Symmetry, Curves and Monopoles

H.W. Braden

Edinburgh, October 2010

Curve results with T.P. Northover.
Monopole Results in collaboration with V.Z. Enolski, A.D'Avanzo.

Overview

Equations

Zero Curvature/Lax
 \longrightarrow

Spectral Curve $\mathcal{C} \subset \mathcal{S}$

Reconstruction

Baker-Akhiezer Function

Overview

Equations
 Zero Curvature/Lax
 \longrightarrow
 Spectral Curve $\mathcal{C} \subset \mathcal{S}$

Reconstruction

Baker-Akhiezer Function

$t \mathbf{U}+\mathbf{C} \in \operatorname{Jac}(\mathcal{C})$

Overview

Equations \quad Zero Curvature/Lax \quad Spectral Curve $\mathcal{C} \subset \mathcal{S}$

Reconstruction

Baker-Akhiezer Function

$t \mathbf{U}+\mathbf{C} \in \operatorname{Jac}(\mathcal{C})$
Difficulties:

- Transcendental constraints. \mathcal{L}^{2} trivial

Overview

Equations \quad Zero Curvature/Lax \quad Spectral Curve $\mathcal{C} \subset \mathcal{S}$

Reconstruction

Baker-Akhiezer Function

$t \mathbf{U}+\mathbf{C} \in \operatorname{Jac}(\mathcal{C})$
Difficulties:

- Transcendental constraints. \mathcal{L}^{2} trivial
- Flows and Theta Divisor. $H^{0}(\mathcal{C}, \mathcal{L})=0$

Overview

Equations \quad Zero Curvature/Lax \quad Spectral Curve $\mathcal{C} \subset \mathcal{S}$

Reconstruction

Baker-Akhiezer Function

$t \mathbf{U}+\mathbf{C} \in \operatorname{Jac}(\mathcal{C})$
Difficulties:

- Transcendental constraints. \mathcal{L}^{2} trivial
- Flows and Theta Divisor. $H^{0}(\mathcal{C}, \mathcal{L})=0$
$\theta(t \mathbf{U}+\mathbf{C} \mid \tau)$

Setting

Spectral Curve

$$
\begin{gathered}
{\left[\frac{d}{d s}+M, A\right]=0, \quad \mathcal{C}: 0=\operatorname{det}\left(\eta 1_{n}+A(\zeta)\right):=P(\eta, \zeta)} \\
P(\eta, \zeta)=\eta^{n}+a_{1}(\zeta) \eta^{n-1}+\ldots+a_{n}(\zeta)
\end{gathered}
$$

Setting

Spectral Curve

$$
\left[\frac{d}{d s}+M, A\right]=0, \quad \mathcal{C}: 0=\operatorname{det}\left(\eta 1_{n}+A(\zeta)\right):=P(\eta, \zeta)
$$

$$
P(\eta, \zeta)=\eta^{n}+a_{1}(\zeta) \eta^{n-1}+\ldots+a_{n}(\zeta)
$$

Where does \mathcal{C} lie? $\quad \mathcal{C} \subset \mathcal{S}$

Setting

Spectral Curve

- $\left[\frac{d}{d s}+M, A\right]=0, \quad \mathcal{C}: 0=\operatorname{det}\left(\eta 1_{n}+A(\zeta)\right):=P(\eta, \zeta)$

$$
P(\eta, \zeta)=\eta^{n}+a_{1}(\zeta) \eta^{n-1}+\ldots+a_{n}(\zeta)
$$

Where does \mathcal{C} lie? $\quad \mathcal{C} \subset \mathcal{S}$

- Monopole: deg $a_{r}(\zeta) \leq 2 r, g_{\text {monopole }}=(n-1)^{2}, \mathcal{S}:=T \mathbb{P}^{1}$

Setting

Spectral Curve

- $\left[\frac{d}{d s}+M, A\right]=0, \quad \mathcal{C}: 0=\operatorname{det}\left(\eta 1_{n}+A(\zeta)\right):=P(\eta, \zeta)$

$$
P(\eta, \zeta)=\eta^{n}+a_{1}(\zeta) \eta^{n-1}+\ldots+a_{n}(\zeta)
$$

Where does \mathcal{C} lie? $\quad \mathcal{C} \subset \mathcal{S}$

- Monopole: deg $a_{r}(\zeta) \leq 2 r, g_{\text {monopole }}=(n-1)^{2}, \mathcal{S}:=T \mathbb{P}^{1}$
- Homology basis $\left\{\gamma_{i}\right\}_{i=1}^{2 g}=\left\{\mathfrak{a}_{i}, \mathfrak{b}_{i}\right\}_{i=1}^{g}$

Setting

Spectral Curve

- $\left[\frac{d}{d s}+M, A\right]=0, \quad \mathcal{C}: 0=\operatorname{det}\left(\eta 1_{n}+A(\zeta)\right):=P(\eta, \zeta)$

$$
P(\eta, \zeta)=\eta^{n}+a_{1}(\zeta) \eta^{n-1}+\ldots+a_{n}(\zeta)
$$

Where does \mathcal{C} lie? $\mathcal{C} \subset \mathcal{S}$

- Monopole: deg $a_{r}(\zeta) \leq 2 r, g_{\text {monopole }}=(n-1)^{2}, \mathcal{S}:=T \mathbb{P}^{1}$
- Homology basis $\left\{\gamma_{i}\right\}_{i=1}^{2 g}=\left\{\mathfrak{a}_{i}, \mathfrak{b}_{i}\right\}_{i=1}^{g}$
- Holomorphic differentials $d u_{i}(i=1, \ldots, g)$

