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Modular forms

• Central in number theory: few but ubiquitous

• Γ ⊂ SL2(Z), χ character on Γ, k ∈ Z, τ ∈ h = {x+ iy|y > 0}

• f modular of weight k and character χ if for
(
a b
c d

)

∈ Γ,

f(
aτ + b

cτ + d
) = χ(γ)(cτ + d)kf(τ)

• f analytic on h, cusps of h/Γ. If vanishes at cusps called a
cusp form.

1



Genus 1 case

• L ⊂ C lattice, E = C/L, z ∈ C,

℘(z, L) =
1

z2
+

∑

0 #=λ∈L

1

(z − λ)2
−

1

λ2
=

1

z2
+

∑

n≥2
enz

2n−2.

℘(αz,αL) = α−2℘(z, L),

• τ ∈ h, Lτ = Z⊕ Zτ. If ℘(z, τ) = ℘(z, Lτ), for
(
a b
c d

)

∈ SL2(Z)

℘(
z

cτ + d
,
aτ + b

cτ + d
) = (cτ+d)2℘(z,Z(aτ+b)⊕Z(cτ+d)) = (cτ+d)2℘(z, τ)
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en(τ) = en(Lτ) =⇒ en(
aτ + b

cτ + d
) = (cτ + d)2nen(τ)

• en is forced to be a modular form, because of modularity of
℘ AND that of z

• Forces coefficients of defining equation for E,

(℘′)2 = 4℘3 − g2℘− g3

to be modular (g2 = 60e2, g3 = 140e3)
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Application

• Rubin and Silverberg (following Gross, Stark) used modular
coefficients of elliptic curve to count points on elliptic curves
over finite fields.

• Apply to “CM" method.

• Goal is to build modular models of genus 2 curves (do history
later)

• Nick Alexander (Silverberg student) is using to generalize
Rubin-Silverberg to genus 2.
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Siegel modular forms of genus 2

• Γ ⊂ Sp4(Z) Consists of:

• Integral 2× 2 matrices
(
A B
C D

)

t
(
A B
C D

)(
0 −I
I 0

)(
A B
C D

)

=

(
0 −I
I 0

)

.

• γ =

(
A B
C D

)

∈ Γ act on h2 via γ ◦ τ = (Aτ +B)(Cτ +D)−1.
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• k ∈ Z, χ a character of Γ.

• Siegel modular form of degree 2 on Γ of weight k and char-
acter χ, is holomorphic functions f on h2 satisfying

f(γ ◦ τ) = χ(γ)jγ(τ)kf(τ),

for any γ =

(
A B
C D

)

∈ Γ, where jγ(τ) = det(Cτ +D).

• Build with theta functions.
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Theta Functions

• τ ∈ hg, a, b ∈ 1
2Z

g, z ∈ Cg.

• Theta function with characteristic [
a
b
] is

θ[
a
b
](z, τ) =

∑

n∈Zg

eπi
t(n+a)τ(n+a)+2πit(n+a)(z+b).

• [
a
b
] is a theta characteristic. It is even or odd depending

on whether θ[
a
b
](z, τ) is an even or odd function, i.e., where

e4πiab = ±1.
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Transformation formula

γ =

(
A B
C D

)

∈ Sp2g(Z), a, b ∈ Rg, z ∈ Cg, τ ∈ hg,

θ

[
a
b

]γ
(t(Cτ+D)−1z, γ◦τ) = ζ(γ, a, b)jγ(τ)1/2eπi

tz(Cτ+D)−1Czθ

[
a
b

]

(z, τ),

ζ(γ, a, b) = ρ(γ)κ(γ, a, b),

κ(γ, a, b) = eπi(
t(Da−Cb)(−Ba+Ab+(AtB)0)−tab)

ρ(γ) = an eighth root of 1,
[
a
b

]γ
=

(
D −C
−B A

)[
a
b

]

+
1

2

[
(CtD)0
(AtB)0

]

,

For matrix M , (M)0 is column vector of diagonal entries of M

jγ(τ)1/2 is a choice of branch of square root of jγ(τ).
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g=1, Jacobi’s Derivative Formula

• τ ∈ h, θ[1/2
1/2

](0, τ)′ = −πθ[0
0
](0, τ)θ[

1/2
0

](0, τ)θ[
0

1/2
](0, τ).

