(Work in progress: beware signs and powers of 2)

A level 1 genus 2 Jacobi's derivative formula and
applications to the analytic theory of genus
2 curves
David Grant
Department of Mathematics
University of Colorado at Boulder
grant@colorado.edu
October 15, 2010

Modular forms

- Central in number theory: few but ubiquitous
- $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z}), \chi$ character on $\Gamma, k \in \mathbb{Z}, \tau \in \mathfrak{h}=\{x+i y \mid y>0\}$
- f modular of weight k and character χ if for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$,

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=\chi(\gamma)(c \tau+d)^{k} f(\tau)
$$

- f analytic on \mathfrak{h}, cusps of \mathfrak{h} / Γ. If vanishes at cusps called a cusp form.

Genus 1 case

- $L \subset \mathbb{C}$ lattice, $E=\mathbb{C} / L, z \in \mathbb{C}$,

$$
\begin{gathered}
\wp(z, L)=\frac{1}{z^{2}}+\sum_{0 \neq \lambda \in L} \frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}=\frac{1}{z^{2}}+\sum_{n \geq 2} e_{n} z^{2 n-2} . \\
\wp(\alpha z, \alpha L)=\alpha^{-2} \wp(z, L),
\end{gathered}
$$

- $\tau \in \mathfrak{h}, L_{\tau}=\mathbb{Z} \oplus \mathbb{Z} \tau$. If $\wp(z, \tau)=\wp\left(z, L_{\tau}\right)$, for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$

$$
\wp\left(\frac{z}{c \tau+d}, \frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{2} \wp(z, \mathbb{Z}(a \tau+b) \oplus \mathbb{Z}(c \tau+d))=(c \tau+d)^{2} \wp(z, \tau)
$$

$$
e_{n}(\tau)=e_{n}\left(L_{\tau}\right) \Longrightarrow e_{n}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{2 n} e_{n}(\tau)
$$

- e_{n} is forced to be a modular form, because of modularity of \wp AND that of z
- Forces coefficients of defining equation for E,

$$
\left(\wp^{\prime}\right)^{2}=4 \wp^{3}-g_{2} \wp-g_{3}
$$

to be modular ($g_{2}=60 e_{2}, g_{3}=140 e_{3}$)

Application

- Rubin and Silverberg (following Gross, Stark) used modular coefficients of elliptic curve to count points on elliptic curves over finite fields.
- Apply to "CM" method.
- Goal is to build modular models of genus 2 curves (do history later)
- Nick Alexander (Silverberg student) is using to generalize Rubin-Silverberg to genus 2.

Siegel modular forms of genus 2

- $\left\ulcorner\subset \mathrm{Sp}_{4}(\mathbb{Z})\right.$ Consists of:
- Integral 2×2 matrices $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$

$$
t\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right) .
$$

- $\gamma=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma$ act on \mathfrak{h}_{2} via $\gamma \circ \tau=(A \tau+B)(C \tau+D)^{-1}$.
- $k \in \mathbb{Z}, \chi$ a character of Γ.
- Siegel modular form of degree 2 on Γ of weight k and character χ, is holomorphic functions f on \mathfrak{h}_{2} satisfying

$$
f(\gamma \circ \tau)=\chi(\gamma) j_{\gamma}(\tau)^{k} f(\tau),
$$

for any $\gamma=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma$, where $j_{\gamma}(\tau)=\operatorname{det}(C \tau+D)$.

- Build with theta functions.

Theta Functions

- $\tau \in \mathfrak{h}_{g}, a, b \in \frac{1}{2} \mathbb{Z}^{g}, z \in \mathbb{C}^{g}$.
- Theta function with characteristic $\left[\begin{array}{l}a \\ b\end{array}\right]$ is

$$
\theta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \tau)=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i^{t}(n+a) \tau(n+a)+2 \pi i^{t}(n+a)(z+b)} .
$$

- $\left[\frac{a}{b}\right]$ is a theta characteristic. It is even or odd depending on whether $\theta\left[\frac{a}{b}\right](z, \tau)$ is an even or odd function, i.e., where $e^{4 \pi i a b}= \pm 1$.

Transformation formula

$$
\begin{aligned}
& \gamma=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \operatorname{Sp}_{2 g}(\mathbb{Z}), a, b \in \mathbb{R}^{g}, z \in \mathbb{C}^{g}, \tau \in \mathfrak{h}_{g}, \\
& \theta\left[\begin{array}{l}
a \\
b
\end{array}\right]^{\gamma}\left({ }^{t}(C \tau+D)^{-1} z, \gamma \circ \tau\right)=\zeta(\gamma, a, b) j_{\gamma}(\tau)^{1 / 2} e^{\pi i^{t} z(C \tau+D)^{-1} C z} \theta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \tau) \text {, } \\
& \begin{aligned}
\zeta(\gamma, a, b) & =\rho(\gamma) \kappa(\gamma, a, b), \\
\kappa(\gamma, a, b) & \left.=e^{\pi i\left({ }^{t}(D a-C b)\left(-B a+A b+\left(A^{t} B\right)_{0}\right)-t\right.} a b\right)
\end{aligned} \\
& \rho(\gamma)=\text { an eighth root of } 1 \text {, } \\
& {\left[\begin{array}{l}
a \\
b
\end{array}\right]^{\gamma}=\left(\begin{array}{cc}
D & -C \\
-B & A
\end{array}\right)\left[\begin{array}{l}
a \\
b
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
\left(C^{t} D\right)_{0} \\
\left(A^{t} B\right)_{0}
\end{array}\right],}
\end{aligned}
$$

