in this notation. It is clear that they

belong to Γ(J, 2Θ[2]). Moreover, we define

℘ijk(u) =
∂

∂uk
℘ij(u), ℘ijk�(u) =

∂
∂u�

℘ijk(u). (5.4)

The 3-index ℘-functions are odd and 4-index ℘ are even by Lemma 4.2. The functions (5.3)

and (5.4) are standard Abelian functions from Lemma 4.1. Following (and generalizing)

Baker ([3], p. 151, [4], pp. 49–50) (see also [10], pp. 18–19, or [13]), we define

Qijk�(u) = −
1

2σ(u)2 ∆i∆j∆k∆� σ(u)σ(v)|v=u

= ℘ijk�(u) − 2(℘ij℘k� + ℘ik℘j� + ℘i�℘jk)(u),
(5.5)

which specializes to

Qijkk = ℘ijkk − 2℘ij℘kk − 4℘ik℘jk, Qiikk = ℘iikk − 2℘ii℘kk − 4℘ik
2,

Qikkk = ℘ikkk − 6℘ik℘kk, Qkkkk = ℘kkkk − 6℘kk
2.

A short calculation shows that Qijk� belongs in Γ(J,O(2Θ[2])), whereas ℘ijk� belongs in

Γ(J,O(4Θ[2])). In particular Q1333 plays a key role in what follows.

Note that although the subscripts in ℘ijk� do denote differentiation, the sub-

scripts in Qijk� do not denote direct differentiation, and the latter notation is intro-

duced for convenience only. This is important to bear in mind when we use cross-

differentiation, for example the ℘ijk� satisfy

∂
∂um

℘ijk�(u) =
∂

∂u�
℘ijkm(u),

whereas the Qijk� do not. The following useful formula (5.6) involving fundamental

Kleinian functions, for the case of the general curve (2.1), was derived in [10]. It would

be helpful for the reader to see [2], p. 377 for the case of hyperelliptic curves. The formula

(5.6) below is proved similarly.

PROPOSITION 5.2. Let u ∈ C3 and (x1, y1), (x2, y2), (x3, y3) be Abelian preimages of u, i.e.

u =

∫ (x1,y1)

∞

ω +

∫ (x2,y2)

∞

ω +

∫ (x3,y3)

∞

ω
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with appropriate paths of the integrals. Let (x, y) be an arbitrary point on the curve C.

Then, for each k = 1, 2, 3, the following formula holds

[1 x y]

[
℘ij

( ∫ (x,y)

∞

ω − u

)]


1

xk

yk


 =

F
(
(x, y), (xk, yk)

)
(x − xk)2

, (5.6)

where F
(
(x, y), (z,w)

)
is a polynomial defined by (2.17) or (A.3). �

PROOF. Using (4.14) and relations of differentials of the second kind on C with ones of the

third kind (see [1], p. 22, �.15 and p. 22, �.11), we have an equation connecting the theta

series in (4.8) and differentials of the third kind (see [1], p. 275, �.−11, for example). Then

this equation is modified into a form which involves σ(u) and the 2-form Ω((x, y), (z,w))

of (2.19). Finally, after taking logarithm of the modified one, applying ∂2

∂ui∂uj
to it gives the

desired equation. �

PROPOSITION 5.3. Suppose the (xi, yi)s and u are related as in Proposition 5.2. Let (x, y)

be any one of (xi, yi)s. Then we have infinitely many relations, of homogeneous weight,

linear in

℘ij(u), ℘ijk(u), ℘ijk�(u), · · · (i, j, k = 1, 2, 3),

and whose coefficients are polynomials of x, y and µjs. We list the first three of them of

lower weights as follows:

℘33(u)y + ℘23(u)x + ℘13(u) = x2, (5.7)(
℘23(u) +

1
3µ1℘33(u) − ℘333(u)

)
y +

(
℘22(u) − ℘233(u)

+
1
3µ1℘23(u)

)
x +

1
3µ1℘13(u) + ℘12(u) − ℘133(u) = 2xy −

2
3µ1x2, (5.8)

− 3y2
+

(
1
3℘33µ2 +

1
2℘3333 −

1
2µ1℘333 +

1
9µ1

2℘33 + 2µ1x −
3
2℘233 + 2µ4

)
y

+
(

2
3µ2 −

1
9µ1

2
)

x2
+ (− 1

2µ1℘233 + µ5 +
1
2℘2333 +

1
3℘23µ2 +

1
9µ1

2℘23 −
3
2℘223)x

+
1
2℘1333 +

1
3µ2℘13 + µ8 +

1
9µ1

2℘13 −
3
2℘123 −

1
2µ1℘133 = 0. (5.9)

More equations of this type are available in [15]. �

PROOF. These relations are derived from (5.6) by expanding it with respect to a local

parameter t = x−1/3, in the vicinity of the point at infinity, and comparing the principal

parts of the poles on both sides of the relation (5.6), we find the solution of the Jacobi

inversion problem. �
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REMARK 5.4.

(1) In the case of trigonal curves, a formula of this type was first given explicitly

for a particular case of the curve (2.1) in [16].

(2) We use in the proof of Lemma 6.1 below the first seven relations in Proposi-

tion (5.3). Namely, those of weight from −6 to −12.

The first two relations in 5.3 give solution of the Jacobi inversion problem (see

also [10]):

COROLLARY 5.5. Suppose the (xi, yi)s and u are related as in Proposition 5.2. The solution

of the Jacobi inversion problem is given by (x1, y1), (x2, y2),and (x3, y3), where these

points are the set of zeros of the equations (5.7), (5.8) for (x, y). �

We remark that the right hand sides of equations (5.7), (5.8) are related to

the polynomials h3(z,w) and h2(z,w) defining the canonical meromorphic differentials

η3(z,w) and η2(z,w). Further, the equation (5.8) is directly related to the determinant of

the matrices constructed in [25], using the algebraic approach developed in [21].

If we take the resultant of (5.7), (5.8) with respect to y, we find a cubic equation

in x which can be used to substitute for x3 in terms of lower powers of x

x3
=

1
2 (3℘23 + µ1℘33 − ℘333) x2

+
1
2

(
℘33℘22 + 2℘13 + ℘23℘333 − ℘33℘233 − ℘23

2
)

x

+
1
2℘33℘12 −

1
2℘33℘133 −

1
2℘13℘23 +

1
2℘13℘333.

(5.10)

If we now take the resultant of (5.7), (5.9) with respect to y, we get a quartic in x which

can be reduced to a quadratic by repeated use of (5.10). This quadratic in x is not further

reducible. A quadratic equation in x has at most only two solutions and u has three free

variables. Hence each of the coefficients of 1, x, x2 of the quadratic must be identically

zero. Furthermore, each coefficient can be split into two parts which are even and odd

under the reflection (2.7), and each of these parts must vanish. So each term of order

higher than two in the expansion of (5.6) will give up to six separate equations involving

the ℘ functions. The simplest two arising from the resultant of (5.7), (5.9) are

℘222 − 2℘33℘233 + 2℘23℘333 − µ2℘233 + µ3℘333 + µ1℘223 = 0, (5.11)

℘23℘233 − 2℘33℘223 + ℘333℘22 + 2℘133 + µ1(℘23℘333 − ℘33℘233) = 0, (5.12)

where ℘ij = ℘ij(u) and ℘ijk = ℘ijk(u).
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6 Equations Satisfied by the Abelian Functions for the General Trigonal Case

We can use the expansion of (5.6) as described in the discussion following Corollary 5.5

to derive various equations which the Abelian functions defined by (5.4) and (5.5) must

satisfy. We consider first the 4-index equations, the generalizations of ℘ ′′ = 6℘2 −
1
2 g2 in

the cubic (genus 1) case.