• [
1/2
1/2

] is the lone odd theta characteristic mod 1, and [
0
0
],

[
0

1/2
], [

1/2
0

] represent the 3 even theta characteristic mod 1.

• For γ ∈ Γ, the map [
a
b
] → [

a
b
]γ mod 1 gives an action on

theta characteristic mod 1 that preserves the parity of theta
characteristics.
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Quick proof

• Transformation formula shows both sides of formula to the
eighth power are modular forms of weight 12 for Γ. Their
Fourier expansions show they are cusp forms. There is a
unique such up to constants.The Fourier expansions give the
constant.

• Formula was generalized by Rosenhain to τ ∈ h2, by Thomae
to τ the period matrix of hyperelliptic curves, and by Igusa
to all τ ∈ hg. Still active area (Farkas & Kra, Grushevsky &
Manni.)
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g=2: Rosenhain’s Theorem

THEOREM: If δi, i = 1,2, are distinct odd theta characteristics,
then there are even theta characteristics εk, 1 ≤ k ≤ 4, depending
on the δi, such that

Det1≤i,j≤2[
∂θ[δi](0, τ)

∂zj
] = ±π2

4∏

k=1
θ[εk](0, τ).

• Let Γ = Sp4(Z), Γδ = {γ ∈ Γ|[δ]γ = [δ] mod 1}

• Unlike genus 1, both sides of formula only modular on

Γδ1 ∩ Γδ2 (so not on all of Γ, which would be “level 1")
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First goal will be to describe a version of Rosenhain’s formula
that is modular for all of Γ.



Set up

• There are 10 even theta characteristics mod 1 for degree 2
theta functions. Choose representatives for these mod 1 and
define

D(τ) =
∏

ε even
θ[ε](0, τ).

• Let Z be orbit of τ12 = 0 in h2 under action of Sp4(Z). Then
D(τ) has a zero of order 1 on Z and no other zeroes. (So
D(τ) #= 0 precisely when τ is the period matrix of a curve of
genus 2.)

• D is up to a constant the Siegel modular form (with character
ψ ) on Γ and weight 5.
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Definition of X[δ]

• For an odd theta characteristic δ, set

X[δ](z, τ) = θ[δ](z, τ)3Det1≤i,j≤2[
∂2 log θ[δ](z, τ)

∂zi∂zj
],

which a computation with partial derivatives shows is entire.

• X[δ] was not chosen out of thin air. The function X[δ](z,τ)
θ[δ](z,τ)3

plays a pivotal role in the function theory of the abelian va-
riety Aτ = C2/(Z2 + τZ2) when D(τ) #= 0.
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Degree 2 generalization of Jacobi’s formula

THEOREM: For any odd theta characteristic δ, Detδ =

Det




∂θ[δ](0,τ)

∂z1
∂θ[δ](0,τ)

∂z2
∂X[δ](0,τ)

∂z1
∂X[δ](0,τ)

∂z2



 = ±2π6D(τ).
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Sketch of Proof

• Transformation formula show Detδ is Siegel modular form
(with character) on Γδ that vanishes on Z, and Γ permutes
the Detδ.

• Since holds for ALL odd theta characteristics δ, Detδ/D(τ)
is holomorphic, so Siegel modular form of weight 0, i.e., a
constant.

• Constant from the lead term of Taylor expansion in τ12.

• Must employ Jacobi’s derivative formula to find constant!
(Similar argument gives quick proof of Rosenhain’s theorem.)
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Analytic jacobian

• Start with genus 2 curve

C : y2 = x5 + b1x
4 + b2x

3 + b3x
2 + b4x+ b5

(∞ = point at infinity.)

• Differentials of the first kind µ1 = dx/y, µ2 = xdx/y.

• Symplectic basis for H1(C,Z), A and B-loops generators.

• Form period matrices

ω = [ωij], ω′ = [ω′
ij], τ = ω−1ω′
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Analytic jacobian, continued

• Get τ ∈ h2. Set L = ωZ2 ⊕ ω′Z2

• J = C2/L

• Embed C → J via

P →
∫ P

∞
(µ1, µ2) mod L

• Image is a divisor Θ, which is zeros of a theta function with
odd characteristic.
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Torelli

• Can recover C from (J,Θ).