For matrix $M,(M)_{0}$ is column vector of diagonal entries of M $j_{\gamma}(\tau)^{1 / 2}$ is a choice of branch of square root of $j_{\gamma}(\tau)$.

g=1, Jacobi's Derivative Formula

- $\tau \in \mathfrak{h}, \theta\left[\begin{array}{l}1 / 2 \\ 1 / 2\end{array}\right](0, \tau)^{\prime}=-\pi \theta\left[{ }_{0}^{0}\right](0, \tau) \theta\left[\begin{array}{c}1 / 2 \\ 0\end{array}\right](0, \tau) \theta\left[\begin{array}{c}0 \\ 1 / 2\end{array}\right](0, \tau)$.
- $\left[\begin{array}{l}1 / 2 \\ 1 / 2\end{array}\right]$ is the lone odd theta characteristic $\bmod 1$, and $\left[\begin{array}{l}0 \\ 0\end{array}\right]$, $\left[\begin{array}{c}0 \\ 1 / 2\end{array}\right],\left[\begin{array}{c}1 / 2 \\ 0\end{array}\right]$ represent the 3 even theta characteristic $\bmod 1$.
- For $\gamma \in \Gamma$, the map $\left[{ }_{b}^{a}\right] \rightarrow\left[{ }_{b}^{a}\right]^{\gamma} \bmod 1$ gives an action on theta characteristic mod 1 that preserves the parity of theta characteristics.

Quick proof

- Transformation formula shows both sides of formula to the eighth power are modular forms of weight 12 for Γ. Their Fourier expansions show they are cusp forms. There is a unique such up to constants. The Fourier expansions give the constant.
- Formula was generalized by Rosenhain to $\tau \in \mathfrak{h}_{2}$, by Thomae to τ the period matrix of hyperelliptic curves, and by Igusa to all $\tau \in \mathfrak{h}_{g}$. Still active area (Farkas \& Kra, Grushevsky \& Manni.)

g=2: Rosenhain's Theorem

THEOREM: If $\delta_{i}, i=1,2$, are distinct odd theta characteristics, then there are even theta characteristics $\epsilon_{k}, 1 \leq k \leq 4$, depending on the δ_{i}, such that

$$
\operatorname{Det}_{1 \leq i, j \leq 2}\left[\frac{\partial \theta\left[\delta_{i}\right](0, \tau)}{\partial z_{j}}\right]= \pm \pi^{2} \prod_{k=1}^{4} \theta\left[\epsilon_{k}\right](0, \tau)
$$

- Let $\Gamma=\operatorname{Sp}_{4}(\mathbb{Z}), \Gamma_{\delta}=\left\{\gamma \in \Gamma \mid[\delta]^{\gamma}=[\delta] \bmod 1\right\}$
- Unlike genus 1, both sides of formula only modular on $\Gamma_{\delta_{1}} \cap \Gamma_{\delta_{2}}$ (so not on all of Γ, which would be "level 1")

First goal will be to describe a version of Rosenhain's formula that is modular for all of Γ.

Set up

- There are 10 even theta characteristics mod 1 for degree 2 theta functions. Choose representatives for these mod 1 and define

$$
D(\tau)=\prod_{\epsilon \text { even }} \theta[\epsilon](0, \tau)
$$

- Let Z be orbit of $\tau_{12}=0$ in \mathfrak{h}_{2} under action of $\operatorname{Sp}_{4}(\mathbb{Z})$. Then $D(\tau)$ has a zero of order 1 on Z and no other zeroes. (So $D(\tau) \neq 0$ precisely when τ is the period matrix of a curve of genus 2.)
- D is up to a constant the Siegel modular form (with character $\psi)$ on Γ and weight 5 .

Definition of $X[\delta]$

- For an odd theta characteristic δ, set

$$
X[\delta](z, \tau)=\theta[\delta](z, \tau)^{3} \operatorname{Det}_{1 \leq i, j \leq 2}\left[\frac{\partial^{2} \log \theta[\delta](z, \tau)}{\partial z_{i} \partial z_{j}}\right]
$$

which a computation with partial derivatives shows is entire.

- $X[\delta]$ was not chosen out of thin air. The function $\frac{X[\delta](z, \tau)}{\theta[\delta](z, \tau)^{3}}$ plays a pivotal role in the function theory of the abelian variety $A_{\tau}=\mathbb{C}^{2} /\left(\mathbb{Z}^{2}+\tau \mathbb{Z}^{2}\right)$ when $D(\tau) \neq 0$.

Degree 2 generalization of Jacobi's formula

THEOREM: For any odd theta characteristic $\delta, \operatorname{Det}_{\delta}=$

Sketch of Proof

- Transformation formula show $\operatorname{Det}_{\delta}$ is Siegel modular form (with character) on Γ_{δ} that vanishes on Z, and Γ permutes the $\operatorname{Det}_{\delta}$.
- Since holds for ALL odd theta characteristics $\delta, \operatorname{Det}_{\delta} / D(\tau)$ is holomorphic, so Siegel modular form of weight 0, i.e., a constant.
- Constant from the lead term of Taylor expansion in τ_{12}.
- Must employ Jacobi's derivative formula to find constant! (Similar argument gives quick proof of Rosenhain's theorem.)

Analytic jacobian

- Start with genus 2 curve

$$
C: y^{2}=x^{5}+b_{1} x^{4}+b_{2} x^{3}+b_{3} x^{2}+b_{4} x+b_{5}
$$

($\infty=$ point at infinity.)