Setting

Spectral Curve

- $\left[\frac{d}{d s}+M, A\right]=0, \quad \mathcal{C}: 0=\operatorname{det}\left(\eta 1_{n}+A(\zeta)\right):=P(\eta, \zeta)$

$$
P(\eta, \zeta)=\eta^{n}+a_{1}(\zeta) \eta^{n-1}+\ldots+a_{n}(\zeta)
$$

Where does \mathcal{C} lie? $\quad \mathcal{C} \subset \mathcal{S}$

- Monopole: deg $a_{r}(\zeta) \leq 2 r, g_{\text {monopole }}=(n-1)^{2}, \mathcal{S}:=T \mathbb{P}^{1}$
- Homology basis $\left\{\gamma_{i}\right\}_{i=1}^{2 g}=\left\{\mathfrak{a}_{i}, \mathfrak{b}_{i}\right\}_{i=1}^{g}$
- Holomorphic differentials $d u_{i}(i=1, \ldots, g)$
- Period Matrix $\tau=\mathcal{B} \mathcal{A}^{-1}$ where

$$
\Pi:=\binom{\mathcal{A}}{\mathcal{B}}=\left(\begin{array}{l}
\oint_{\mathfrak{a}_{i}} d u_{j} \\
\oint_{\mathfrak{b}_{i}} \\
\\
u_{j}
\end{array}\right)
$$

Setting

Spectral Curve

$$
\begin{gathered}
{\left[\frac{d}{d s}+M, A\right]=0, \quad \mathcal{C}: 0=\operatorname{det}\left(\eta 1_{n}+A(\zeta)\right):=P(\eta, \zeta)} \\
P(\eta, \zeta)=\eta^{n}+a_{1}(\zeta) \eta^{n-1}+\ldots+a_{n}(\zeta)
\end{gathered}
$$

Where does \mathcal{C} lie? $\quad \mathcal{C} \subset \mathcal{S}$

- Monopole: deg $a_{r}(\zeta) \leq 2 r, g_{\text {monopole }}=(n-1)^{2}, \mathcal{S}:=T \mathbb{P}^{1}$
- Homology basis $\left\{\gamma_{i}\right\}_{i=1}^{2 g}=\left\{\mathfrak{a}_{i}, \mathfrak{b}_{i}\right\}_{i=1}^{g}$
- Holomorphic differentials $d u_{i}(i=1, \ldots, g)$
- Period Matrix $\tau=\mathcal{B} \mathcal{A}^{-1}$ where

$$
\Pi:=\binom{\mathcal{A}}{\mathcal{B}}=\left(\begin{array}{ll}
\oint_{\mathfrak{a}_{i}} d u_{j} \\
\oint_{\mathfrak{b}_{i}} & d u_{j}
\end{array}\right)
$$

- Principle (Kontsevich, Zagier): Whenever you meet a new number, and have decided (or convinced yourself) that it is transcendental, try to figure out whether it is a period

Setting

Spectral Curve

$$
\begin{gathered}
{\left[\frac{d}{d s}+M, A\right]=0, \quad \mathcal{C}: 0=\operatorname{det}\left(\eta 1_{n}+A(\zeta)\right):=P(\eta, \zeta)} \\
P(\eta, \zeta)=\eta^{n}+a_{1}(\zeta) \eta^{n-1}+\ldots+a_{n}(\zeta)
\end{gathered}
$$

Where does \mathcal{C} lie? $\quad \mathcal{C} \subset \mathcal{S}$

- Monopole: deg $a_{r}(\zeta) \leq 2 r, g_{\text {monopole }}=(n-1)^{2}, \mathcal{S}:=T \mathbb{P}^{1}$
- Homology basis $\left\{\gamma_{i}\right\}_{i=1}^{2 g}=\left\{\mathfrak{a}_{i}, \mathfrak{b}_{i}\right\}_{i=1}^{g}$
- Holomorphic differentials $d u_{i}(i=1, \ldots, g)$
- Period Matrix $\tau=\mathcal{B} \mathcal{A}^{-1}$ where

$$
\Pi:=\binom{\mathcal{A}}{\mathcal{B}}=\left(\begin{array}{ll}
\oint_{\mathfrak{a}_{i}} d u_{j} \\
\oint_{\mathfrak{b}_{i}} & d u_{j}
\end{array}\right)
$$

- Principle (Kontsevich, Zagier): Whenever you meet a new number, and have decided (or convinced yourself) that it is transcendental, try to figure out whether it is a period
- normalized holomorphic differentials $\omega_{i}, \oint_{\mathfrak{a}_{i}} \omega_{j}=\delta_{i j} \oint_{\mathfrak{b}_{i}} \omega_{j}=\tau_{i j}$

Setting

Transcendental Constraints I

\mathcal{C} constrained by requiring periods of a given meromorphic differential to be specified

Setting

Transcendental Constraints I

\mathcal{C} constrained by requiring periods of a given meromorphic differential to be specified

- BPS Monopoles
- Sigma Model reductions in AdS/CFT
- Harmonic Maps

Setting

Transcendental Constraints I

\mathcal{C} constrained by requiring periods of a given meromorphic differential to be specified

- BPS Monopoles
- Sigma Model reductions in AdS/CFT
- Harmonic Maps at ∞_{j} with local coordinate $\zeta=1 / t \exists$ meromorphic differential $\gamma_{\infty}=\left(\frac{\rho_{j}}{t^{2}}+O(1)\right) d t, \quad 0=\oint_{\mathfrak{a}_{i}} \gamma_{\infty} ;$

Setting

Transcendental Constraints I

\mathcal{C} constrained by requiring periods of a given meromorphic differential to be specified

- BPS Monopoles
- Sigma Model reductions in AdS/CFT
- Harmonic Maps at ∞_{j} with local coordinate $\zeta=1 / t \exists$ meromorphic differential
$\gamma_{\infty}=\left(\frac{\rho_{j}}{t^{2}}+O(1)\right) d t$,
$0=\oint_{\mathfrak{a}_{i}} \gamma_{\infty} ;$
$\mathbf{U}:=\frac{1}{2 i \pi} \oint_{\mathfrak{b}} \gamma_{\infty}$