• Rosenhain form (λi = ratio of Thetanullwerte)

y2 = x(x− 1)(x− λ1)(x− λ2)(x− λ3)

(coefficients modular on ∩6
i=1Γδi, index 720 in Γ)
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• Guardia form

y2 = x(x4 + ax3 + bx2 + c)

(roots involve derivatives of theta functions)

(coefficients modular on Γδ1 ∩ Γδ2, index 30 in Γ)

• Our result has coefficients modular on Γδ

(index 6 in Γ)

• Done by viewing C as zeroes of a theta function, and by
using “modular parameters"
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Set up

• Start with τ such that D(τ) #= 0. Set Lτ = Z2τ ⊕ Z2.

• Pick odd theta characteristic δ, Θ̃ zeroes of θ[δ](z, τ) in C2.
Descends to divisor Θ on Aτ = C2/Lτ .

• Get precisely those (Aτ ,Θ) not product of elliptic curves

• Means Aτ is a jacobian of a curve of genus two

• Means that Θ is smooth
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Modular parameters

• For γ ∈ Γδ, (*)

θ[δ](t(Cτ+D)−1z, γ◦τ) = ζ8(γ)jγ(τ)
1/2eπi

tz(Cτ+D)−1Czθ[δ](z, τ)

• Set u1 = θz,1[δ](0, τ)z1 + θz,2[δ](0, τ)z2, the linear term, so

uγ1 = ζ8(γ)jγ(τ)
1/2u1

(We let subscript indices z, ijk... denote partial derivatives
with respect to the correspondingly indexed variables in z.)

• To avoid sign ambiguities, set 1γ = uγ1/u1
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• Let χ(γ) = (uγ1)
2/det(Cτ +D)u21

• character of Γδ of order 4: χ2 = ψ.



Modular parameters (continued)

• H = Hessian, h = detH. So X[δ](z, τ) = θ[δ](z, τ)3h(log θ[δ](z, τ)).

• Taking logs and hessians of (*) gives

h(log θ[δ](t(Cτ+D)−1z, γ◦τ)) = jγ(τ)2 det(µ+H(log θ[δ](z, τ))),

where µ = 2πi(Cτ +D)−1C

• Hence X[δ](t(Cτ +D)−1z, γ ◦ τ) =

1γ(τ)3(γ)jγ(τ)2e3πi
tz(Cτ+D)−1Czθ[δ](z, τ)3 det(µ+H(log θ[δ](z, τ))).
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• Now

θ[δ](z, τ)3 det(µ+H(log θ[δ](z, τ))) = X[δ](z, τ)+θ[δ](z, τ)gγ(z, τ),

where gγ(z, τ) is analytic.

• So if u2 = Xz,1[δ](0, τ)z1 +Xz,2[δ](0, τ)z2,

the linear term of X[δ](z, τ), then

uγ2 = ψ(γ)1γ(τ)7(u2 + gγ(0, τ)u1).



Recap

• Have Γ acting on C2 × h2 via γ =

(
A B
C D

)

∈ Γ sending (z, τ)

to (t(Cτ +D)−1z, γ(τ)).

• Let (z1, z2) be the complex coordinates on C2. We intro-
duced new coordinates:

t(u1, u2) =




∂θ[δ](0,τ)

∂z1
∂θ[δ](0,τ)

∂z2
∂X [δ](0,τ)

∂z1
∂X [δ](0,τ)

∂z2



 t(z1, z2) = Mt(z1, z2).

• The theorem tells us that these are parameters for C2.
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uγ1 = 1γu1, u
γ
2 = ψ(γ)1γ7(u2 + βγ(τ)u1).

• The point is that although the pair (z1, z2) transform like a
vector valued modular function, u1 transforms like a modular
function, and u2 almost does.

• First order of business is to modify the definition of u2 to
a parameter which actually does transform like a modular
function.