- Differentials of the first kind $\mu_{1}=d x / y, \mu_{2}=x d x / y$.
- Symplectic basis for $H_{1}(C, \mathbb{Z}), A$ and B-loops generators.
- Form period matrices

$$
\omega=\left[\omega_{i j}\right], \omega^{\prime}=\left[\omega_{i j}^{\prime}\right], \quad \tau=\omega^{-1} \omega^{\prime}
$$

Analytic jacobian, continued

- Get $\tau \in \mathfrak{h}_{2}$. Set $L=\omega \mathbb{Z}^{2} \oplus \omega^{\prime} \mathbb{Z}^{2}$
- $J=\mathbb{C}^{2} / L$
- Embed $C \rightarrow J$ via

$$
P \rightarrow \int_{\infty}^{P}\left(\mu_{1}, \mu_{2}\right) \quad \bmod L
$$

- Image is a divisor Θ, which is zeros of a theta function with odd characteristic.

Torelli

- Can recover C from (J, Θ).
- Rosenhain form ($\lambda_{i}=$ ratio of Thetanullwerte)

$$
y^{2}=x(x-1)\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)
$$

(coefficients modular on $\cap_{i=1}^{6} \Gamma_{\delta_{i}}$, index 720 in Γ)

- Guardia form

$$
y^{2}=x\left(x^{4}+a x^{3}+b x^{2}+c\right)
$$

(roots involve derivatives of theta functions)
(coefficients modular on $\Gamma_{\delta_{1}} \cap \Gamma_{\delta_{2}}$, index 30 in Γ)

- Our result has coefficients modular on Γ_{δ}
(index 6 in Γ)
- Done by viewing C as zeroes of a theta function, and by using "modular parameters"

Set up

- Start with τ such that $D(\tau) \neq 0$. Set $L_{\tau}=\mathbb{Z}^{2} \tau \oplus \mathbb{Z}^{2}$.
- Pick odd theta characteristic $\delta, \tilde{\Theta}$ zeroes of $\theta[\delta](z, \tau)$ in \mathbb{C}^{2}. Descends to divisor Θ on $A_{\tau}=\mathbb{C}^{2} / L_{\tau}$.
- Get precisely those $\left(A_{\tau}, \Theta\right)$ not product of elliptic curves
- Means A_{τ} is a jacobian of a curve of genus two
- Means that Θ is smooth

Modular parameters

- For $\gamma \in \Gamma_{\delta},(*)$

$$
\theta[\delta]\left({ }^{t}(C \tau+D)^{-1} z, \gamma \circ \tau\right)=\zeta_{8}(\gamma) j_{\gamma}(\tau)^{1 / 2} e^{\pi i^{t} z(C \tau+D)^{-1} C z} \theta[\delta](z, \tau)
$$

- Set $u_{1}=\theta_{z, 1}[\delta](0, \tau) z_{1}+\theta_{z, 2}[\delta](0, \tau) z_{2}$, the linear term, so

$$
u_{1}^{\gamma}=\zeta_{8}(\gamma) j_{\gamma}(\tau)^{1 / 2} u_{1}
$$

(We let subscript indices $z, i j k \ldots$ denote partial derivatives with respect to the correspondingly indexed variables in z.)

- To avoid sign ambiguities, set $\ell_{\gamma}=u_{1}^{\gamma} / u_{1}$
- Let $\chi(\gamma)=\left(u_{1}^{\gamma}\right)^{2} / \operatorname{det}(C \tau+D) u_{1}^{2}$
- character of Γ_{δ} of order 4: $\chi^{2}=\psi$.

Modular parameters (continued)

- $H=$ Hessian, $h=\operatorname{det} H$. So $X[\delta](z, \tau)=\theta[\delta](z, \tau)^{3} h(\log \theta[\delta](z, \tau))$.
- Taking logs and hessians of (*) gives $h\left(\log \theta[\delta]\left({ }^{t}(C \tau+D)^{-1} z, \gamma \circ \tau\right)\right)=j_{\gamma}(\tau)^{2} \operatorname{det}(\mu+H(\log \theta[\delta](z, \tau)))$, where $\mu=2 \pi i(C \tau+D)^{-1} C$
- Hence $X[\delta]\left({ }^{t}(C \tau+D)^{-1} z, \gamma \circ \tau\right)=$

$$
\ell_{\gamma}(\tau)^{3}(\gamma) j_{\gamma}(\tau)^{2} e^{3 \pi i^{t} z(C \tau+D)^{-1} C z} \theta[\delta](z, \tau)^{3} \operatorname{det}(\mu+H(\log \theta[\delta](z, \tau))) .
$$

- Now
$\theta[\delta](z, \tau)^{3} \operatorname{det}(\mu+H(\log \theta[\delta](z, \tau)))=X[\delta](z, \tau)+\theta[\delta](z, \tau) g_{\gamma}(z, \tau)$, where $g_{\gamma}(z, \tau)$ is analytic.
- So if $u_{2}=X_{z, 1}[\delta](0, \tau) z_{1}+X_{z, 2}[\delta](0, \tau) z_{2}$, the linear term of $X[\delta](z, \tau)$, then

$$
u_{2}^{\gamma}=\psi(\gamma) \ell_{\gamma}(\tau)^{7}\left(u_{2}+g_{\gamma}(0, \tau) u_{1}\right)
$$

Recap

- Have Γ acting on $\mathbb{C}^{2} \times \mathfrak{h}_{2}$ via $\gamma=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma$ sending (z, τ) to $\left({ }^{t}(C \tau+D)^{-1} z, \gamma(\tau)\right)$.
- Let $\left(z_{1}, z_{2}\right)$ be the complex coordinates on \mathbb{C}^{2}. We introduced new coordinates:

$$
{ }^{t}\left(u_{1}, u_{2}\right)=\left(\begin{array}{ll}
\frac{\partial \theta[\delta](0, \tau)}{\partial z_{1}} & \frac{\partial \theta[\delta](0, \tau)}{\partial z_{2}} \\
\frac{\partial X[\delta](0, \tau)}{\partial z_{1}} & \frac{\partial X[\delta](0, \tau)}{\partial z_{2}}
\end{array}\right){ }^{t}\left(z_{1}, z_{2}\right)=M^{t}\left(z_{1}, z_{2}\right) .
$$