Setting

Transcendental Constraints I

\mathcal{C} constrained by requiring periods of a given meromorphic differential to be specified

- BPS Monopoles
- Sigma Model reductions in AdS/CFT
- Harmonic Maps at ∞_{j} with local coordinate $\zeta=1 / t \exists$ meromorphic differential
$\gamma_{\infty}=\left(\frac{\rho_{j}}{t^{2}}+O(1)\right) d t, \quad 0=\oint_{\mathfrak{a}_{j}} \gamma_{\infty} ; \quad \mathbf{U}:=\frac{1}{2 i \pi} \oint_{\mathfrak{b}} \gamma_{\infty}$
Ercolani-Sinha Constraints: The following are equivalent:

1. \mathcal{L}^{2} is trivial on \mathcal{C}.
2. $2 \mathbf{U} \in \Lambda \Longleftrightarrow \mathbf{U}=\frac{1}{2 \pi i}\left(\oint_{\mathfrak{b}_{1}} \gamma_{\infty}, \ldots, \oint_{\mathfrak{b}_{g}} \gamma_{\infty}\right)^{T}=\frac{1}{2} \mathbf{n}+\frac{1}{2} \tau \mathbf{m}$.
3. $\exists 1$-cycle $\mathfrak{e s}=\mathbf{n} \cdot \mathfrak{a}+\mathbf{m} \cdot \mathfrak{b}$ s.t. for every holomorphic differential

$$
\Omega=\frac{\beta_{0} \eta^{n-2}+\beta_{1}(\zeta) \eta^{n-3}+\ldots+\beta_{n-2}(\zeta)}{\frac{\partial \mathcal{P}}{\partial \eta}} d \zeta, \oint_{\mathfrak{e s s}} \Omega=-2 \beta_{0}
$$

Setting

Transcendental Constraints II

- $\theta(e \mid \tau)=0 \Longleftrightarrow e \in \Theta \subset \operatorname{Jac} \mathcal{C}$

Setting

Transcendental Constraints II

- $\theta(e \mid \tau)=0 \Longleftrightarrow e \in \Theta \subset \operatorname{Jac} \mathcal{C}$
- $e \equiv \phi_{Q}\left(\sum_{i=1}^{g-1} P_{i}\right)+K_{Q}, \quad \phi_{Q}(P):=\int_{Q}^{P} \omega$

Setting

Transcendental Constraints II

- $\theta(e \mid \tau)=0 \Longleftrightarrow e \in \Theta \subset \operatorname{Jac} \mathcal{C}$
- $e \equiv \phi_{Q}\left(\sum_{i=1}^{g-1} P_{i}\right)+K_{Q}, \quad \phi_{Q}(P):=\int_{Q}^{P} \omega$ mult $_{\mathrm{e}} \theta=\mathrm{i}\left(\sum_{\mathrm{i}=1}^{\mathrm{g}-1} \mathrm{P}_{\mathrm{i}}\right)=\operatorname{dim} \mathrm{H}^{1}\left(\mathcal{C}, \mathcal{L}_{\sum_{\mathrm{i}=1}^{\mathrm{g}-1} \mathrm{P}_{\mathrm{i}}}\right)=\operatorname{dim} \mathrm{H}^{0}\left(\mathcal{C}, \mathcal{L}_{\sum_{\mathrm{i}=1}^{\mathrm{g}-1} \mathrm{P}_{\mathrm{i}}}\right)$

Setting

Transcendental Constraints II

- $\theta(e \mid \tau)=0 \Longleftrightarrow e \in \Theta \subset \operatorname{Jac} \mathcal{C}$
- $e \equiv \phi_{Q}\left(\sum_{i=1}^{g-1} P_{i}\right)+K_{Q}, \quad \phi_{Q}(P):=\int_{Q}^{P} \omega$

$$
\text { mult }_{\mathrm{e}} \theta=\mathrm{i}\left(\sum_{\mathrm{i}=1}^{\mathrm{g}-1} \mathrm{P}_{\mathrm{i}}\right)=\operatorname{dim} \mathrm{H}^{1}\left(\mathcal{C}, \mathcal{L}_{\sum_{\mathrm{i}=1}^{\mathrm{g}-1} \mathrm{P}_{\mathrm{i}}}\right)=\operatorname{dim} \mathrm{H}^{0}\left(\mathcal{C}, \mathcal{L}_{\sum_{\mathrm{i}=1}^{\mathrm{g}-1} \mathrm{P}_{\mathrm{i}}}\right)
$$

- Monopoles: $\operatorname{deg} L^{\lambda}(n-2)=g-1$. Require for $\lambda \in(0,2)$

$$
\begin{aligned}
& H^{0}\left(\mathcal{C}, L^{\lambda}(n-2)\right)=0 \Longleftrightarrow \theta(\lambda \mathbf{U}+\mathbf{C} \mid \tau) \neq 0 \\
& \mathbf{C}=K_{Q}+\phi_{Q}\left((n-2) \sum_{k=1}^{n} \infty_{k}\right)
\end{aligned}
$$

Setting

Transcendental Constraints II

- $\theta(e \mid \tau)=0 \Longleftrightarrow e \in \Theta \subset \operatorname{Jac} \mathcal{C}$
- $e \equiv \phi_{Q}\left(\sum_{i=1}^{g-1} P_{i}\right)+K_{Q}, \quad \phi_{Q}(P):=\int_{Q}^{P} \omega$

$$
\text { mult }_{\mathrm{e}} \theta=\mathrm{i}\left(\sum_{\mathrm{i}=1}^{\mathrm{g}-1} \mathrm{P}_{\mathrm{i}}\right)=\operatorname{dim} \mathrm{H}^{1}\left(\mathcal{C}, \mathcal{L}_{\sum_{\mathrm{i}=1}^{\mathrm{g}-1} \mathrm{P}_{\mathrm{i}}}\right)=\operatorname{dim} \mathrm{H}^{0}\left(\mathcal{C}, \mathcal{L}_{\sum_{\mathrm{i}=1}^{\mathrm{g}-1} \mathrm{P}_{\mathrm{i}}}\right)
$$