Taylor expansion of theta function in u

• Taking Hessian in definition of X with respect to u gives:
1

(2π6D(τ))2
X[δ](u, τ) =

θ[δ](u, τ)(θ[δ]u,11(u, τ)θ[δ]u,22(u, τ)− θ[δ]u,12(u, τ)
2)

−θ[δ]u,11(u, τ)θ[δ]u,2(u, τ)2 − θ[δ]u,22(u, τ)θ[δ]u,1(u, τ)
2+

2θ[δ]u,12(u, τ)θ[δ]u,1(u, τ)θ[δ]u,2(u, τ).

• Comparing linear terms gives the linear term of θ[δ]u,22(u, τ)
as −u2/(4π12D(τ)2)

• Hence θ[δ](u, τ) = u1+?u1u22 − u32/(12π
12D(τ)2) + ...
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Handwaving over messy details

• Have θu,222(0, τ) = −2
4π12D(τ)2

• Studying the cubic and quintic terms in the expansion of (*)
gives w1 = u1, and w2 = u2 − 1

10
θu,22222[δ](0,τ)
θu,222[δ](0,τ)2

u1 are modular.

• For γ ∈ Γδ,

wγ
1 = 1γw1, w

γ
2 = ψ(γ)1γ7w2,

so w1 and w2 are our desired “modular" parameters.
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Modular model of the curve

• Since we took D(τ) #= 0, we have Θ is a smooth curve C of
genus 2, Aτ is the Jacobian of C, and what we seek is to use
the function theory on Aτ to define a model for C entirely in
terms of τ .

• Θ goes through origin, and can expand there via the implicit
function theorem to solve identically for

w1 = ρ(w2) = w3
2/(12π

12D(τ)2) + ... =
∑

i≥3
ai(τ)w

i
2
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where ρ is a power series containing only terms of odd degree
(i.e., ai = 0 for even i) since θ[δ](w, τ) is an odd function.

• Worth noting that a5(τ) = 0. In fact, we formed w2 by
modifying u2 by the unique multiple of u1 that makes a5(τ)
vanish

• Since w1 and w2 are modular, the ai are modular, too.



Defining the x-coordinate

• Since θ[δ](w, τ) vanishes on Θ, first derivatives have the same
factor of automorphy:

• For w ∈ C2, λ ∈ Lτ , have a linear function rλ(w):

θ[δ](w + λ, τ) = erλ(w)θ[δ](w, τ)

• i = 1,2, w ∈ Θ̃, θ[δ]w,i(w + λ, τ) = erλ(w)θ[δ]w,i(w, τ).

• Hence w ∈ Θ̃,

x(w) = x(w, τ) = −θ[δ]w,1(w, τ)/2θ[δ]w,2(w, τ)

gives a function on Θ.
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Properties of x

• A is jacobian of C, so Riemann’s vanishing theorem =⇒

For a generic point v ∈ Θ̃, and w a variable point,

θ[δ](v + w, τ) = 0 for precisely 2 choices of w mod Lτ

• Since θw,1[δ](w, τ) and θw,2[δ](w, τ), have same factor of au-
tomorphy as θ[δ](w, τ), also have 2 zeros on Θ̃ mod Lτ .

• For θw,2(w) = −w2
2/4π

12D(τ)2 + ..., both at origin,

• so x is a function on C with a double pole at ∞ (as we will
call the origin as a point of C) and nowhere else.
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Expansion of x coordinate at origin.

• Since lead term about the origin of θw,1[δ](w, τ) is 1, expan-
sion of x is

(4π6D(τ))2

w2
2

+
∑

n≥0
c2nw

2n
2 .

• c2n determined by a2m+1 and are modular.

In particular a5 = 0 means c0 = 0

• Take derivative of θ[δ]((ρ(w2), w2), τ) = 0.

• Get dw1/dw2 = ρ′(w2) = 1/2x(w) [see deJong].
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• Get for all γ ∈ Γδ,

x(wγ, γ(τ)) = χ(γ)jγ(τ)3x(w, τ),

• x transforms like a Jacobi-Siegel form for w ∈ Θ̃ and γ ∈ Γδ



Defining the y-coordinate

• dx/dw1, is function on C, poles only where x has poles or w1
is not a local parameter.

• Since Θ is smooth only happens where θw,2[δ](w, τ) = 0,
which is just the origin.

• So dx/dw1 = (dx/dw2)/(dw1/dw2) has a pole of order 5 at
infinity and no other poles on C.