- The theorem tells us that these are parameters for \mathbb{C}^{2}.

$$
u_{1}^{\gamma}=\ell_{\gamma} u_{1}, u_{2}^{\gamma}=\psi(\gamma) \ell_{\gamma}^{7}\left(u_{2}+\beta_{\gamma}(\tau) u_{1}\right)
$$

- The point is that although the pair $\left(z_{1}, z_{2}\right)$ transform like a vector valued modular function, u_{1} transforms like a modular function, and u_{2} almost does.
- First order of business is to modify the definition of u_{2} to a parameter which actually does transform like a modular function.

Taylor expansion of theta function in u

- Taking Hessian in definition of X with respect to u gives: $\frac{1}{\left(2 \pi^{6} D(\tau)\right)^{2}} X[\delta](u, \tau)=$

$$
\begin{gathered}
\theta[\delta](u, \tau)\left(\theta[\delta]_{u, 11}(u, \tau) \theta[\delta]_{u, 22}(u, \tau)-\theta[\delta]_{u, 12}(u, \tau)^{2}\right) \\
-\theta[\delta]_{u, 11}(u, \tau) \theta[\delta]_{u, 2}(u, \tau)^{2}-\theta[\delta]_{u, 22}(u, \tau) \theta[\delta]_{u, 1}(u, \tau)^{2}+ \\
2 \theta[\delta]_{u, 12}(u, \tau) \theta[\delta]_{u, 1}(u, \tau) \theta[\delta]_{u, 2}(u, \tau) .
\end{gathered}
$$

- Comparing linear terms gives the linear term of $\theta[\delta]_{u, 22}(u, \tau)$ as $-u_{2} /\left(4 \pi^{12} D(\tau)^{2}\right)$
- Hence $\theta[\delta](u, \tau)=u_{1}+? u_{1} u_{2}^{2}-u_{2}^{3} /\left(12 \pi^{12} D(\tau)^{2}\right)+\ldots$

Handwaving over messy details

- Have $\theta_{u, 222}(0, \tau)=\frac{-2}{4 \pi^{12} D(\tau)^{2}}$
- Studying the cubic and quintic terms in the expansion of $(*)$ gives $w_{1}=u_{1}$, and $w_{2}=u_{2}-\frac{1}{10} \frac{\theta_{u, 22222}[\delta](0, \tau)}{\theta_{u, 222}[\delta](0, \tau)^{2}} u_{1}$ are modular.
- For $\gamma \in \Gamma_{\delta}$,

$$
w_{1}^{\gamma}=\ell_{\gamma} w_{1}, w_{2}^{\gamma}=\psi(\gamma) \ell_{\gamma}^{7} w_{2}
$$

so w_{1} and w_{2} are our desired "modular" parameters.

Modular model of the curve

- Since we took $D(\tau) \neq 0$, we have Θ is a smooth curve C of genus $2, A_{\tau}$ is the Jacobian of C, and what we seek is to use the function theory on A_{τ} to define a model for C entirely in terms of τ.
- Θ goes through origin, and can expand there via the implicit function theorem to solve identically for

$$
w_{1}=\rho\left(w_{2}\right)=w_{2}^{3} /\left(12 \pi^{12} D(\tau)^{2}\right)+\ldots=\sum_{i \geq 3} a_{i}(\tau) w_{2}^{i}
$$

where ρ is a power series containing only terms of odd degree (i.e., $a_{i}=0$ for even i) since $\theta[\delta](w, \tau)$ is an odd function.

- Worth noting that $a_{5}(\tau)=0$. In fact, we formed w_{2} by modifying u_{2} by the unique multiple of u_{1} that makes $a_{5}(\tau)$ vanish
- Since w_{1} and w_{2} are modular, the a_{i} are modular, too.

Defining the x-coordinate

- Since $\theta[\delta](w, \tau)$ vanishes on Θ, first derivatives have the same factor of automorphy:
- For $w \in \mathbb{C}^{2}, \lambda \in L_{\tau}$, have a linear function $r_{\lambda}(w)$:

$$
\theta[\delta](w+\lambda, \tau)=e^{r_{\lambda}(w)} \theta[\delta](w, \tau)
$$

- $i=1,2, w \in \widetilde{\Theta}, \theta[\delta]_{w, i}(w+\lambda, \tau)=e^{r_{\lambda}(w)} \theta[\delta]_{w, i}(w, \tau)$.
- Hence $w \in \widetilde{\Theta}$,

$$
x(w)=x(w, \tau)=-\theta[\delta]_{w, 1}(w, \tau) / 2 \theta[\delta]_{w, 2}(w, \tau)
$$

gives a function on Θ.

Properties of x

- A is jacobian of C, so Riemann's vanishing theorem \Longrightarrow

For a generic point $v \in \widetilde{\Theta}$, and w a variable point, $\theta[\delta](v+w, \tau)=0$ for precisely 2 choices of $w \bmod L_{\tau}$

- Since $\theta_{w, 1}[\delta](w, \tau)$ and $\theta_{w, 2}[\delta](w, \tau)$, have same factor of automorphy as $\theta[\delta](w, \tau)$, also have 2 zeros on $\tilde{\Theta} \bmod L_{\tau}$.
- For $\theta_{w, 2}(w)=-w_{2}^{2} / 4 \pi^{12} D(\tau)^{2}+\ldots$, both at origin,
- so x is a function on C with a double pole at ∞ (as we will call the origin as a point of C) and nowhere else.