- Monopoles: $\operatorname{deg} L^{\lambda}(n-2)=g-1$. Require for $\lambda \in(0,2)$

$$
\begin{gathered}
H^{0}\left(\mathcal{C}, L^{\lambda}(n-2)\right)=0 \Longleftrightarrow \theta(\lambda \mathbf{U}+\mathbf{C} \mid \tau) \neq 0 \\
\mathbf{C}=K_{Q}+\phi_{Q}\left((n-2) \sum_{k=1}^{n} \infty_{k}\right) \\
-K_{Q}=\phi_{*}(\Delta-(g-1) Q)=\phi_{Q}(\Delta) \\
\operatorname{deg} \Delta=g-1, \quad 2 \Delta \equiv \mathcal{K}_{\mathcal{C}}
\end{gathered}
$$

Calculation

- Homology basis $\left\{\gamma_{i}\right\}_{i=1}^{2 g}=\left\{\mathfrak{a}_{i}, \mathfrak{b}_{i}\right\}_{i=1}^{g}$
- algorithm for branched covers of \mathbb{P}^{1} (Tretkoff \& Tretkoff)
- poor if curve has symmetries
- Period Matrix $\tau=\mathcal{B} \mathcal{A}^{-1}$
- K_{Q}

Calculation

- Homology basis $\left\{\gamma_{i}\right\}_{i=1}^{2 g}=\left\{\mathfrak{a}_{i}, \mathfrak{b}_{i}\right\}_{i=1}^{g}$
- algorithm for branched covers of \mathbb{P}^{1} (Tretkoff \& Tretkoff)
- poor if curve has symmetries
- Period Matrix $\tau=\mathcal{B} \mathcal{A}^{-1}$
- K_{Q}

Symmetry. Why? Can be used to simplify the period matrix and integrals.

Calculation

- Homology basis $\left\{\gamma_{i}\right\}_{i=1}^{2 g}=\left\{\mathfrak{a}_{i}, \mathfrak{b}_{i}\right\}_{i=1}^{g}$
- algorithm for branched covers of \mathbb{P}^{1} (Tretkoff \& Tretkoff)
- poor if curve has symmetries
- Period Matrix $\tau=\mathcal{B} \mathcal{A}^{-1}$
- K_{Q}

Symmetry. Why? Can be used to simplify the period matrix and integrals. $\sigma \in \operatorname{Aut}(\mathcal{C})$

$$
\sigma^{*} \omega_{j}=\omega_{k} L_{j}^{k}, \sigma_{*}\binom{\mathfrak{a}_{i}}{\mathfrak{b}_{i}}=M\binom{\mathfrak{a}_{i}}{\mathfrak{b}_{i}}:=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{\mathfrak{a}_{i}}{\mathfrak{b}_{i}}, M \in \operatorname{Sp}(2 g, \mathbb{Z})
$$

Calculation

- Homology basis $\left\{\gamma_{i}\right\}_{i=1}^{2 g}=\left\{\mathfrak{a}_{i}, \mathfrak{b}_{i}\right\}_{i=1}^{g}$
- algorithm for branched covers of \mathbb{P}^{1} (Tretkoff \& Tretkoff)
- poor if curve has symmetries
- Period Matrix $\tau=\mathcal{B} \mathcal{A}^{-1}$
- K_{Q}

Symmetry. Why? Can be used to simplify the period matrix and integrals. $\sigma \in \operatorname{Aut}(\mathcal{C})$

$$
\sigma^{*} \omega_{j}=\omega_{k} L_{j}^{k}, \sigma_{*}\binom{\mathfrak{a}_{i}}{\mathfrak{b}_{i}}=M\binom{\mathfrak{a}_{i}}{\mathfrak{b}_{i}}:=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{\mathfrak{a}_{i}}{\mathfrak{b}_{i}}, M \in \operatorname{Sp}(2 g, \mathbb{Z})
$$

$$
\oint_{\sigma_{* \gamma}} \omega=\oint_{\gamma} \sigma^{*} \omega \Longleftrightarrow\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{\mathcal{A}}{\mathcal{B}}=\binom{\mathcal{A}}{\mathcal{B}} L \Longleftrightarrow M \Pi=\Pi L
$$

Restricts $\tau: \tau B \tau+\tau A-D \tau-C=0$
Curves with lots of symmetries: evaluate τ via character theory

Calculation

Example: Klein's Curve and Problems

- $\mathcal{C}: X^{3} Y+Y^{3} Z+Z^{3} X=0$
- $\operatorname{Aut}(\mathcal{C})=\operatorname{PSL}(2,7)$ order 168.

Calculation

Example: Klein's Curve and Problems

- $\mathcal{C}: X^{3} Y+Y^{3} Z+Z^{3} X=0$
- $\operatorname{Aut}(\mathcal{C})=\operatorname{PSL}(2,7)$ order 168.
$-\tau_{R L}=\left(\begin{array}{ccc}\frac{-1+3 \mathrm{i} \sqrt{7}}{8} & \frac{-1-\mathrm{i} \sqrt{7}}{4} & \frac{-3+\mathrm{i} \sqrt{7}}{8} \\ \frac{-1-\mathrm{i} \sqrt{7}}{4} & \frac{1+i \sqrt{7}}{2} & \frac{-1-\mathrm{i} \sqrt{7}}{4} \\ \frac{-3+\mathrm{i} \sqrt{7}}{8} & \frac{-1-\mathrm{i} \sqrt{7}}{4} & \frac{7+3 \mathrm{i} \sqrt{7}}{8}\end{array}\right)$