• Compute

dx

dw1
= −

d

dw1

θ[δ]w,1(ρ(w2), w2, τ)

2θ[δ]w,2(ρ(w2), w2, τ)
=
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1

2θw,2(ρ(w2), w2)2
·

[−θw,2(ρ(w2), w2)(θw,11(ρ(w2), w2) + θw,12(ρ(w2), w2)
dw2

dw1
)

−θw,1(ρ(w2), w2)(θw,12(ρ(w2), w2) + θw,22(ρ(w2), w2)
dw2

dw1
)]

=
1

2θw,2(ρ(w2), w2)3
·

[−θw,2(ρ(w2), w2)
2θw,11(ρ(w2), w2)+2θw,12(ρ(w2), w2)θw,1(ρ(w2), w2)

−θw,1(ρ(w2), w2)
2θw,22(ρ(w2), w2)]

(here we suppress the [δ] and τ from the notation to improve
readability)



Expansion of y-coordinate

• Numerator is just X[δ](w, τ) restricted to Θ̃,

• We denote this quotient by y(w)/16π6D(τ), w ∈ Θ̃

• So y(w) = y(w, τ) is a function on C, and tranforms for γ ∈ Γδ
as

y(wγ, γ(τ)) = 115γ y(w, τ),

and the expansion at ∞ of y is

(π6D(τ))5

w5
2

+ ...
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Defining equation

• Note that x is an even function on C and y is an odd function.

• From expansions, there are bi ∈ C, such that

y2 = f(x) = x5 + b1x
4 + b2x

3 + b3x
2 + b4x+ b5.

• Since y is odd it vanishes at the 5 points Wi of order 2 on J
which lie on Θ

• f(x) has distinct roots ai, 1 ≤ i ≤ 5, and the equation gives
an affine model for C. (Equation gives a recursion to find all
c2n as a polynomial in c2, c4, c6 and c8.)
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Finding Weierstrass points

• These ai = x(Wi) are determined by the criterion that Θi =
T ∗
Wi

Θ is zeroes of an odd theta function θ[δi](w, τ)

ai = −
θw,1[δ](Wi, τ)

2θw,2[δ](Wi, τ)
= −

∂
∂w1

θ[δi](0, τ)

2 ∂
∂w2

θ[δi](0, τ)

Writing t(u1, u2) = Mt(z1, z2), t(w1, w2) = Nt(z1, z2), we
have t( ∂

∂u1
, ∂
∂u2

) = tM−1t( ∂
∂z1

, ∂
∂z2

), and t( ∂
∂w1

, ∂
∂w2

) = tN−1t( ∂
∂u1

, ∂
∂u2

),
so ai =

−
∂

∂u1
θ[δi](0, τ) +

1
10

θu,22222[δ](0,τ)
θu,222[δ](0,τ)2

∂
∂u2

θ[δi](0, τ)

2 ∂
∂u2

θ[δi](0, τ)
=
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−
1

2

∂X[δ](0,τ)
∂z2

∂θ[δi](0,τ)
∂z1

− ∂X[δ](0,τ)
∂z1

∂θ[δi](0,τ)
∂z2

−∂θ[δ](0,τ)
∂z2

∂θ[δi](0,τ)
∂z1

+ ∂θ[δ](0,τ)
∂z1

∂θ[δi](0,τ)
∂z2

−
1

20

θu,22222[δ](0, τ)

θu,222[δ](0, τ)2

=
J(X[δ](0, τ), θ[δi](0, τ))

2J(θ[δ](0, τ), θ[δi](0, τ))
−

1

20

θu,22222[δ](0, τ)

θu,222[δ](0, τ)2
,

which is a modular function of weight 3 (automorphy factor
ψ(γ)1γ(τ)6) on Γδ ∩ Γδi.

• This follows from the transformational properties of x

• Here J is jacobian matrix with respect to z1, z2.

• Will find an alternative expression for ai.