Expansion of x coordinate at origin.

- Since lead term about the origin of $\theta_{w, 1}[\delta](w, \tau)$ is 1 , expansion of x is

$$
\frac{\left(4 \pi^{6} D(\tau)\right)^{2}}{w_{2}^{2}}+\sum_{n \geq 0} c_{2 n} w_{2}^{2 n}
$$

- $c_{2 n}$ determined by $a_{2 m+1}$ and are modular.

In particular $a_{5}=0$ means $c_{0}=0$

- Take derivative of $\theta[\delta]\left(\left(\rho\left(w_{2}\right), w_{2}\right), \tau\right)=0$.
- Get $d w_{1} / d w_{2}=\rho^{\prime}\left(w_{2}\right)=1 / 2 x(w)$ [see deJong].
- Get for all $\gamma \in \Gamma_{\delta}$,

$$
x\left(w^{\gamma}, \gamma(\tau)\right)=\chi(\gamma) j_{\gamma}(\tau)^{3} x(w, \tau),
$$

- x transforms like a Jacobi-Siegel form for $w \in \tilde{\Theta}$ and $\gamma \in \Gamma_{\delta}$

Defining the y-coordinate

- $d x / d w_{1}$, is function on C, poles only where x has poles or w_{1} is not a local parameter.
- Since Θ is smooth only happens where $\theta_{w, 2}[\delta](w, \tau)=0$, which is just the origin.
- So $d x / d w_{1}=\left(d x / d w_{2}\right) /\left(d w_{1} / d w_{2}\right)$ has a pole of order 5 at infinity and no other poles on C.
- Compute

$$
\frac{d x}{d w_{1}}=-\frac{d}{d w_{1}} \frac{\theta[\delta]_{w, 1}\left(\rho\left(w_{2}\right), w_{2}, \tau\right)}{2 \theta[\delta]_{w, 2}\left(\rho\left(w_{2}\right), w_{2}, \tau\right)}=
$$

$$
\begin{gathered}
\frac{1}{2 \theta_{w, 2}\left(\rho\left(w_{2}\right), w_{2}\right)^{2}} \cdot \\
{\left[-\theta_{w, 2}\left(\rho\left(w_{2}\right), w_{2}\right)\left(\theta_{w, 11}\left(\rho\left(w_{2}\right), w_{2}\right)+\theta_{w, 12}\left(\rho\left(w_{2}\right), w_{2}\right) \frac{d w_{2}}{d w_{1}}\right)\right.} \\
\left.-\theta_{w, 1}\left(\rho\left(w_{2}\right), w_{2}\right)\left(\theta_{w, 12}\left(\rho\left(w_{2}\right), w_{2}\right)+\theta_{w, 22}\left(\rho\left(w_{2}\right), w_{2}\right) \frac{d w_{2}}{d w_{1}}\right)\right] \\
=\frac{1}{2 \theta_{w, 2}\left(\rho\left(w_{2}\right), w_{2}\right)^{3}} . \\
{\left[-\theta_{w, 2}\left(\rho\left(w_{2}\right), w_{2}\right)^{2} \theta_{w, 11}\left(\rho\left(w_{2}\right), w_{2}\right)+2 \theta_{w, 12}\left(\rho\left(w_{2}\right), w_{2}\right) \theta_{w, 1}\left(\rho\left(w_{2}\right), w_{2}\right)\right.} \\
\left.-\theta_{w, 1}\left(\rho\left(w_{2}\right), w_{2}\right)^{2} \theta_{w, 22}\left(\rho\left(w_{2}\right), w_{2}\right)\right]
\end{gathered}
$$

(here we suppress the $[\delta]$ and τ from the notation to improve readability)

Expansion of y-coordinate

- Numerator is just $X[\delta](w, \tau)$ restricted to $\tilde{\Theta}$,
- We denote this quotient by $y(w) / 16 \pi^{6} D(\tau), w \in \tilde{\Theta}$
- So $y(w)=y(w, \tau)$ is a function on C, and tranforms for $\gamma \in \Gamma_{\delta}$ as

$$
y\left(w^{\gamma}, \gamma(\tau)\right)=\ell_{\gamma}^{15} y(w, \tau)
$$

and the expansion at ∞ of y is

$$
\frac{\left(\pi^{6} D(\tau)\right)^{5}}{w_{2}^{5}}+\ldots
$$

Defining equation

- Note that x is an even function on C and y is an odd function.
- From expansions, there are $b_{i} \in \mathbb{C}$, such that

$$
y^{2}=f(x)=x^{5}+b_{1} x^{4}+b_{2} x^{3}+b_{3} x^{2}+b_{4} x+b_{5} .
$$

- Since y is odd it vanishes at the 5 points W_{i} of order 2 on J which lie on Θ
- $f(x)$ has distinct roots $a_{i}, 1 \leq i \leq 5$, and the equation gives an affine model for C. (Equation gives a recursion to find all $c_{2 n}$ as a polynomial in c_{2}, c_{4}, c_{6} and c_{8}.)