Calculation

Example: Klein's Curve and Problems

- $\mathcal{C}: X^{3} Y+Y^{3} Z+Z^{3} X=0$
- $\operatorname{Aut}(\mathcal{C})=\operatorname{PSL}(2,7)$ order 168.
$-\tau_{R L}=\left(\begin{array}{ccc}\frac{-1+3 \mathrm{i} \sqrt{7}}{8} & \frac{-1-\mathrm{i} \sqrt{7}}{4} & \frac{-3+\mathrm{i} \sqrt{7}}{8} \\ \frac{-\mathrm{i} \sqrt{7}}{4} & \frac{1+i \sqrt{7}}{2} & \frac{-1-\mathrm{i} \sqrt{7}}{4} \\ \frac{-3+\mathrm{i} \sqrt{7}}{8} & \frac{-1-\mathrm{i} \sqrt{7}}{4} & \frac{7+3 \mathrm{i} \sqrt{7}}{8}\end{array}\right)$
- $\tau=\frac{1}{2}\left(\begin{array}{lll}e & 1 & 1 \\ 1 & e & 1 \\ 1 & 1 & e\end{array}\right), \quad e=\frac{-1+\mathrm{i} \sqrt{7}}{2}$

Calculation

Example: Klein's Curve and Problems

- $\mathcal{C}: X^{3} Y+Y^{3} Z+Z^{3} X=0$
- $\operatorname{Aut}(\mathcal{C})=\operatorname{PSL}(2,7)$ order 168.
$-\tau_{R L}=\left(\begin{array}{ccc}\frac{-1+3 \mathrm{i} \sqrt{7}}{8} & \frac{-1-\mathrm{i} \sqrt{7}}{4} & \frac{-3+\mathrm{i} \sqrt{7}}{8} \\ \frac{-1-\mathrm{i} \sqrt{7}}{4} & \frac{1+i \sqrt{7}}{2} & \frac{-1-\mathrm{i} \sqrt{7}}{4} \\ \frac{-3+\mathrm{i} \sqrt{7}}{8} & \frac{-1-\mathrm{i} \sqrt{7}}{4} & \frac{7+3 \mathrm{i} \sqrt{7}}{8}\end{array}\right)$
- $\tau=\frac{1}{2}\left(\begin{array}{lll}e & 1 & 1 \\ 1 & e & 1 \\ 1 & 1 & e\end{array}\right), \quad e=\frac{-1+\mathrm{i} \sqrt{7}}{2}$
- This depends on finding a good adapted basis simplifying the action of $\operatorname{Aut}(\mathcal{C})$ on $H_{1}(\mathcal{C}, \mathbb{Z})$

Calculation

Example: Klein's Curve and Problems

- $\mathcal{C}: X^{3} Y+Y^{3} Z+Z^{3} X=0$
- $\operatorname{Aut}(\mathcal{C})=\operatorname{PSL}(2,7)$ order 168.
- $\tau_{R L}=\left(\begin{array}{ccc}\frac{-1+3 \mathrm{i} \sqrt{7}}{8} & \frac{-1-\mathrm{i} \sqrt{7}}{8} & \frac{-3+\mathrm{i} \sqrt{7}}{4} \\ \frac{-\mathrm{i} \sqrt{7}}{4} & \frac{1+i \sqrt{7}}{2} & \frac{-1-\mathrm{i} \sqrt{7}}{4} \\ \frac{-3+\mathrm{i} \sqrt{7}}{8} & \frac{-1-\mathrm{i} \sqrt{7}}{4} & \frac{7+3 \mathrm{i} \sqrt{7}}{8}\end{array}\right)$
- $\tau=\frac{1}{2}\left(\begin{array}{lll}e & 1 & 1 \\ 1 & e & 1 \\ 1 & 1 & e\end{array}\right), \quad e=\frac{-1+\mathrm{i} \sqrt{7}}{2}$
- This depends on finding a good adapted basis simplifying the action of $\operatorname{Aut}(\mathcal{C})$ on $H_{1}(\mathcal{C}, \mathbb{Z})$
- Symplectic Equivalence of Period Matrices τ, τ^{\prime}

$$
\begin{aligned}
& M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \operatorname{Sp}(2 g, \mathbb{Z}) \Leftrightarrow M^{T} J M=J \\
& \left(\begin{array}{ll}
\tau^{\prime} & -1
\end{array}\right) M\binom{1}{\tau}=0
\end{aligned}
$$

Calculation

Example: Klein's Curve and Problems

$$
\mathcal{C}: w^{7}=(z-1)(z-\rho)^{2}\left(z-\rho^{2}\right)^{4}, \quad \rho=\exp (2 \pi \mathrm{i} / 3)
$$

Figure: Homology basis in (z, w) coordinates

Calculation

Symmetry and K_{Q}

$$
\begin{aligned}
-2 K_{Q} & =\phi_{*}(2 \Delta-2(g-1) Q)=\int_{*}^{2 \Delta} \omega-2(g-1) \int_{*}^{Q} \omega \\
-2 K_{Q} \cdot L & =\int_{*}^{2 \Delta} \sigma^{*} \omega-2(g-1) \int_{*}^{Q} \sigma^{*} \boldsymbol{\omega} \\
-2 K_{Q} \cdot[L-1] & =\int_{2 \Delta}^{\sigma(2 \Delta)} \omega-2(g-1) \int_{Q}^{\sigma(Q)} \omega
\end{aligned}
$$