LEMMA 6.1. The 4-index functions ℘ijk� associated with (3.1) satisfy the following

relations:

℘3333 = 6℘33
2

+ µ1
2℘33 − 3℘22 + 2µ1℘23 − 4µ2℘33 − 2µ4,

℘2333 = 6℘23℘33 + µ1
2℘23 + 3µ3℘33 − µ2℘23 − µ5 − µ1℘22,

℘2233 = 4℘23
2

+ 2℘33℘22 + µ1µ3℘33 − µ2℘22 + 2µ6 + 3µ3℘23 + µ1µ2℘23 + 4℘13,

℘2223 = 6℘22℘23 + 4µ1℘13 + µ1µ3℘23 + µ2µ3℘33 + 2µ3µ4 + µ2
2℘23 + 4µ4℘23 + 3µ3℘22

+ 2µ1µ6 + µ2µ5 − 2µ5℘33,

℘2222 = 6℘22
2

− 2µ2µ3℘23 + µ1µ2µ5 + 2µ1µ3µ4 + 24℘13℘33 + 4µ1
2℘13 − 4µ2℘13

− 4℘1333 + 4µ5℘23 + 2µ1
2µ6 − 2µ2µ6 + µ3µ5 − 3µ3

2℘33 + 12µ6℘33 + 4µ4℘22

+ µ2
2℘22 + 4µ1µ3℘22,

℘1233 = 4℘13℘23 + 2℘33℘12 − 2µ1℘33℘13 −
1
3µ1

3℘13 +
1
3µ1℘1333 +

1
3µ1

2℘12 + 3µ3℘13

+
1
3µ1µ8 +

4
3µ1µ2℘13 − µ2℘12 + µ9,

℘1223 = 4℘23℘12 + 2℘13℘22 − 2µ2℘33℘13 − 2µ8℘33 −
2
3µ8µ2 +

1
3µ2℘1333 + 3µ3℘12

+ 4µ4℘13 +
4
3µ2

2℘13 − 2℘11 −
1
3µ1

2µ2℘13 +
1
3µ1µ2℘12 + µ1µ3℘13,

℘1222 = 6℘22℘12 + 6µ9℘33 − µ3℘1333 + 4µ5℘13 + µ2
2℘12 − µ2µ9 + 4µ4℘12 − 2µ1℘11

+ 6µ3℘33℘13 − 3µ2µ3℘13 + µ1
2µ3℘13 + 3µ1µ3℘12 − µ1µ2µ8,

℘1133 = 4℘13
2

+ 2℘33℘11 − µ9℘23 + 2µ6℘13 + µ8℘22 − µ5℘12 +
2
3µ4℘1333 +

2
3µ4µ8

+ 2µ2µ8℘33 − 4µ4℘13℘33 +
2
3µ2µ4℘13 + µ1µ9℘33 − µ1µ8℘23 + µ1µ5℘13

−
2
3µ1

2µ4℘13 +
2
3µ1µ4℘12,

℘1123 = 4℘12℘13 + 2℘23℘11 + 2µ3µ4℘13 − µ3µ8℘33 − 2µ5℘13℘33 + µ2µ8℘23 +
4
3µ2µ5℘13

− µ9℘22 + 2µ6℘12 +
1
3µ5℘1333 +

1
3µ5µ8 + µ1µ9℘23 −

1
3µ1

2µ5℘13 +
1
3µ1µ5℘12,

℘1122 = 4℘12
2

+ 2℘11℘22 +
2
3µ1

2µ6℘13 +
4
3µ1µ6℘12 + µ3µ9℘33 + µ2µ9℘23 + 8µ12℘33

+ 2µ3µ4℘12−
2
3µ6℘1333 + 4µ8℘13 −

2
3µ6µ8 + 4µ6℘33℘13 − µ3µ8℘23 + µ3µ5℘13
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−
8
3µ2µ6℘13 + µ2µ8℘22 + µ2µ5℘12,

℘1113 = 6℘13℘11+6µ2µ8℘13−2µ2µ12℘33 − µ1
2µ8℘13 + 4µ1µ12℘23 + µ1µ8℘12 + µ5µ9℘33

+ µ5
2℘13−2µ4µ9℘23 + µ1µ9℘13 − 6µ8℘33℘13 − 2µ6µ8℘33 + µ8℘1333 − 4µ4µ12

+ 3µ9℘12 − 6µ12℘22 − µ5µ8℘23 + 4µ4µ6℘13,

℘1112 = 6℘12℘11 + 6µ3µ12℘33 + 3µ3µ8℘13 − 2µ6µ8℘23 − µ1µ8
2

+ 5µ2µ8℘12 + 4µ2µ12℘23

− 2µ1µ12℘22 + 4µ4µ6℘12 − µ5µ8℘22 + µ5
2℘12 + 4µ5µ12 − µ9℘1333 − 4µ1µ12µ4

+ µ1
2µ9℘13 + 3µ1µ9℘12 − 2µ4µ9℘22 + µ5µ9℘23 − 4µ2µ9℘13

+ 6µ9℘13℘33 − 3µ8µ9,

℘1111 = 6℘11
2

+ 4µ4µ9℘12 − 8µ4
2µ12 − 2µ2

2µ4µ12 − 3µ8
2℘22 − 2µ4µ8

2
+ µ5

2℘11

− 3µ9
2℘33−4µ12℘1333 + 24µ12℘33℘13+12µ5µ12℘23 + µ2µ4µ5µ9 − 6µ1µ3µ4µ12

+ µ1µ2µ5µ12+2µ6
2µ8 + 2µ2

2µ8
2
−µ5µ6µ9−2µ5µ9℘13+4µ4µ6℘11 + 4µ6µ8℘13

+ 8µ2µ8℘11 − 6µ2µ6µ12 − 12µ2µ12℘13 + 4µ1
2µ12℘13 + 2µ1

2µ6µ12 + 2µ8µ5℘12

− 6µ8µ9℘23 − 12µ4µ12℘22 + µ2µ5
2µ8 + 2µ1µ4µ6µ9 + µ1µ5µ6µ8 + 12µ6µ12℘33

+ 4µ1µ9℘11 + 2µ3µ4
2µ9 + 9µ3µ5µ12 − 2µ1µ3µ8

2
− 6µ3µ8µ9 + 2µ1µ2µ8µ9

+ µ3µ4µ5µ8 + 2µ2µ4µ6µ8 + 2µ2µ9
2. �

PROOF. Many of these relations follow from the sets of equations generated from the

first seven terms of the expansion of (5.6) as indicated in Proposition 5.3 by a similar

argument as that explained at the end of the previous Section. Others can be derived

making use of derivatives of the equations in Lemma 6.5, or products of these equations

with 3-index expressions ℘ijk, working in a self-consistent way from higher to lower

weights. The calculations are somewhat long and tedious and much facilitated by heavy

use of Maple. Full Maple worksheets are available on request from the authors. �

REMARK 6.2. The complete set of the 4-index relations for ℘-functions for genus three

was derived by Baker [3] in the hyperelliptic case only. As far as we know, the above

relations are new, and a comparison with Baker’s relations is of interest.