Finding Weierstrass points

- These $a_{i}=x\left(W_{i}\right)$ are determined by the criterion that $\Theta_{i}=$ $T_{W_{i}}^{*} \Theta$ is zeroes of an odd theta function $\theta\left[\delta_{i}\right](w, \tau)$

$$
a_{i}=-\frac{\theta_{w, 1}[\delta]\left(W_{i}, \tau\right)}{2 \theta_{w, 2}[\delta]\left(W_{i}, \tau\right)}=-\frac{\frac{\partial}{\partial w_{1}} \theta\left[\delta_{i}\right](0, \tau)}{2 \frac{\partial}{\partial w_{2}} \theta\left[\delta_{i}\right](0, \tau)}
$$

Writing ${ }^{t}\left(u_{1}, u_{2}\right)=M^{t}\left(z_{1}, z_{2}\right),{ }^{t}\left(w_{1}, w_{2}\right)=N^{t}\left(z_{1}, z_{2}\right)$, we have ${ }^{t}\left(\frac{\partial}{\partial u_{1}}, \frac{\partial}{\partial u_{2}}\right)={ }^{t} M^{-1 t}\left(\frac{\partial}{\partial z_{1}}, \frac{\partial}{\partial z_{2}}\right)$, and ${ }^{t}\left(\frac{\partial}{\partial w_{1}}, \frac{\partial}{\partial w_{2}}\right)={ }^{t} N^{-1 t}\left(\frac{\partial}{\partial u_{1}}, \frac{\partial}{\partial u_{2}}\right)$, so $a_{i}=$

$$
-\frac{\frac{\partial}{\partial u_{1}} \theta\left[\delta_{i}\right](0, \tau)+\frac{1}{10} \frac{\theta_{u, 22222}[\delta](0, \tau)}{\theta_{u, 222}[\delta](0, \tau)^{2}} \frac{\partial}{\partial u_{2}} \theta\left[\delta_{i}\right](0, \tau)}{2 \frac{\partial}{\partial u_{2}} \theta\left[\delta_{i}\right](0, \tau)}=
$$

$$
\begin{gathered}
-\frac{1}{2} \frac{\frac{\partial X[\delta](0, \tau)}{\partial z_{2}} \frac{\partial \theta\left[\delta_{i}\right](0, \tau)}{\partial z_{1}}-\frac{\partial X[\delta](0, \tau)}{\partial z_{1}} \frac{\partial \theta\left[\delta_{i}\right](0, \tau)}{\partial z_{2}}}{\partial z_{2}} \frac{1}{2} \frac{1}{20\left[\delta_{i}\right](0, \tau)} \\
\partial z_{1}
\end{gathered} \frac{\theta_{u, 22222}[\delta](0, \tau)}{\theta_{u, 222}[\delta](0, \tau)^{2}} \frac{\partial, \tau)}{\partial \theta\left[\delta_{i}\right](0, \tau)} \frac{\partial z_{2}}{2 J\left(\theta[\delta](0, \tau), \theta\left[\delta_{i}\right](0, \tau)\right)}-\frac{1}{20} \frac{\theta_{u, 22222}[\delta](0, \tau)}{\theta_{u, 222}[\delta](0, \tau)^{2}},
$$

which is a modular function of weight 3 (automorphy factor $\left.\psi(\gamma) \ell_{\gamma}(\tau)^{6}\right)$ on $\Gamma_{\delta} \cap \Gamma_{\delta_{i}}$.

- This follows from the transformational properties of x
- Here J is jacobian matrix with respect to z_{1}, z_{2}.
- Will find an alternative expression for a_{i}.

Weierstrass points from Thetanullwerte

- $J\left(\theta[\delta](0, \tau), \theta\left[\delta_{i}\right](0, \tau)\right)$ is given by Rosenhain's generalization of Jacobi's derivative formula. Let $\eta_{i}=\delta_{i}-\delta$. Then

$$
J\left(\theta[\delta](0, \tau), \theta\left[\delta_{i}\right](0, \tau)\right)= \pm \pi^{2} \prod_{j \neq i} \theta\left[\delta+\eta_{i}+\eta_{j}\right](0),
$$

which vanishes only if $D(\tau)=0$. Likewise

$$
J\left(\theta\left[\delta_{i}\right](0, \tau), \theta\left[\delta_{j}\right](0, \tau)\right)= \pm \pi^{2} \theta\left[\delta+\eta_{i}+\eta_{j}\right](0, \tau) \prod_{k, \ell \neq i, j} \theta\left[\delta+\eta_{k}+\eta_{l}\right](0) .
$$

One calculates for $i \neq j,\{1,2,3,4,5\}=\{i, j, k, l, m\}$, that $a_{i}-a_{j}=$

$$
\frac{J\left(X[\delta](0, \tau), \theta\left[\delta_{i}\right](0, \tau)\right)}{2 J\left(\theta[\delta](0, \tau), \theta\left[\delta_{i}\right](0, \tau)\right)}-\frac{J\left(X[\delta](0, \tau), \theta\left[\delta_{j}\right](0, \tau)\right)}{2 J\left(\theta[\delta](0, \tau), \theta\left[\delta_{j}\right](0, \tau)\right)}
$$

$$
\begin{gathered}
=\frac{J(X[\delta](0, \tau), \theta[\delta](0, \tau)) J\left(\theta\left[\delta_{i}\right](0, \tau), \theta\left[\delta_{j}\right](0, \tau)\right)}{2 J\left(\theta[\delta](0, \tau), \theta\left[\delta_{i}\right](0, \tau)\right) J\left(\theta[\delta](0, \tau), \theta\left[\delta_{j}\right](0, \tau)\right)} \\
=\frac{ \pm \pi^{2} \theta\left[\delta+\eta_{i}+\eta_{j}\right](0, \tau) \prod_{k, \ell \neq i, j} \theta\left[\delta+\eta_{k}+\eta_{l}\right](0)\left(2 \pi^{6} D(\tau)\right)}{\left(\pm \pi^{2} \prod_{k \neq i} \theta\left[\delta+\eta_{i}+\eta_{k}\right](0)\right)\left(\pm \pi^{2} \prod_{k \neq j} \theta\left[\delta+\eta_{j}+\eta_{k}\right](0)\right)} \\
= \pm \pi^{4} \theta\left[\delta+\eta_{k}+\eta_{\ell}\right](0, \tau)^{2} \theta\left[\delta+\eta_{\ell}+\eta_{m}\right](0, \tau)^{2} \theta\left[\delta+\eta_{k}+\eta_{m}\right](0, \tau)^{2} .
\end{gathered}
$$