Calculation

Symmetry and K_{Q}

$$
\begin{aligned}
-2 K_{Q} & =\phi_{*}(2 \Delta-2(g-1) Q)=\int_{*}^{2 \Delta} \boldsymbol{\omega}-2(g-1) \int_{*}^{Q} \boldsymbol{\omega} \\
-2 K_{Q} \cdot L & =\int_{*}^{2 \Delta} \sigma^{*} \boldsymbol{\omega}-2(g-1) \int_{*}^{Q} \sigma^{*} \boldsymbol{\omega} \\
-2 K_{Q} \cdot[L-1] & =\int_{2 \Delta}^{\sigma(2 \Delta)} \omega-2(g-1) \int_{Q}^{\sigma(Q)} \omega
\end{aligned}
$$

Lemma
$\sigma^{N}=$ ld. If $L-1$ is invertible and Q a fixed point of σ then K_{Q} is a 2 N -torsion point.

$$
-2 K_{Q} \cdot[L-1]=n \Pi
$$

Calculation

Symmetry and K_{Q}

$$
\begin{aligned}
-2 K_{Q} & =\phi_{*}(2 \Delta-2(g-1) Q)=\int_{*}^{2 \Delta} \omega-2(g-1) \int_{*}^{Q} \omega \\
-2 K_{Q} \cdot L & =\int_{*}^{2 \Delta} \sigma^{*} \omega-2(g-1) \int_{*}^{Q} \sigma^{*} \boldsymbol{\omega} \\
-2 K_{Q} \cdot[L-1] & =\int_{2 \Delta}^{\sigma(2 \Delta)} \omega-2(g-1) \int_{Q}^{\sigma(Q)} \omega
\end{aligned}
$$

Lemma
$\sigma^{N}=$ Id. If $L-1$ is invertible and Q a fixed point of σ then K_{Q} is a 2 N -torsion point.

$$
-2 K_{Q \cdot} \cdot[L-1]=n \Pi
$$

Corollary
Lemma $+\psi \in \operatorname{Aut}(\mathcal{C})$. Then $\int_{Q}^{\psi(Q)} \omega$ is a $2 N(g-1)$-torsion point.

Calculation

Symmetry and K_{Q}

Symmetry+Fixed point $\Rightarrow K_{Q}$ a torsion point.
Suppose $\exists I, m \in \mathbb{Z}^{2 g}$ such that $m \Pi=I \Pi[L-1]=I[M-1] \Pi$.
Then $\left(-2 K_{Q}+\Pi \Pi\right)[L-1]=(n+m) \Pi$ in \mathbb{C}
Idea: Use Smith Normal Form of $M-1$ to choose $I, I(M-1)=m$ so as to make $n+m$ as simple as possible.

Calculation

Symmetry and K_{Q}

Symmetry+Fixed point $\Rightarrow K_{Q}$ a torsion point.
Suppose $\exists I, m \in \mathbb{Z}^{2 g}$ such that $m \Pi=I \Pi[L-1]=I[M-1] \Pi$.
Then $\left(-2 K_{Q}+\Pi \Pi\right)[L-1]=(n+m) \Pi$ in \mathbb{C}
Idea: Use Smith Normal Form of $M-1$ to choose $I, I(M-1)=m$ so as to make $n+m$ as simple as possible.

$$
\begin{gathered}
M-1=U \operatorname{Diag}\left(d_{1}, \ldots, d_{2 g}\right) V, \quad d_{i} \mid d_{i+1}, U, V \in G L(2 g, \mathbb{Z}) \\
\left(m V^{-1}\right)_{i} \equiv 0 \quad \bmod d_{i}, d_{i}>1
\end{gathered}
$$

Calculation

Symmetry and K_{Q}

Symmetry+Fixed point $\Rightarrow K_{Q}$ a torsion point.
Suppose $\exists I, m \in \mathbb{Z}^{2 g}$ such that $m \Pi=I \Pi[L-1]=I[M-1] \Pi$.
Then $\left(-2 K_{Q}+\Pi \Pi\right)[L-1]=(n+m) \Pi$ in \mathbb{C}
Idea: Use Smith Normal Form of $M-1$ to choose $I, I(M-1)=m$ so as to make $n+m$ as simple as possible.

$$
\begin{gathered}
M-1=U \operatorname{Diag}\left(d_{1}, \ldots, d_{2 g}\right) V, \quad d_{i} \mid d_{i+1}, U, V \in G L(2 g, \mathbb{Z}) \\
\left(m V^{-1}\right)_{i} \equiv 0 \quad \bmod d_{i}, d_{i}>1
\end{gathered}
$$

Klein's curve, order 7 automorphism: $d^{\prime} s=1, \ldots, 1,7 . Q=(0,0)$

$$
-2 K_{Q}=(k, 0,0,0,0,0)(M-1)^{-1} \Pi, \quad k \in\{0,1, \ldots, 6\}
$$

Calculation

Symmetry and K_{Q}

Symmetry+Fixed point $\Rightarrow K_{Q}$ a torsion point. Suppose $\exists I, m \in \mathbb{Z}^{2 g}$ such that $m \Pi=I \Pi[L-1]=I[M-1] \Pi$. Then $\left(-2 K_{Q}+\Pi \Pi\right)[L-1]=(n+m) \Pi$ in \mathbb{C}

Idea: Use Smith Normal Form of $M-1$ to choose $I, I(M-1)=m$ so as to make $n+m$ as simple as possible.

$$
\begin{gathered}
M-1=U \operatorname{Diag}\left(d_{1}, \ldots, d_{2 g}\right) V, \quad d_{i} \mid d_{i+1}, U, V \in G L(2 g, \mathbb{Z}) \\
\left(m V^{-1}\right)_{i} \equiv 0 \quad \bmod d_{i}, d_{i}>1
\end{gathered}
$$

Klein's curve, order 7 automorphism: $d^{\prime} s=1, \ldots, 1,7 . Q=(0,0)$

$$
-2 K_{Q}=(k, 0,0,0,0,0)(M-1)^{-1} \Pi, \quad k \in\{0,1, \ldots, 6\}
$$

Order 4 Automorphism $\Rightarrow k=3$. Thus $-2 K_{Q}$ fixed. Final half-period done numerically. $K_{0}=\frac{i}{\sqrt{7}}(3,-1,5)$

Calculation

Techniques and Problems

- How can one specify homology cycles?