REMARK 6.3. With the use of (5.5), these equations can be written in a slightly more

compact form involving the Qijk� functions. For example, the sixth equation (for ℘2222)

becomes

Q2222 = −2µ2µ3℘23 + µ1µ2µ5 + 2µ1µ3µ4 + 4µ1
2℘13 − 4µ2℘13 − 4Q1333 + 4µ5℘23

+2µ1
2µ6 − 2µ2µ6+µ3µ5 − 3µ3

2℘33+12µ6℘33 + 4µ4℘22+µ2
2℘22+4µ1µ3℘22.
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The importance of this switch to the Q variables is that the equations become linear in

the Qijk� and the 2-index ℘ij. An alternative way of looking at this is that the equations in

Lemma 6.1 have only second-order poles in σ.

REMARK 6.4. The first relation in Lemma 6.1, after differentiating twice with respect to

u3, becomes the Boussinesq equation for the function ℘33 (see [10, 16]).

LEMMA 6.5. The 3-index functions ℘ijk associated with (3.1) satisfy a number of bilinear

relations (linear in both 3-index and 2-index functions). These have no analog in the

genus 1 case. For example, in decreasing weight, starting at −6 we have

−2 ℘33℘233 + 2 ℘23℘333 + µ3℘333 + µ2℘233 − µ1℘223 + ℘222 = 0, [−6]

−2 ℘33℘223 + µ1℘33℘233 + ℘23℘233 − µ1℘23℘333 + ℘333℘22 + 2 ℘133 = 0, [−7]

−2 ℘23℘223 + 4 ℘22℘233 + 4 µ1℘133 + µ3µ2℘333 + µ2
2℘233

+ 4 µ4℘233 − 2 µ5℘333 − 2 ℘33℘222 + µ2℘222 − µ1µ2℘223 − 4 ℘123 = 0, [−8]

3 µ1µ3℘223 − 3 µ2µ3℘233 − 24 ℘33℘133 + 24 ℘13℘333 + 12 ℘122 − 12 µ1℘123

+ 12 µ2℘133 − 3 µ3℘222 + 6 µ5℘233 − 3 µ3
2℘333 + 12 µ6℘333 − 6 ℘23℘222

+ 6 ℘22℘223 = 0, [−9]

2 ℘33℘123 − µ1℘33℘133 + µ1℘13℘333 + ℘23℘133 − ℘12℘333 − 2 ℘13℘233 = 0, [−10]

℘113 + ℘13℘223 − 2 µ4℘133 + ℘33℘122 − ℘22℘133 − ℘12℘233 + µ8℘333 − µ2℘133℘33

− µ1℘13℘233 + µ2℘13℘333 + µ1℘133℘23 = 0, [−11]

−℘112 − 3 µ9℘333 + ℘13℘222 − ℘12℘223 − 2 ℘22℘123 − 2 µ5℘133 + µ1℘113 + 2 ℘23℘122

− µ8℘233 − µ2℘13℘233 + 3 µ3℘33℘133 − 3 µ3℘13℘333 + µ2℘23℘133 = 0, [−12]

8 µ4℘133℘33 − 8 µ4℘13℘333 − 4 µ2µ4℘133 + 2 µ1µ9℘333 − 2 µ1µ8℘233 + 2 µ1µ5℘133

+ 4 µ1µ4℘123 + 4 µ8µ2℘333 + 3 µ3℘13℘233 − 3 µ3℘23℘133 − µ1℘112 + 3 ℘12℘222

+ 4 ℘11℘333 − 2 µ6℘133 − 3 ℘122℘22 − 4 µ4℘122 + µ9℘233 + 2 µ8℘223 − 8 ℘33℘113

+ 4 ℘13℘133 − 2 µ1
2℘113 + 2 µ2℘113 − 2 µ5℘123 = 0, [−13]

4 ℘123℘13 + 4 µ4℘23℘133 + µ3µ8℘333 − 2 µ5℘33℘133 + 2 µ5℘13℘333 + µ2µ8℘233 + µ8℘222

− 4 ℘12℘133 − 2 ℘23℘113 + 2 ℘33℘112 − 4 µ4℘13℘233 − µ1µ8℘223 = 0, [−14]

−µ9℘222 + µ1µ9℘223 + 4 ℘13℘122 + 2 ℘23℘112 − 2 ℘113℘22 − µ3µ9℘333 − µ2µ9℘233

+ 2 µ5℘23℘133 − 8 µ12℘333 − 4 µ8℘133 − 4 µ6℘13℘333 + 4 µ6℘33℘133 − 4 ℘12℘123

− 2 µ5℘13℘233 = 0, [−15]

where the number in brackets [ ] indicates the weight. �
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PROOF. We have already given the first two of these equations in the discussion following

Corollary 5.5. Some of the others follow in the same way from the expansion of (5.2).

Alternatively, some can be calculated directly by expressing the equations in Lemma 6.1

in terms of ℘ijk� and ℘mn functions, then using cross differentiation on suitably chosen

pairs of equations. For example the first relation above for ℘222 can be derived from

∂

∂u2
℘3333 −

∂

∂u3
℘2333 = 0. �

REMARK 6.6. For a fixed weight, these relations are not always unique, for example at

weight −11 we also have the relation

℘33℘122 + 2℘23℘123 + 3℘113 + µ2℘13℘333 − µ2℘33℘133

+ µ8℘333 − 2℘12℘233 − 2µ4℘133 − ℘13℘223 = 0.

These dual relations arise because in some cases the cross differentiation can be done

in two different ways. In deriving the results in this section, it is sometimes required

to make use of both bilinear relations at a given weight to provide enough equations to

solve for the unknowns. A full list of the known bilinear relations is given at [15].

LEMMA 6.7. The quadratic expressions in the 3-index functions ℘ijk associated with

(3.1) down to weight −23 can be expressed in terms of (at most cubic) relations in the

℘mn and ℘1333. For example we have the following five relations down to weight −8 :

℘333
2

= ℘33
2µ1

2
+ 2µ1℘23℘33 + ℘23

2
+ 4℘13 − 4℘33℘22 + 4℘33

3
− 4µ2℘33

2
− 4µ4℘33,

℘233℘333 = 2µ3℘33
2

+ 4℘33
2℘23 − µ1℘33℘22 − 2µ5℘33 − 2µ2℘33℘23 + µ1

2℘33℘23 − 2℘12

− ℘22℘23 + µ1℘23
2

+ 2µ1℘13,

℘133℘333 = −
1
3µ1℘33℘12 +

1
3µ1

2℘33℘13 −
4
3µ2℘33℘13 +

2
3℘33℘1333 −

4
3µ8℘33 + ℘23℘12

+ µ1℘13℘23 − 2℘13℘22,

℘223℘333 = 2µ1℘23℘22−2µ2℘33℘22+2µ1µ4℘23−µ1µ5℘33+2℘33
2℘22−2µ4℘22+2℘33℘23

2

+
4
3µ1

2℘13 −
4
3µ2℘13 −

4
3µ1℘12 −

4
3µ8 − 2℘22

2
+ µ1µ2℘33℘23 +

2
3℘1333

+ ℘23℘33µ3 + µ1µ3℘33
2

− µ2℘23
2

− µ5℘23,

℘233
2

= 4℘33℘23
2

+ 8℘13℘33 + 4µ3℘33℘23−2µ1℘23℘22+
4
3µ1

2℘13−
4
3µ2℘13+4µ6℘33

+ µ1
2℘23

2
−

4
3µ8 + ℘22

2
−

4
3℘1333 −

4
3µ1℘12.