- $c_{0}(\tau)=0$ implies that $b_{1}=0$, (i.e., that $\sum_{i=1}^{5} a_{i}=0$)

Hence $a_{i}=\frac{1}{5} \sum_{j \neq i} a_{i}-a_{j}=$

$$
\begin{gathered}
=\frac{1}{10} \frac{J(X[\delta](0, \tau), \theta[\delta](0, \tau))}{\left.J\left(\theta[\delta](0, \tau), \theta\left[\delta_{i}\right](0, \tau)\right)\right)} \sum_{j \neq i} \frac{J\left(\theta\left[\delta_{i}\right](0, \tau), \theta\left[\delta_{j}\right](0, \tau)\right)}{J\left(\theta[\delta](0, \tau), \theta\left[\delta_{j}\right](0, \tau)\right)} \\
=\pi^{4} \sum_{j \neq i} \pm \prod_{k, \ell \notin\{i, j\}} \theta\left[\delta+\eta_{k}+\eta_{\ell}\right](0, \tau)^{2} .
\end{gathered}
$$

- This gives another way to use analytic functions to solve quintic equations!

Applications

- Easy proof of Thomae's Theorem in genus 2.

$$
\begin{aligned}
& \left(a_{i}-a_{j}\right)\left(a_{k}-a_{\ell}\right)\left(a_{\ell}-a_{m}\right)\left(a_{m}-a_{k}\right)=\frac{ \pm 1}{\pi^{8}} 16 D(\tau)^{4} \theta\left[\delta+\eta_{i}+\eta_{j}\right](0, \tau)^{4}, \\
& (\text { for our model, } \operatorname{det}(\omega)=D(\tau) .)
\end{aligned}
$$

- Quick derivation of cross-ratios of branch points:

$$
\frac{a_{i}-a_{k}}{a_{j}-a_{k}}= \pm \frac{\theta\left[\delta+\eta_{j}+\eta_{\ell}\right](0, \tau)^{2} \theta\left[\delta+\eta_{j}+\eta_{m}\right](0, \tau)^{2}}{\theta\left[\delta+\eta_{i}+\eta_{\ell}\right](0, \tau)^{2} \theta\left[\delta+\eta_{i}+\eta_{m}\right](0, \tau)^{2}}
$$

Relationship to function theory on J

- Haven't needed sigma function yet!
- For $\gamma \in \Gamma_{\delta}$

$$
\theta[\delta]\left({ }^{t}(C \tau+D)^{-1} w, \gamma \circ \tau\right)=k(\gamma, \delta) j_{\gamma}(\tau)^{1 / 2} e^{\pi i q_{\tau}(w)} \theta[\delta](w, \tau),
$$

$q_{\tau}(w)$ is a quadratic form whose coefficients depend on τ.

- Modify $\theta[\delta](w, \tau)$ by a trivial theta function so that the quadratic form appearing in the transformation formula vanishes.
$\theta[\delta](w, \tau)=w_{1}-w_{2}^{3} / 12 \pi^{12} D(\tau)^{2}+w_{1}\left(a_{11} w_{1}^{2}+2 a_{12} w_{1} w_{2}+a_{22} w_{2}^{2}\right)+\ldots$
- Let $q=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{12} & a_{22}\end{array}\right)$.
- DEFINE $\sigma[\delta](w, \tau)=e^{-t} w q w \theta[\delta](w, \tau)$
- Expansion at the origin is just $w_{1}-w_{2}^{3} / 12 \pi^{12} D(\tau)^{2}+\ldots$
- Resulting transformation

$$
\sigma[\delta]^{\gamma}\left({ }^{t}(C \tau+D)^{-1} w, \gamma \circ \tau\right)=k(\gamma, \delta) j_{\gamma}(\tau)^{1 / 2} \sigma[\delta](w, \tau)
$$

- Every coefficient in the expansion of σ in w_{1} and w_{2} is a modular function of half-integral weight on Γ_{δ}.
- Other advantage of σ over θ : if we define

$$
X[\delta](w, \tau)=\operatorname{Det}_{1 \leq i, j \leq 2}\left[\frac{\partial^{2} \log \sigma[\delta](w, \tau)}{\partial w_{i} \partial w_{j}}\right]
$$

then $\sigma[\delta](w, \tau)^{3} X[\delta](w, \tau)=w_{2}+\ldots$
as before, but now transforms like a Siegel-Jacobi form of weight 2, i.e., for any $\gamma \in \Gamma_{\delta}$,

$$
X[\delta]\left({ }^{t}(C \tau+D)^{-1} w, \gamma(\tau)\right)=\operatorname{det}(C \tau+D)^{2} X[\delta](w, \tau)
$$

Hyperelliptic \wp-functions

First let us multiply w_{1} and w_{2} by $2 \pi^{6} D(\tau)$ and divide $\sigma(w, \tau)$ by $2 \pi^{6} D(\tau)$ so that the expansion at the origin is just:

$$
w_{1}-w_{2}^{3} / 3+\ldots
$$

For $i, j=1,2$, let $\wp_{i j}=-\frac{\partial}{\partial w_{i}} \frac{\partial}{\partial w_{j}} \log \sigma[\delta](w, \tau)$.