Calculation

Techniques and Problems

- How can one specify homology cycles?

H.W. Braden Symmetry, Curves and Monopoles

Calculation

Techniques and Problems

- How can one specify homology cycles?
- How to determine $M, \sigma_{*}(\gamma)=M \cdot \gamma$? extcurves

Calculation
 Techniques and Problems

- How can one specify homology cycles?
- How to determine $M, \sigma_{*}(\gamma)=M \cdot \gamma$? extcurves
- How to determine a good basis $\left\{\gamma_{i}\right\}$?

Calculation

Techniques and Problems

- How can one specify homology cycles?
- How to determine $M, \sigma_{*}(\gamma)=M \cdot \gamma$? extcurves
- How to determine a good basis $\left\{\gamma_{i}\right\}$?

Example (Fay): $\phi: \hat{\mathcal{C}} \rightarrow \hat{\mathcal{C}}, \phi^{2}=\mathrm{Id}, \quad \pi: \hat{\mathcal{C}} \rightarrow \mathcal{C}:=\hat{\mathcal{C}} /\langle\phi\rangle$ $2 n$ fixed points. $\hat{g}=2 g+n-1$
$\mathfrak{a}_{1}, \mathfrak{b}_{1}, \ldots \mathfrak{a}_{g}, \mathfrak{b}_{g}, \mathfrak{a}_{g+1}, \mathfrak{b}_{g+1}, \ldots \mathfrak{a}_{g+n+1}, \mathfrak{b}_{g+n+1}, \mathfrak{a}_{1^{\prime}}, \mathfrak{b}_{1^{\prime}}, \ldots \mathfrak{a}_{g^{\prime}}, \mathfrak{b}_{g^{\prime}}$
where $\mathfrak{a}_{1^{\prime}}, \mathfrak{b}_{1^{\prime}}, \ldots, \mathfrak{a}_{g^{\prime}}, \mathfrak{b}_{g^{\prime}}$ a basis of $H_{1}(\mathcal{C}, \mathbb{Z})$ and

$$
\begin{array}{rlrl}
\mathfrak{a}_{\alpha^{\prime}}+\phi\left(\mathfrak{a}_{\alpha}\right) & =0 & =\mathfrak{b}_{\alpha^{\prime}}+\phi\left(\mathfrak{b}_{\alpha}\right), & \\
\mathfrak{a}_{i}+\phi\left(\mathfrak{a}_{i}\right) & =0 & =\mathfrak{b}_{i}+\phi\left(\mathfrak{b}_{i}\right), & \\
g+1 \leq i \leq g+n-1
\end{array}
$$

Calculation: The spectral curve of genus 4

$$
\begin{aligned}
& \hat{\mathcal{C}}: \quad w^{3}+\alpha w z^{2}+\beta z^{6}+\gamma z^{3}-\beta=0 \\
& C_{3}:(z, w) \mapsto(\rho z, \rho w), \rho=\exp (2 \pi \mathrm{i} / 3) \\
& \left(\begin{array}{cccc}
a & b & b & b
\end{array}\right) \quad \sigma_{*}^{k}\left(\mathfrak{a}_{i}\right)=\mathfrak{a}_{i+k} \\
& \tau_{\hat{\mathfrak{C}}}=\left(\begin{array}{llll}
a & b & b & b \\
b & c & d & d \\
b & d & c & d
\end{array}\right) \quad \begin{array}{l}
\sigma_{*}^{k}\left(\mathfrak{a}_{i}\right)=\mathfrak{a}_{i+k} \\
\sigma_{*}^{k}\left(\mathfrak{b}_{i}\right)=\mathfrak{b}_{i+k}
\end{array} \\
& \sigma_{*}^{k}\left(\mathfrak{a}_{0}\right)=\mathfrak{a}_{0} \\
& \sigma_{*}^{k}\left(\mathfrak{b}_{0}\right) \sim \mathfrak{b}_{0}
\end{aligned}
$$

Calculation

The spectral curve of genus 2

$$
\begin{aligned}
\mathcal{C}=\hat{\mathcal{C}} / \mathrm{C}_{3}: & y^{2}=\left(x^{3}+\alpha x+\gamma\right)^{2}+4 \beta^{2} \\
\tau= & \left(\begin{array}{cc}
\frac{a}{3} & b \\
b & c+2 d
\end{array}\right)
\end{aligned}
$$

Figure: Projection of the previous basis

Cyclically Symmetric Monopoles

- $\omega=\exp (2 \pi i / n),(\eta, \zeta) \rightarrow(\omega \eta, \omega \zeta)$
C_{n} symmetric (centred) charge- n monopole curve of form
$\hat{\mathcal{C}}: \eta^{n}+a_{2} \eta^{n-2} \zeta^{2}+\ldots+a_{n} \zeta^{n}+\beta \zeta^{2 n}+(-1)^{n} \beta=0, \quad a_{i}, \beta \in \mathbf{R}$

Cyclically Symmetric Monopoles

- $\omega=\exp (2 \pi i / n),(\eta, \zeta) \rightarrow(\omega \eta, \omega \zeta)$
C_{n} symmetric (centred) charge- n monopole curve of form
$\hat{\mathcal{C}}: \eta^{n}+a_{2} \eta^{n-2} \zeta^{2}+\ldots+a_{n} \zeta^{n}+\beta \zeta^{2 n}+(-1)^{n} \beta=0, \quad a_{i}, \beta \in \mathbf{R}$
- $\hat{\mathcal{C}}$ a $n: 1$ unbranched cover Affine Toda Spectral Curve $\mathcal{C}:=\hat{\mathcal{C}} / \mathrm{C}_{n}$

$$
\mathcal{C}: y^{2}=\left(x^{n}+a_{2} x^{n-2}+\ldots+a_{n}\right)^{2}-4(-1)^{n} \beta^{2}
$$