22 J. C. Eilbeck et al.

The expressions at lower weight quickly become very lengthy. For the purely trigonal

case we give a list of the known quadratic expressions in the 3-index functions up to

weight −15 in Appendix B. The full list for the general (3, 4)-curve down to weight −23 is

available at [15]. �

PROOF. The relations can be found using a combination of three types of intermediate

relations. One type is from terms in the expansion of (5.6). Another is to multiply one

of the relations in Lemma 6.5 by another ℘ijk and substitute for previously calculated

℘ijk℘�mn relations of higher weight. Yet another is to take a derivative of one of the

relations in Lemma 6.5 above and to substitute the known linear 4-index ℘ijk� and

previously calculated ℘ijk℘�mn relations. Again, we work in a self-consistent way from

higher to lower weights. The strategy for all the results in this section is to proceed down

one weight at a time and to derive all the three types of relations (4-index ℘ijk�, bilinear 2-

and 3-index, and quadratic 3-index) at a given weight before moving down to the next. An

extra complication is that at certain weights some of the intermediate calculations can

involve quartic terms in the ℘mn and ℘1333. It is always possible to find enough relations

to eliminate the quartic term up to weight −23. �

REMARK 6.8.

(1) These relations are the generalizations of the familiar relation (℘ ′)2 = 4℘3 −

g2℘ − g3 in the genus 1 theory.

(2) For equations of weight below −23, we have not been able to find cubic

expressions for the ℘ijk℘�mn terms. We believe it should be possible to

explain this using the results of Cho and Nakayashuiki [13], and we are

currently investigating this possibility.

(3) The calculations in this section make no use of the expansion of the σ-

function, which is given in the next section.

7 Expansion of the σ-Function

This section is devoted to show that the coefficient of the power series expansion of σ(u)

is a polynomial in µjs.

In the Weierstrass formulation of the theory of elliptic functions, the σ-function

is defined as the power series expansion in the Abelian variable u with coefficients de-

pending on the Weierstrass parameters g2, g3, and related by certain recursive relations.
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The extension of Weierstrass theory to arbitrary algebraic curves was intensively de-

veloped in the 19th century and later, its development being attached to names such as

Baker, Bolza, Brioschi, Burkhardt, Klein, and Wiltheiss. Some important modern devel-

opments of this theory are due to Buchstaber and Leykin [7, 8] who give a construction

of linear differential (heat-like) operators that annihilate the σ-function for any (m,n)-

curve. In the hyperelliptic case the operators are sufficient to find the recursion defin-

ing the whole series expansion. The exact analogue of the Weierstrass recursive series

formula is known only for genus two, see [8], p. 68. In other cases the detailed results

have not yet been developed, although the general method is provided in the publica-

tions mentioned above. Here we shall give the few first terms of the power series expan-

sion, obtained by finding the coefficients of the Taylor series by using the PDEs given in

Lemma 6.1.

THEOREM 7.1. The function σ(u) associated with the general trigonal curve (2.1) of

genus three has an expansion of the following form :

σ(u1,u2,u3) = ε ·
(
C5(u1,u2,u3) + C6(u1,u2,u3) + C7(u1,u2,u3) + · · ·

)
, (7.1)

where ε is a nonzero constant and each Cj is a polynomial composed of sums of

monomials in ui of odd total degree and of total weight j with polynomial coefficient

in µis of total weight (5 − j). Especially, σ(u) is an odd function (see 4.2). The first few Cjs

are

C5 = u1 − u3 u2
2

+
1

20 u3
5, C6 =

1
12 µ1u3

4u2 −
1
3 µ1u2

3, C7 =
1

504

(
µ1

2
− 3 µ2

)
u3

7

+
1
6 µ2u3

3u2
2, C8 =

1
360

(
µ1

3
+ 9 µ3 − 2 µ1µ2

)
u3

6u2 −
1
2 µ3u3

2u2
3,

C9 =
1

25920

(
µ1

2
− 3 µ2

)2
u3

9
+

1
120

(
2 µ4 − µ2

2
+ µ1

2µ2 + 6 µ1µ3
)
u3

5u2
2

−
1
12

(
4 µ1µ3 + 4 µ4 + µ2

2

)
u3u2

4
+

1
12 µ4u3

4u1,

C10 =
1

20160

(
8 µ1µ4 − 54 µ2µ3 + 3 µ1µ2

2
+ 18 µ1

2µ3 + µ1
5

− 12 µ5 − 4 µ1
3µ2

)
u3

8u2

+
1
72

(
6 µ2µ3 + 2 µ1µ4 + µ1µ2

2
+ µ1

2µ3
)
u3

4u2
3

−
1
60

(
4 µ1

2µ3 + µ1µ2
2

+ 4 µ5 + 4 µ1µ4 − 2 µ2µ3
)
u2

5
+

1
6 µ5u3

3u2u1,

C11 = −
1

6652800

(
18 µ1µ2µ3 + 27 µ1

4µ2 − 72 µ6 − 3 µ1
6

− 24 µ2µ4 + 16 µ1
2µ4 − 24 µ1µ5

+ 27 µ3
2

+ 85 µ2
3

− 4 µ1
3µ3 − 82 µ1

2µ2
2
)
u3

11
+

1
5040

(
27 µ3

2
+ µ2

3
− 6 µ2µ4

− 18 µ1µ2µ3 + 8 µ1
3µ3 − 4 µ1µ5 + 6 µ1

2µ4 + 12 µ6 + µ1
4µ2 − 3 µ1

2µ2
2
)
u3

7u2
2

−
1
72

(
9 µ3

2
− µ2

3
− 4 µ2µ4 − 2 µ1µ2µ3

)
u3

3u2
4
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+
1

360

(
µ1µ5 − 4 µ2µ4 + µ1

2µ4 + 3 µ6
)
u3

6u1 −
1
2 µ6u3

2u2
2u1,

C12 = −
1

1814400

(
27 µ1µ3

2
− 243 µ2

2µ3 − µ1
7

+ 72 µ1µ2µ4

− 31 µ1
4µ3 − 144 µ2µ5 − 16 µ1

3µ4

+ 6 µ1
5µ2 − 10 µ1

3µ2
2

+ 24 µ1
2µ5 + 4 µ1µ2

3
− 72 µ1µ6 + 180 µ1

2µ2µ3
)
u3

10u2

+
1

2160

(
18 µ3µ4 − 2 µ1µ2

3
+ 27 µ1µ3

2
− 9 µ2

2µ3 + µ1
3µ2

2
+ µ1

4µ3 + 6 µ1
2µ2µ3

+ 2 µ1
3µ4 + 12 µ1µ6

)
u3

6u2
3

−
1

24 µ3
(
3 µ1µ3 + 4 µ4 + µ2

2
)
u3

2u2
5

+
1

120

(
6 µ3µ4 + 2 µ1µ6 − µ2µ5 + µ1

2µ5
)
u3

5u2u1

−
1
6

(
2 µ1µ6 + 2 µ3µ4 + µ2µ5

)
u3u2

3u1. �

PROOF. We divide the proof into four parts.

Step 1. We have already shown in Lemma 4.2, that all the terms are of total odd degree

or even degree. We first show that the expansion contains a term linear in u1, so the

expansion must be odd.