$$
\begin{gathered}
\sigma(w, \tau)=w_{1}+\ldots \\
\sigma_{1}(w, \tau)=1+\ldots \\
\sigma_{2}(w, \tau)=-w_{2}^{2}+\ldots \\
\sigma_{11}(w, \tau)=0+\ldots, \sigma_{12}(w, \tau)=0+\ldots
\end{gathered}
$$

$$
\begin{gathered}
\sigma_{22}(w, \tau)=-2 w_{2}+\ldots \\
\sigma^{2}(w, \tau) \wp_{11}(w, \tau)=1+\ldots \\
\sigma^{2}(w, \tau) \wp_{12}(w, \tau)=-w_{2}^{2}+\ldots \\
\sigma^{2}(w, \tau) \wp_{22}(w, \tau)=2 w_{1} w_{2}+\ldots
\end{gathered}
$$

- Hence $1, \wp_{11}, \wp_{12}, \wp_{22}$ are a basis for the 4-dimensional space $\mathcal{L}(2 \Theta)$.
- Definition in terms of partial derivatives then shows that $\wp 22$ is the unique function $f \in L(2 \Theta)$ up to affine transformation such that there exist $g, h \in L(2 \Theta)$ such that $g /\left.f\right|_{\Theta}=x^{2}$, $h /\left.f\right|_{\Theta}=-x$, and up to affine transformation, the unique such g and h are \wp_{11} and \wp_{12}.

Algebraic jacobian

- A is birational to the symmetric product $C^{(2)}$ so functions on A are symmetric functions in two independent generic points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ on C.
- Basis for $L(2 \Theta)$ is $1, X_{22}=x_{1}+x_{2}, X_{12}=-x_{1} x_{2}, X_{11}=$

$$
\frac{X_{22} X_{12}^{2}+2 b_{1} X_{12}^{2}-b_{2} X_{22} X_{12}-2 b_{3} X_{12}+b_{4} X_{22}+2 b_{5}-2 y_{1} y_{2}}{\left(x_{1}-x_{2}\right)^{2}}
$$

- One can check that $X_{11} /\left.X_{22}\right|_{\Theta}=x^{2}, X_{12} /\left.X_{22}\right|_{\Theta}=-x$. So there exist constants $\alpha_{i j}, \beta_{i j}$ such that $\wp_{i j}=\alpha_{i j} X_{i j}+\beta_{i j}$ for $i, j=1,2$.

Finding the $\alpha_{i j}$

The $\alpha_{i j}$ can be found by taking independent complex variables z, z^{\prime} and looking at the lead terms in the expansions of both $X_{i j}$ and $\wp_{i j}$ in terms of $s=z+z^{\prime}$ and $p=z z^{\prime}$ gotten by setting $\left(x_{1}, y_{1}\right)=(\rho(z), z),\left(x_{2}, y_{2}\right)=\left(\rho\left(z^{\prime}\right), z^{\prime}\right), w=\left(\rho(z)+\rho\left(z^{\prime}\right), z+z^{\prime}\right)$.

For example, $\sigma(w)=0$ if $z=0, z^{\prime}=0$, or $z^{\prime}=-z$. So the expansion of σ is divisible by p and s. On the other hand its lead term is the lead term of $\rho(z)+\rho\left(z^{\prime}\right)-\left(z+z^{\prime}\right)^{3} / 3$ which is $p s$. So $\sigma(w) / p s$ is an invertible power series. Note that $\sigma_{2}(w)$ and $\sigma_{22}(s)$ are divisible each by s, and their lead terms are $-s^{2}$ and $-2 s$, so the expansion of $\wp_{22}(w)=\frac{1}{p^{2}}\left(s^{2}-2 p+\ldots\right)$. Likewise $X_{22}=\frac{1}{\rho(z)}+\frac{1}{\rho\left(z^{\prime}\right)}=\frac{1}{p^{2}}\left(s^{2}-2 p+\ldots\right)$. Hence $\alpha_{22}=1$. Similar calculations show that $\alpha_{11}=\alpha_{12}=1$. Determining $\beta_{i j}$ takes a little more work.

Finding the $\beta_{i j}$
Given the expansions we have, one can give Baker's proof of Baker's formula:
$\frac{\sigma(u+v) \sigma(u-v)}{\sigma(u)^{2} \sigma(v)^{2}}=\wp_{11}(v)-\wp_{11}(u)+\wp_{12}(u) \wp_{22}(v)-\wp_{12}(v) \wp_{22}(u)$.
On the other hand, general theory gives that a function on $A \times A$ with the same divisor as either side of Baker's formula is

$$
X_{11}(v)-X_{11}(u)+X_{12}(u) X_{22}(v)-X_{12}(v) X_{22}(u)
$$

which shows that $\beta_{12}=\beta_{22}=0$. It turns out that \wp_{11} and X_{11} differ by a multiple of b_{3}. One can redefine σ, so that they coincide.

Zeta functions

- $\zeta_{i}(w)=\frac{\sigma_{i}(w)}{\sigma(w)}$, for $i=1,2, w \in \mathbb{C}^{2}$ are quasiperiodic functions, but do not restrict to functions on Θ.
- Rather, for $w \in \tilde{\Theta}, \xi_{i}(w)=\frac{\sigma_{i i}(w)}{\sigma_{i}(w)}$ are quasiperiodic (with twice the quasiperiods of ζ_{i}.)
- Hence their derivatives are functions on C.
- A currently messy calculation shows that $\frac{d}{d_{w_{2}}} \xi_{2}(w)=-2 x$.
- Like in genus $1, x$ is a derivative of a quasi-periodic function.
- Gives another way to invert the abelian integral in genus 2 !