$g_{\text {monopole }}=(n-1)^{2}, g_{\text {Toda }}=(n-1)$

Cyclically Symmetric Monopoles

- $\omega=\exp (2 \pi i / n),(\eta, \zeta) \rightarrow(\omega \eta, \omega \zeta)$
C_{n} symmetric (centred) charge- n monopole curve of form

$$
\hat{\mathcal{C}}: \eta^{n}+a_{2} \eta^{n-2} \zeta^{2}+\ldots+a_{n} \zeta^{n}+\beta \zeta^{2 n}+(-1)^{n} \beta=0, \quad a_{i}, \beta \in \mathbf{R}
$$

- $\hat{\mathcal{C}}$ a $n: 1$ unbranched cover Affine Toda Spectral Curve $\mathcal{C}:=\hat{\mathcal{C}} / \mathrm{C}_{n}$

$$
\mathcal{C}: y^{2}=\left(x^{n}+a_{2} x^{n-2}+\ldots+a_{n}\right)^{2}-4(-1)^{n} \beta^{2}
$$

$$
g_{\text {monopole }}=(n-1)^{2}, g_{\text {Toda }}=(n-1)
$$

- Sutcliffe's Ansatz: Cyclic Nahm eqns. \supset Affine Toda eqns.

Cyclically Symmetric Monopoles

- $\omega=\exp (2 \pi i / n),(\eta, \zeta) \rightarrow(\omega \eta, \omega \zeta)$
C_{n} symmetric (centred) charge- n monopole curve of form

$$
\hat{\mathcal{C}}: \eta^{n}+a_{2} \eta^{n-2} \zeta^{2}+\ldots+a_{n} \zeta^{n}+\beta \zeta^{2 n}+(-1)^{n} \beta=0, \quad a_{i}, \beta \in \mathbf{R}
$$

- $\hat{\mathcal{C}}$ a $n: 1$ unbranched cover Affine Toda Spectral Curve $\mathcal{C}:=\hat{\mathcal{C}} / \mathrm{C}_{n}$

$$
\mathcal{C}: y^{2}=\left(x^{n}+a_{2} x^{n-2}+\ldots+a_{n}\right)^{2}-4(-1)^{n} \beta^{2}
$$

$$
g_{\text {monopole }}=(n-1)^{2}, g_{\text {Toda }}=(n-1)
$$

- Sutcliffe's Ansatz: Cyclic Nahm eqns. \supset Affine Toda eqns.
- Cyclic Nahm eqns. \equiv Affine Toda eqns.

Theorem
Any cyclically symmetric monopole is gauge equivalent to Nahm data given by Sutcliffe's ansatz, and so obtained from the affine Toda equations.

Cyclically Symmetric Monopoles

- Cyclic monopoles \equiv (particular) Affine Toda solns.

Cyclically Symmetric Monopoles

- Cyclic monopoles \equiv (particular) Affine Toda solns.
- $\pi: \hat{\mathcal{C}} \rightarrow \mathcal{C}:=\hat{\mathcal{C}} / \mathrm{C}_{n}$

$$
\lambda \mathbf{U}+\mathbf{C}=\pi^{*}(\lambda \mathbf{u}+\mathbf{c}), \quad \mathbf{u}, \mathbf{c} \in \operatorname{Jac}\left(\mathcal{C}_{\text {Toda }}\right)
$$

Cyclically Symmetric Monopoles

- Cyclic monopoles \equiv (particular) Affine Toda solns.
- $\pi: \hat{\mathcal{C}} \rightarrow \mathcal{C}:=\hat{\mathcal{C}} / \mathrm{C}_{n}$

$$
\lambda \mathbf{U}+\mathbf{C}=\pi^{*}(\lambda \mathbf{u}+\mathbf{c}), \quad \mathbf{u}, \mathbf{c} \in \operatorname{Jac}\left(\mathcal{C}_{\text {Toda }}\right)
$$

- Fay-Accola

$$
\theta[\mathbf{C}]\left(\pi^{*} z ; \tau_{\text {monopole }}\right)=c \prod_{i=1}^{n} \theta\left[\mathbf{e}_{i}\right]\left(z ; \tau_{\text {Toda }}\right)
$$

" θ-functions are still far from being a spectator sport."(L.V. Ahlfors)

C_{3} Cyclically Symmetric Monopoles

- $\mathfrak{c}:=\pi(\mathfrak{e s})$
$Y^{2}=\left(X^{3}+a X+g\right)^{2}+4$
ES conditions $\equiv \oint_{\boldsymbol{c}} \frac{\mathrm{d} X}{Y}=0$

C_{3} Cyclically Symmetric Monopoles

- $\mathfrak{c}:=\pi(\mathfrak{e s})$
$Y^{2}=\left(X^{3}+a X+g\right)^{2}+4$
ES conditions $\equiv \oint_{\mathbf{c}} \frac{\mathrm{d} X}{Y}=0$

C_{3} Cyclically Symmetric Monopoles

- $\mathfrak{c}:=\pi(\mathfrak{e s})$
$Y^{2}=\left(X^{3}+a X+g\right)^{2}+4$
ES conditions $\equiv \oint_{\mathbf{c}} \frac{\mathrm{d} X}{Y}=0$

- With $a=\alpha / \beta^{2 / 3}, g=\gamma / \beta$ and β defined by

$$
6 \beta^{1 / 3}=\oint_{\mathfrak{c}} \frac{X \mathrm{~d} X}{Y}
$$

we may recover the monopole spectral curve.

C_{3} Cyclically Symmetric Monopoles

Figure: A log-log plot of the asymptotic behaviour of α versus γ