Weierstrass points from Thetanullwerte

• J(θ[δ](0, τ), θ[δi](0, τ)) is given by Rosenhain’s generalization
of Jacobi’s derivative formula. Let ηi = δi − δ. Then

J(θ[δ](0, τ), θ[δi](0, τ)) = ±π2
∏

j #=i

θ[δ + ηi + ηj](0),

which vanishes only if D(τ) = 0. Likewise

J(θ[δi](0, τ), θ[δj](0, τ)) = ±π2θ[δ+ηi+ηj](0, τ)
∏

k,1 #=i,j

θ[δ+ηk+ηl](0).

One calculates for i #= j, {1,2,3,4,5} = {i, j, k, l,m}, that
ai − aj =

J(X[δ](0, τ), θ[δi](0, τ))

2J(θ[δ](0, τ), θ[δi](0, τ))
−

J(X[δ](0, τ), θ[δj](0, τ))

2J(θ[δ](0, τ), θ[δj](0, τ))
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=
J(X[δ](0, τ), θ[δ](0, τ))J(θ[δi](0, τ), θ[δj](0, τ))

2J(θ[δ](0, τ), θ[δi](0, τ))J(θ[δ](0, τ), θ[δj](0, τ))

=
±π2θ[δ + ηi + ηj](0, τ)

∏
k,1 #=i,j θ[δ + ηk + ηl](0)(2π

6D(τ))

(±π2∏
k #=i θ[δ + ηi + ηk](0))(±π2

∏
k #=j θ[δ + ηj + ηk](0))

= ±π4θ[δ+ηk+η1](0, τ)
2θ[δ+η1+ηm](0, τ)2θ[δ+ηk+ηm](0, τ)2.



• c0(τ) = 0 implies that b1 = 0, (i.e., that
∑5

i=1 ai = 0)

Hence ai =
1
5
∑

j #=i ai − aj =

=
1

10

J(X[δ](0, τ), θ[δ](0, τ))

J(θ[δ](0, τ), θ[δi](0, τ)))

∑

j #=i

J(θ[δi](0, τ), θ[δj](0, τ))

J(θ[δ](0, τ), θ[δj](0, τ))

= π4
∑

j #=i

±
∏

k,1/∈{i,j}
θ[δ + ηk + η1](0, τ)

2.

• This gives another way to use analytic functions to solve
quintic equations!
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Applications

• Easy proof of Thomae’s Theorem in genus 2.

(ai−aj)(ak−a1)(a1−am)(am−ak) =
±1

π8
16D(τ)4θ[δ+ηi+ηj](0, τ)

4,

(for our model, det(ω) = D(τ).)

• Quick derivation of cross-ratios of branch points:

ai − ak
aj − ak

= ±
θ[δ + ηj + η1](0, τ)

2θ[δ + ηj + ηm](0, τ)2

θ[δ + ηi + η1](0, τ)2θ[δ + ηi + ηm](0, τ)2
.
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Relationship to function theory on J

• Haven’t needed sigma function yet!

• For γ ∈ Γδ

θ[δ](t(Cτ +D)−1w, γ ◦ τ) = k(γ, δ)jγ(τ)1/2eπiqτ(w)θ[δ](w, τ),

qτ(w) is a quadratic form whose coefficients depend on τ .

• Modify θ[δ](w, τ) by a trivial theta function so that the quadratic
form appearing in the transformation formula vanishes.

θ[δ](w, τ) = w1−w3
2/12π

12D(τ)2+w1(a11w
2
1+2a12w1w2+a22w

2
2)+...
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• Let q =

(
a11 a12
a12 a22

)

.

• DEFINE σ[δ](w, τ) = e−
twqwθ[δ](w, τ)

• Expansion at the origin is just w1 − w3
2/12π

12D(τ)2 + ...

• Resulting transformation

σ[δ]γ(t(Cτ +D)−1w, γ ◦ τ) = k(γ, δ)jγ(τ)1/2σ[δ](w, τ)

• Every coefficient in the expansion of σ in w1 and w2 is a
modular function of half-integral weight on Γδ.



• Other advantage of σ over θ: if we define

X[δ](w, τ) = Det1≤i,j≤2[
∂2 logσ[δ](w, τ)

∂wi∂wj
],

then σ[δ](w, τ)3X[δ](w, τ) = w2 + ...

as before, but now transforms like a Siegel-Jacobi form of
weight 2, i.e., for any γ ∈ Γδ,

X[δ](t(Cτ +D)−1w, γ(τ)) = det(Cτ +D)2X[δ](w, τ).
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Hyperelliptic ℘-functions

First let us multiply w1 and w2 by 2π6D(τ) and divide σ(w, τ) by
2π6D(τ) so that the expansion at the origin is just:

w1 − w3
2/3+ ...