Let B(D) be the Brill–Noether matrix for an effective divisor D of C. Then it is well

known that (see for example [24] or [26])

dim Γ(C,O(D)) = deg D + 1 − rankB(D),

where Γ(C,O(D)) is the space of functions on C whose divisors are larger than or equal

to −D. Moreover, for two points P1, P2 on C, dim Γ(C,O(P1 + P2)) > 1 if and only if the

point ι(P1, P2) ∈ Θ[2] is a nonsingular point of Θ[2] (note that C is of genus 3). By checking

the Brill–Noether matrix B(P1 + P2), we see Θ[2] is nonsingular everywhere. Especially

κ−1(Θ[2]) is nonsingular at the origin (0, 0, 0). On the other hand, let u and v be two

variables on κ−1(Θ[1]). Then we have an expansion with respect to v3:

0 = σ(u + v) = σ3(u)v3 +
1
2 (σ2(u) + σ33(u)) v3

2
+ · · · ,

where σi = ∂σ/∂ui, etc. Hence

σ3(u) = 0 σ2(u) + σ33(u) = 0.

Again by expansion

0 = σ3(u) = σ33(0)v3 + · · · ,
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we see that

σ33(0) = 0.

In summary,

σ3(0) = σ2(0) = 0.

So from the above arguments and (4.14), we must have

σ1(0) �= 0.

Hence the σ-expansion must be odd.

Step 2. Next we show that the terms of weight less than 5 vanish and C5(u) is nontrivial.

We write all the possible odd terms up to and including terms of weight 5. Using the

first two equations in 6.1, we can show that the coefficients of the terms of weight four

and less are zero, and that the coefficients of weight 5 are given by those in C5 up to

multiplication by a constant. We know from Step 1 that this constant is nonzero and we

insert this constant into the ε.

Step 3. We now calculate the coefficients Ci, i > 5. The proof of this step is by

construction (with heavy use of Maple) using the PDEs given in Lemma 6.1. We expand

σ(u1,u2,u3) in a Taylor series with undetermined coefficients, keeping only odd terms.

We do not assume that the coefficients of the expansion are polynomial in the µi, only

that they are independent of the ui. We then insert the expansion into the 4-index PDEs

for the ℘, and truncate to successive orders in the weights of the ui. These give a series of

linear equations for the coefficients, and by using a sufficient number of the PDEs we can

always find unique solutions, as listed above. We have carried out this calculation down

to C18. We have omitted the details of the expressions for C13, . . . ,C18, as they are rather

lengthy, but these are available at [15].

Step 4. Now consider the general term in the expansion. Set

A u1
pu2

qu3
r, A ∈ Q(µi)

to be the lowest weight unknown term. Since we have already shown by construction that

the coefficients for all weights down to −29 with respect to ujs are polynomials, we may

assume that p+q+r � 4. Let (�) be the set of quadratic equations in σ(u) and its (higher)
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derivatives obtained from Lemma 6.1 by multiplying by σ(u)2. We take an equation

σ(u)2 Qijk�(u) = · · · (7.2)

from (�) such that u1
pu2

qu3
r is divisible by uiujuku�. We have at least one such equation.

Differentiating (7.2), we have an equation of the form

σ(u)
(

∂p+q+r σ

∂u1
p ∂u1

q ∂u1
r

)
(u) + · · · = 0 (7.3)

such that all terms are polynomial of σ(u) and its higher derivatives and such that

(
∂p+q+r σ

∂u1
p ∂u1

q ∂u1
r

)
(u)

is the highest derivative in (7.3). By looking at the coefficient of the term u1, we have a

linear equation of the form

A + · · · = 0

over Q[µ1, · · · ,µ12]. Since the other terms except A in the above equation come from terms

of σ(u) whose weight is less than weight of u1
pu2

qu3
r, we see A is a polynomial in the µjs

by the induction hypothesis. �

REMARK 7.2.

(1) In Theorem 7.1, the constant ε might be unity, another 8th root of 1, or some

other constant. We have not been able to narrow down this result. If the

case ε = 1 is true, then the determination of ε reduces to the choice

of roots in (2.14) and (4.9). The remaining results in this article do not

depend on this choice, or on the possibility that ε �= 1.

(2) The weight of σ(u) is inferred from (4.9) since the weight of |ω ′| is 5 + 2 + 1

and the conjectured weight of D is 72. The weight of the terms in the

exponentials are all 0 and the weight of c is 72/8 − (5 + 2 + 1)/2 = 5 and

coincides with the terms in the expansion of 7.1 if the weight of ε is 0.

We shall need the following special property of the σ-function in the purely

trigonal case later on:
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LEMMA 7.3. The σ function associated with the purely trigonal curve (3.1) satisfies

σ([−ζ]u) = −ζσ(u) for u ∈ C3 under the notation (3.1). �

PROOF. Since Λ is stable under the action of [ζ] and [−1], we can check the statement by

Lemma 4.1 and Remark 4.3. �

8 Basis of the Space Γ(J,O(nΘ[2]))

For notational simplicity, we denote

∂j =
∂

∂uj
. (8.1)

We also define

℘[ij]
= the determinant of the (i, j)-(complementary) minor of [℘ij]3×3. (8.2)

We have explicit bases of the vector spaces Γ(J,O(2Θ[2])) and Γ(J,O(3Θ[2])) as follows (see

also [13], Example in Section 9):

LEMMA 8.1. We have the following :

Γ(J,O(2Θ[2])) = C1 ⊕ C℘11 ⊕ C℘12 ⊕ C℘13 ⊕ C℘22 ⊕ C℘23 ⊕ C℘33 ⊕ CQ1333,

Γ(J,O(3Θ[2])) = Γ(J,O(2Θ[2])) ⊕ C℘111 ⊕ C℘112 ⊕ C℘113 ⊕ C℘122 ⊕ C℘123

⊕C℘133 ⊕ C℘222 ⊕ C℘223 ⊕ C℘233 ⊕ C℘333 ⊕ C∂1Q1333

⊕C∂2Q1333 ⊕ C∂3Q1333

⊕C℘[11] ⊕ C℘[12] ⊕ C℘[13] ⊕ C℘[22] ⊕ C℘[23] ⊕ C℘[33].

�

PROOF. We know the dimensions of the spaces above are 23 = 8 and 33 = 27, respectively

by the Riemann–Roch theorem for Abelian varieties (see for example, [23], (pp. 150–

155), [20], (p. 99, Theorem 4.1)). Moreover, (4.14) shows that the functions in the right

hand sides belong to the spaces of the left hand sides, respectively. For the space

Γ(J,O(2Θ[2])), ℘ij and Qijk� become the basis of the space from Definition 5.1, Lemma

4.1, and the arguments in the previous section. However these are not all linearly

independent, since there are connecting relations, such as those given in Lemma 6.1,

and the number of these relations is greater than the dimension of the space. Thus the
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problem is reduced to picking the linearly independent bases as a function space. It

is obvious that such independence does not depend upon the coefficients of curve by

considering these expansions around the origin of C3. Hence by multiplying by σ(u)2

from the right hand side with respect to u1, u2, u3, and after putting all the µj equal to

zero, we see the functions of the right hand side are linearly independent. The authors

used a computer to check this. Similarly, for the space Γ(J,O(3Θ[2])), the 27 functions

obtained by multiplying by σ(u)3 from the right hand side are checked to be linearly

independent by using a computer, expanding the given functions in the Abelian variables

(cf. Theorem 7.1) to a sufficiently high power that independence is checked. We also see

both decompositions in Lemma 8.1 in Example in Section 9 of [13]. �

9 The First Main Addition Theorem

THEOREM 9.1. The σ-function associated with (2.1) satisfies the following addition

formula on J × J :

−
σ(u + v)σ(u − v)

σ(u)2σ(v)2
= ℘11(u) − ℘11(v) + ℘12(u)℘23(v) − ℘12(v)℘23(u)

+℘13(u)℘22(v) − ℘13(v)℘22(u) +
1
3 (℘33(u)Q1333(v) − ℘33(v)Q1333(u))

−
1
3µ1 (℘12(u)℘33(v) − ℘12(v)℘33(u)) − µ1 (℘13(u)℘23(v) − ℘13(v)℘23(u))

+
1
3

(
µ1

2
− µ2

)
(℘13(u)℘33(v) − ℘13(v)℘33(u)) +

1
3µ8 (℘33(u) − ℘33(v)) . (9.1)

�

PROOF. Firstly, we notice that the left hand side is an odd function with respect to u ↔ v,

and that it has poles of order 2 along (Θ[2] × J) ∪ (J × Θ[2]) but nowhere else. Moreover it

is of weight −10. Therefore, by Lemma 8.1, the left hand side is expressed by a finite sum

of the form

∑
j

Aj
(
Xj(u)Yj(v) − Xj(v)Yj(u)

)
, (9.2)

where the Aj are rational functions of the µis with homogeneous weight, and the Xj and

Yj are functions chosen from the right hand side of the first equality in Lemma 8.1. We

claim that all the Aj are polynomial in the µis. Suppose all the Ajs are reduced fractional

expressions, and at least one of the Ajs is not a polynomial. Take the least common

multiple B of all the denominators of the Ajs. Note that there is a set of special values

of the µis such that B vanishes and the numerator of at least one Aj does not vanish. After
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multiplying the equation “lhs”= (9.2) by B σ(u)2σ(v)2, and taking the µis to be such a zero

of B, we have a contradiction, by using the linear independence of Lemma 8.1 twice with

respect to the variables u and v for the corresponding curve of (2.1). Hence, all the Aj

must be polynomials. Hence, we see that the desired right hand side must be expressed

by using constants a, b, c,d, e, f , g1, g2,h1,h2, i1, i2, j, k1, k2, k3 which are polynomials in

µis and independent of the ui and vi, as follows:

a [℘11(u)−℘11(v)]+b [℘12(u)℘23(v) − ℘12(v)℘23(u)]+c [℘13(u)℘22(v) − ℘13(v)℘22(u)]

+ d [Q1333(u)℘33(v) − Q1333(v)℘33(u)] + e[℘12(u)℘33(v) − ℘12(v)℘33(u)]

+ f [℘13(u)℘23(v) − ℘13(v)℘23(u)] + g1[℘13(u)℘33(v) − ℘13(v)℘33(u)]

+ g2[Q1333(u) − Q1333(v)] + h1[℘23(u)℘22(v) − ℘23(v)℘22(u)] + h2[℘12(u) − ℘12(v)]

+ i1[℘22(u)℘33(v) − ℘22(v)℘33(u)] + i2[℘13(u) − ℘13(v)] + j[℘23(u)℘33(v)

− ℘23(v)℘33(u)] + k1[℘22(u) − ℘22(v)] + k2[℘23(u) − ℘23(v)] + k3[℘33(u) − ℘33(v)].

(9.3)

We find by computer using Maple, on substituting the expansion (7.1) up to C13 terms of

σ(u) into (9.3), and truncating up to weight 18 in the ui and vi, that

a = b = c = −1, d =
1
3 , e = −

1
3µ1, f = −µ1, g1 =

1
3 (µ2

1 − µ2),

g2 = h1 = h2 = i1 = i2 = j = k1 = k2 = 0, k3 =
1
3µ8,

(9.4)

as asserted. In the Maple calculation, it is not necessary to assume the polynomial nature

of the coefficients as functions of the µj. �

REMARK 9.2. By applying

1
2

∂

∂ui

(
∂

∂uj
+

∂

∂vj

)
log (9.5)

to 9.1, we have −℘ij(u + v) + ℘ij(u) from the left hand side, and have a rational expression

of several ℘ij···�(u)s and ℘ij···�(v)s on the right hand side. Hence, we have an algebraic

addition formula for ℘ij(u).
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REMARK 9.3. By putting v = u − (δ, 0, 0) and letting δ → 0, we can get a “double-angle”

σ-formula

σ(2u)
σ(u)4

= −℘111(u) − ℘112℘23 + ℘12(u)℘123(u) − ℘113(u)℘22(u) + ℘13(u)℘122(u)

−
1
3℘133(u)Q1333(u) +

1
3℘33(u) ∂

∂u1
Q1333(u) +

1
3µ1

(
℘112(u)℘33(u) − ℘12(u)℘133(u)

)
+ µ1 (℘113(u)℘23 − ℘13(u)℘123) −

1
3

(
µ1

2
− µ2

)(
℘113(u)℘33(u)

− ℘13(u)℘133(u)
)

−
1
3µ8℘133(u).

(9.6)

In the case of the elliptic curve, the corresponding relation is σ(2u) = −℘ ′(u)σ4(u),

whilst the corresponding formula for the hyperelliptic genus two curve is given in [4],

p. 129.

10 The Second Main Addition Theorem

The second main addition result applies only in the purely trigonal case (3.1), using the

results of Lemma 7.3. The formula is as follows:

THEOREM 10.1. The σ-function associated with (3.1) satisfies the following addition

formula on J × J :

σ(u + v)σ(u + [ζ]v)σ(u + [ζ2]v)
σ(u)3σ(v)3

= R(u, v) + R(v,u), (10.1)

where

R(u, v) = −
1
3℘13(u)∂3Q1333(v) −

3
4℘23(u)℘112(v) −

1
2℘111(u) +

1
4℘122(u)℘[11](v)

−
1
4℘222(u)℘[12](v) +

1
12∂3Q1333(u)℘[11](v) +

1
2℘333(u)℘[22](v) −

1
4µ3℘333(u)℘[12](v)

+
1
2µ6℘13(u)℘333(v) −

1
4µ9℘23(u)℘333(v) −

1
2µ12℘333(u).

�

PROOF. Our goal is to express

σ(u + v)σ(u + [ζ]v)σ(u + [ζ2]v)
σ(u)3σ(v)3

(10.2)

using several ℘ functions. Because (10.2) belongs to Γ(J × J,O(3((Θ[2] × J)∪ (J ×Θ[2])))), a

similar argument to that at the beginning of the proof of Theorem 9.1 shows that it must
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be a finite sum of multi-linear forms of the 27 functions in Lemma 8.1, namely, of the

form

finite sum∑
j

Cj Xj(u)Yj(v), (10.3)

where Xj and Yj are any of the functions appearing in the right hand side of the

description of Γ(J,O(3Θ[2])) in Lemma 8.1, and the Cj are polynomial in µis. Moreover,

(10.2) has the following properties:

L1. As a function on J × J, its weight is (−5) × 3 = −15;

L2. It is invariant under u �→ [ζ]u (resp. v �→ [ζ]v);

L3. It has a pole of order 3 on (Θ[2] × J) ∪ (J × Θ[2]);

L4. It is invariant under the exchange u ↔ v (by Lemma 7.3).