For i, j = 1,2, let ℘ij = − ∂
∂wi

∂
∂wj

logσ[δ](w, τ).

σ(w, τ) = w1 + ...

σ1(w, τ) = 1+ ...

σ2(w, τ) = −w2
2 + ...

σ11(w, τ) = 0+ ..., σ12(w, τ) = 0+ ...
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σ22(w, τ) = −2w2 + ...

σ2(w, τ)℘11(w, τ) = 1+ ...

σ2(w, τ)℘12(w, τ) = −w2
2 + ...

σ2(w, τ)℘22(w, τ) = 2w1w2 + ...

• Hence 1,℘11,℘12,℘22 are a basis for the 4-dimensional space
L(2Θ).

• Definition in terms of partial derivatives then shows that ℘22
is the unique function f ∈ L(2Θ) up to affine transformation
such that there exist g, h ∈ L(2Θ) such that g/f |Θ = x2,
h/f |Θ = −x, and up to affine transformation, the unique
such g and h are ℘11 and ℘12.



Algebraic jacobian

• A is birational to the symmetric product C(2) so functions on
A are symmetric functions in two independent generic points
(x1, y1) , (x2, y2) on C.

• Basis for L(2Θ) is 1, X22 = x1 + x2, X12 = −x1x2, X11 =

X22X
2
12 + 2b1X2

12 − b2X22X12 − 2b3X12 + b4X22 + 2b5 − 2y1y2
(x1 − x2)2

.

• One can check that X11/X22|Θ = x2, X12/X22|Θ = −x.

So there exist constants αij, βij such that ℘ij = αijXij + βij
for i, j = 1,2.
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Finding the αij

The αij can be found by taking independent complex variables
z, z′ and looking at the lead terms in the expansions of both Xij
and ℘ij in terms of s = z + z′ and p = zz′ gotten by setting

(x1, y1) = (ρ(z), z), (x2, y2) = (ρ(z′), z′), w = (ρ(z)+ρ(z′), z+z′).

For example, σ(w) = 0 if z = 0, z′ = 0, or z′ = −z. So the
expansion of σ is divisible by p and s. On the other hand its lead
term is the lead term of ρ(z) + ρ(z′) − (z + z′)3/3 which is ps.
So σ(w)/ps is an invertible power series. Note that σ2(w) and
σ22(s) are divisible each by s, and their lead terms are −s2 and
−2s, so the expansion of ℘22(w) = 1

p2
(s2 − 2p + ...). Likewise

X22 = 1
ρ(z) + 1

ρ(z′) = 1
p2
(s2 − 2p + ...). Hence α22 = 1. Similar

calculations show that α11 = α12 = 1. Determining βij takes a
little more work.
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Finding the βij

Given the expansions we have, one can give Baker’s proof of
Baker’s formula:

σ(u+ v)σ(u− v)

σ(u)2σ(v)2
= ℘11(v)−℘11(u)+℘12(u)℘22(v)−℘12(v)℘22(u).

On the other hand, general theory gives that a function on A×A

with the same divisor as either side of Baker’s formula is

X11(v)−X11(u) +X12(u)X22(v)−X12(v)X22(u),

which shows that β12 = β22 = 0. It turns out that ℘11 and
X11 differ by a multiple of b3. One can redefine σ, so that they
coincide.
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Zeta functions

• ζi(w) = σi(w)
σ(w) , for i = 1,2, w ∈ C2 are quasiperiodic functions,

but do not restrict to functions on Θ.

• Rather, for w ∈ Θ̃, ξi(w) = σii(w)
σi(w) are quasiperiodic

(with twice the quasiperiods of ζi.)

• Hence their derivatives are functions on C.

• A currently messy calculation shows that d
dw2

ξ2(w) = −2x.
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• Like in genus 1, x is a derivative of a quasi-periodic function.

• Gives another way to invert the abelian integral in genus 2!