Hence, (10.3) has the same properties. Thus, we may consider only the functions in our

basis of Γ(J,O(3Θ[2])) that have the following corresponding properties:

R1. The weight is greater than or equal to (−5) × 3 = −15;

R2. They are invariant under u �→ [ζ]u;

R3. They have poles of order at most 3 on Θ[2].

There are 12 such functions and they are listed as follows:

1, ℘13 (weight = −6), ℘23 (weight = −3),

℘111 (weight = −15), ℘112 (weight = −12), ℘122 (weight = −9),

℘222 (weight = −6), ℘333 (weight = −3), ℘[22] (weight = −12),

℘[12] (weight = −9), ℘[11] (weight = −6),

∂3Q1333 = −6(℘13℘333 − ℘133℘33) − 3℘122 (weight = −9),

and the ℘[ij] are defined in (8.2). Here the last equality is given by cross-differentiation

from ∂1Q3333 using the first of the relations in Lemma 6.1 with µ1 = µ2 = µ4 = 0. Since

(10.2) is an even function, it must be of the form

σ(u + v)σ(u + [ζ]v)σ(u + [ζ2]v)
σ(u)3σ(v)3

= R̃(u, v) + R̃(v,u), (10.4)
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where

R̃(u, v) = a1℘13(u)℘122(v) + a2℘13(u) ∂3Q1333(v) + a3℘23(u)℘112(v) + a4℘111(u)

+ a5℘122(u)℘[11](v) + a6℘222(u)℘[12](v) + a7 ∂3Q1333(u)℘[11](v) + a8℘333(u)℘[22](v)

+ b1℘13(u)℘222(v) + b2℘23(u)℘122(v) + b3℘23(u) ∂3Q1333(v)

+ b4℘112(u) + b5℘222(u)℘[11](v) + b6℘333(u)℘[12](v)

+ c1℘13(u)℘333(v) + c2℘23(u)℘222(v) + c3℘122(u) + c4℘333(u)℘[11](v)

+ c5 ∂3Q1333(u) + d1℘23(u)℘333(v) + d2℘222(u) + e1℘333(u).

By substituting (7.1) into (10.4), and comparing coefficients of different mononomials in

ui, vj, we can find the constants a1, · · · , e1 depending on the µks. Again, in this lengthy

Maple calculation, it is not necessary to assume the coefficients are polynomial in the µi.

�

REMARK 10.2. By applying

1
3

(
∂2

∂ui∂uj
+

∂2

∂ui∂vj
+

∂2

∂vi∂vj

)
log (10.5)

to (10.1), we obtain algebraic addition formulae for standard Abelian functions, which

would be interesting to compare with those of Remark 9.2.

REMARK 10.3. By putting v = −u + (δ, 0, 0) into (10.1), dividing through by δ and letting

δ → 0, we can get an unusual “shifted” σ-formula of the form

−
σ(u − [ζ]u)σ(u − [ζ2]u)

σ(u)6
=

12∑
i=1

ci [gi(u)∂1fi(u) − fi(u)∂1gi(u)] , (10.6)

where the fi and the gi are the even and odd derivative components respectively of the

formula in (10.1), i.e. as given in the following table

ci fi gi ci fi gi

1
2 ℘13(u) ℘122(u) −

1
3 ℘13(u) ∂3Q1333(u)

−
3
4 ℘23(u) ℘112(u) −

1
2 1 ℘111(u)

1
4 ℘[11](u) ℘122(u) −

1
4 ℘[12](u) ℘222(u)

1
12 ℘[11](v) ∂3Q1333(u) 1

2 ℘[22](u) ℘333(u)

−
1
4µ3 ℘[12](u) ℘333(u) 1

2µ6 ℘13(u) ℘333(u)

−
1
4µ9 ℘23(u) ℘333(v) −

1
2µ12 1 ℘333(u)
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REMARK 10.4. In the general elliptic case, there appears to be no formulae corresponding

to (10.1) and (10.6). However for the specialized equianharmonic case, where ℘ satisfies

(℘ ′)2
= 4℘3

− g3,

it is straightforward to show that

σ(u + v)σ(u + ζv)σ(u + ζ2v)
σ3(u)σ3(v)

= −
1
2 (℘ ′(u) + ℘ ′(v)),

and

σ ((1 − ζ)u)σ
(
(1 − ζ2)u

)
σ6(u)

= 3℘2(u).

These seem to be just the first of a family of multi-term addition formulae on special

curves with automorphisms, which will be discussed in more detail elsewhere.

Appendix

A The Fundamental Bi-differential

We write the polynomial f (x, y) in (2.1) that defines the trigonal curve C as

f (x, y) = y3
+ p(x)y2

+ q(x)y − r(x) (A.1)

with

p(x) = µ1x + µ4, q(x) = µ2x2
+ µ5x + µ8, r(x) = x4

+ µ3x3
+ µ6x2

+ µ9x + µ12.

We describe explicitly the fundamental nonnormalized bi-differential (Klein’s funda-

mental 2-form of the second kind) Σ((x, y), (z,w)) in (2.18) of the curve for (x, y), (z,w) in

C defined by f (x, y) = 0.

Following the scheme described in [1] and applied to trigonal curves in [16], [10]

and the present article, one can realize Σ((x, y), (z,w)) explicitly as

Ω((x, y), (z,w)) =
F((x, y), (z,w))dxdz

(x − z)2fy(x, y)fw(z,w)
(A.2)
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with the polynomial F((x, y); (z,w)) given by the formula

F
(
(x, y), (z,w)

)
= (wy + Q(x, z))(wy + Q(z, x))

+ w

(
w

[
f (x, y)

y

]
y

+ T(x, z)

)
+ y

(
y

[
f (z,w)

w

]
w

+ T(z, x)
)

− F0(x, z)
(A.3)

with

Q(x, z) = (µ2
1 − µ2)xz + (2 µ1µ4 − µ5)x − µ8 + µ2

4

T(x, z) = 3µ12 + (z + 2x)µ9 + x(x + 2 z)µ6 + 3µ3x2z + p(z)q(x) + x2z2
+ 2 x3z.

(A.4)

The term F0(x, y) vanishes at µ1 = µ4 = 0 and is given by

F0(x, y) = c32(x + z)x2z2
+ c22x2z2

+ c21(x + z)xz + c11xz + c10(x + z) + c00,

c32 = −µ1, c22 = −2µ4 − 2µ1
2µ2 + µ1

4
+ 2µ3µ1,

c21 = µ6µ1 − 2 µ1µ4µ2 + µ3µ4 − µ5µ1
2

+ 2µ1
3µ4,

c11 = 2
(
3µ1

2µ4
2

+ µ6µ4 + µ9µ1 − 2 µ1µ4µ5 − µ1
2µ8 − µ2µ4

2
)
,

c10 = −µ5µ4
2

+ µ1µ12 + 2 µ1µ4
3

− 2 µ1µ4µ8 + µ3µ4,

c00 = µ4
(
µ4

3
+ 2 µ12 − 2 µ4µ8

)
.

We also remark that the Expression (A.3) generalizes the Kleinian 2-polar previously

derived in the hyperelliptic case [1].

B Quadratic 3-Index Relations

A complete list of the known relations quadratic in 3-index ℘ijk, up to weight −15, for the

“purely trigonal” case is given below. Note that with care we can obtain an expression

such that the highest power on the r.h.s. is no more than cubic. The number in square

brackets [ ] is the weight. A fuller list for the general (3,4) case is given at [15].

℘333
2

= ℘23
2

+ 4℘13 − 4℘33℘22 + 4℘33
3, [−6]

℘233℘333 = −℘22℘23 + 4℘23℘33
2

+ 2µ3℘33
2

− 2℘12, [−7]

℘233
2

= 4℘33℘23
2

+ 4µ3℘33℘23 + ℘22
2

−
4
3℘1333 + 4µ6℘33 + 8℘33℘13, [−8]

℘333℘223 = 2℘33℘23
2

+ µ3℘33℘23 − 2℘22
2

+
2
3℘1333 + 2℘33

2℘22, [−8]
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℘223℘233 = 2℘23
3

+ 2℘33℘23℘22 + 2µ9 + 4℘23℘13 + 2µ6℘23 + 2µ3℘13

+ 2µ3℘23
2

+ µ3℘22℘33, [−9]

℘222℘333 = −µ3℘23
2

− 4µ3℘13 + 4µ3℘22℘33 − 2℘23
3

− 8℘13℘23

+ 6℘33℘23℘22 − 4℘33℘12, [−9]

℘223
2

= 4℘23
2℘22 + 4℘11 + 4℘22℘13 + 4µ6℘22 − 4℘23℘12 − 4µ3℘12

+ µ3
2℘33

2
− 4µ6℘33

2
+

4
3℘33℘1333 − 8℘13℘33

2
+ 4µ3℘23℘22, [−10]

℘133℘333 = −2℘22℘13 + ℘12℘23 +
2
3℘33℘1333, [−10]

℘233℘222 = 2µ3℘12 −
8
3℘33℘1333 + 2℘33℘22

2
+ 8µ6℘33

2
+ 16℘33

2℘13

− 2µ3
2℘33

2
+ 4℘23℘12 + µ3℘23℘22 + 2℘23

2℘22, [−10]

℘123℘333 = 4℘33℘23℘13 + 2µ3℘33℘13 − 2℘22℘12 −
1
3℘23℘1333 + 2℘33

2℘12, [−11]

℘223℘222 = 8℘33℘13℘23 −
2
3µ3℘1333 + 4µ9℘33 + 4µ6℘33℘23 + 4µ3℘33℘13

+ 2µ3℘22
2

−
4
3℘23℘1333 − µ3

2℘33℘23 + 4℘23℘22
2, [−11]

℘233℘133 = 2µ9℘33 + 2µ3℘33℘13 +
2
3℘23℘1333 + ℘22℘12, [−11]

℘123℘233 = 2℘33℘23℘12 + 2µ3℘33℘12 − 2℘33℘11 −
1
3℘22℘1333 + 2℘33℘22℘13

+ 2µ3℘23℘13 + 2℘13
2

+ 2µ6℘13 + 2℘23
2℘13 + 2µ12, [−12]

℘333℘122 = −2℘33℘22℘13 − µ3℘23℘13 − 2℘13℘23
2

− 6℘13
2

− 2µ6℘13 +
2
3℘22℘1333

+ 4℘33℘23℘12 + 2µ3℘33℘12 − 2℘33℘11 + 2µ12 + µ9℘23, [−12]

℘223℘133 = 2µ3℘23℘13 + 2℘23
2℘13 + 2℘13

2
+ 2µ6℘13 − µ3℘33℘12

− 2℘33℘22℘13 +
2
3℘22℘1333 + 2℘33℘11 + 2µ12, [−12]

℘222
2

= −4µ3℘33℘12 + 8℘33℘11 − 4℘22℘1333 + 24℘33℘22℘13

+ 4µ3℘23℘13 − 8℘13
2

− 4µ9℘23 − 8℘13µ6 + 4℘22
3

+ 4µ3
2℘13

+ µ3
2℘23

2
− 4µ6℘23

2
− 4µ3

2℘33℘22 + 16µ6℘33℘22 − 8µ12, [−12]

℘223℘123 = −2℘23℘11 + 2µ9℘22 + 2℘13℘23℘22 + 2µ3℘23℘12 + 2℘12℘23
2

+
1
3µ3℘33℘1333 − 2µ3℘13℘33

2
− 2µ9℘33

2
+ 2µ3℘22℘13, [−13]

℘133℘222 = 4℘23℘22℘13 − µ3℘23℘12 − 2℘23
2℘12 −

2
3µ3℘33℘1333 + 4µ3℘13℘33

2

+ 4µ9℘33
2

+ 2µ3℘22℘13 + 2℘33℘22℘12, [−13]

℘122℘233 = −µ9℘22 + 4℘13℘12 + 2µ6℘12 −
2
3µ3℘33℘1333 + 2℘33℘22℘12

+ 4µ3℘33
2℘13 + 4µ9℘33

2
+ 2µ3℘23℘12 + 2℘23

2℘12 − µ3℘22℘13, [−13]



36 J. C. Eilbeck et al.

℘333℘113 = −2℘12
2

−
2
3℘13℘1333 + 6℘33℘13

2
+ 2µ6℘33℘13 + 2℘33

2℘11

− 2µ12℘33 − µ9℘33℘23, [−14]

℘133
2

=
4
3℘13℘1333 + ℘12

2
− 4℘33℘13

2
+ 4µ12℘33, [−14]

℘223℘122 = −2℘11℘22 + 4℘23℘22℘12 +
4
3℘13℘1333 + 2℘12

2
− 8℘33℘13

2

+ µ3(2℘22℘12 + 4℘33℘23℘13)

−
2
3µ3℘23℘1333 + µ3

2℘33℘13 −
2
3µ6℘1333 + 4µ9℘33℘23

+ (8µ12 + µ3µ9)℘33, [−14]

℘123℘222 = 2℘22
2℘13 + 2℘23℘22℘12 −

8
3℘13℘1333 − 2℘12

2
+ 16℘33℘13

2

+ µ3(2℘22℘12 − 2℘33℘23℘13 +
1
3℘23℘1333) + (8µ6 − 2µ3

2)℘33℘13

− 2µ9℘33℘23, [−14]

℘333℘112 = −2℘23℘13
2

+ 2µ6℘23℘13 + 2℘33℘23℘11 − 2µ12℘23 − µ9℘23
2

+
4
3℘12℘1333 − 4µ3℘13

2
− 4℘33℘13℘12, [−15]

℘113℘233 = 2℘23℘13
2

+ 2℘33℘23℘11 − 2µ12℘23 −
2
3℘12℘1333 + 2µ3℘13

2

+ 4℘33℘13℘12 − µ9℘33℘22 + 2µ6℘33℘12 + 2µ9℘13, [−15]

℘123℘133 = 2℘23℘13
2

− 2µ12℘23 +
1
3℘12℘1333 + 2µ3℘13

2
+ 2µ9℘13, [−15]

℘122℘222 =−
4
3℘12℘1333+8℘33℘13℘12 + 4℘22

2℘12 − 2µ3℘13
2

+ 2µ3℘33℘11 −
2
3µ3℘22℘1333

+ 4µ3℘33℘13℘22 + µ3
2℘23℘13 + (−2µ3

2
+ 4µ6)℘33℘12 + (2µ3µ6 − 8µ9)℘13

+ 6µ9℘33℘22 − 2µ9℘23
2

− µ3µ9℘23 − 2µ3µ12. [−15]

The above equations describe the Jacobi variety as an algebraic variety, see also [10]

where a general matrix construction is given. By eliminating odd powers with the aid of

identities such as

℘333
2 ℘233

2
− (℘333℘233)2

= 0,

one can obtain equations of the Kummer variety, J/(u → [−1]u).
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