
SMOOTH HYPERELLIPTIC COVERS AND SYSTEMS OF
POLYNOMIAL EQUATIONS

ARMANDO TREIBICH

1. Introduction

Let P1 and X denote, respectively, the projective line and a fixed smooth pro-
jective curve of genus 1, both defined over C. Choosing an arbitrary point q ∈ X
as its origin, the pair (X, q) becomes an elliptic curve, having an inverse homo-
morphism [ - 1] : X → X fixing ωo := q ∈ X, as well as three other half-periods,
{ω1, ω2, ω3} ⊂ X. The quotient curve is isomorphic to P1, and ϕX : X → P1

will denote the corresponding degree-2 projection, sending the triplet (ωo, ω1, ω2)
onto {∞, 0, 1} ⊂ P1. The remaining half-period projects onto ϕX(ω3) = λ 6= 0, 1.
Classically ϕX is represented, in affine coordinates, as the projection{

(x, y) ∈ C2, y2 = x(x− 1)(x− λ)
}
−→ C, (x, y) 7→ x.

More generally, we will consider smooth hyperelliptic curves, i.e.: projective
curves of genus g ≥ 2, having an involution τΓ : Γ → Γ, fixing exactly 2g + 2
(so-called Weierstrass) points. The quotient curve Γ/τΓ is therefore isomorphic to
P1, and the corresponding degree-2 projection ϕΓ : Γ → Γ/τΓ is ramified at those
2g+ 2 points. As for the elliptic curve (X, q), fixing a triplet of Weierstrass points
(p, p′, p′′) of Γ allows us to define ϕΓ as the unique degree-2 cover ϕΓ : Γ → P1

sending (p, p′, p′′) onto (∞, 0, 1). As for ϕX , the projection ϕΓ affords a (so-called
Rosenheim) affine equation{

(t, v) ∈ C2, v2 = t(t− 1)Π2g−3
i=1

}
−→ C, (t, v) 7→ t.

We will start studying and constructing all projections π : Γ → X, called here-
after hyperelliptic covers, such that Γ is a smooth hyperelliptic curve (which we
will usually mark with the choice of a triplet of Weierstrass points). Dropping
the hyperelliptic condition, the genus of the cover would be (almost) completely
independent of its degree; e.g.: according to a theorem of Riemann, for any effec-
tive divisor of even degree, D =

∑
imiqi, and any n ≥ max{mi}, there exists a

finite positive number of degree-n covers of X with discriminant D ( and genus
g := 1

2 (degD + 1) ). Restricting instead to hyperelliptic covers changes radically
the whole issue, as explained hereafter.

For any hyperelliptic cover π : Γ→ X, marked at a triplet of Weierstrass points
(p, p′, p′′), we choose q := π(p) as origin of X and let [ - 1] : X → X denote the
corresponding inverse homomorphism. We then prove the equality [ - 1]◦π = π◦τΓ,
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which in turn implies the existence of a degree-n projection R : P1 → P1, fitting
into the following commutative diagram:
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// P1

R

��
X

[−1] // X
ϕX // P1

where XR is the fiber product of R : P1 → P1 and ϕX : X → P1, while j : Γ→ XR

is the desingularization of XR. It immediately follows that:

(1) at any Weierstrass point w ∈ Γ, the ramification index indπ(w) is odd;

(2) the ramification divisor Ramπ is τΓ-invariant;

(3) the genus and degree of π, say g and n, satisfy g ≤ 2n - 1;

(4) the discriminant Discπ is [ -1]-invariant and has degree 2g - 2;

(5) R(∞) =∞ and R : P1 → P1 has odd ramification index at {∞, 0, 1}.

Conversely, consider a rational fraction R := P
Q such that:

(1) P and Q are coprime, degP = n and degP - degQ > 0 is odd;

(2) R has odd ramification index at {0, 1} and R(0), R(1) ∈ {∞, 0, 1, λ}.

Let XR denote the fiber product of ϕX : X → P1 with R : P1 → P1, and
let j : Γ → XR denote its desingularization. Then, Γ is naturally equipped with
the Weierstrass point p := ϕ−1

Γ (∞), as well as two projections, ϕΓ : Γ → P1 and
π : Γ → X, of degrees 2 and n respectively. Hence, π : Γ → X is a hyperelliptic
cover, fitting in a commutative diagram as above.

In both cases Ramπ can be deduced from RamR (3.4.), implying in particular,
that constructing hyperelliptic covers with given ramification divisor, reduces to
finding rational fractions with given derivative.

In the general set up, the hyperelliptic cover π : p ∈ Γ → q ∈ X factors via the
canonical Abel embedding Ap : p ∈ Γ → 0 ∈ JacΓ, followed by a homomorphism
Nmπ : 0 ∈ JacΓ → q ∈ X, with kernel a (g - 1)-dimensional abelian subvariety of

JacΓ, say X∗
ι∗

↪→ JacΓ. Furthermore, by dualizing Nmπ we get a homomorphism,
ιπ : q ∈ X → 0 ∈ JacΓ, such that Nmπ ◦ ιπ = [n] : X → X, the multiplication
by n. Analogously, we obtain a projection 0 ∈ JacΓ → 0 ∈ X∗, which composed
with Ap defines a second morphism π∗ : p ∈ Γ→ 0 ∈ X∗, completing the following
commutative diagram.
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In particular, for any genus-2 hyperelliptic cover the corresponding subabelian
factor X∗ is an elliptic curve, such that JacΓ is isogenous to X×X∗ and π∗ a sup-
plementary degree-n hyperelliptic cover. The latter can be constructed as degree-n
hyperelliptic covers with a degree-2 discriminant.

More generally, we are interested in constructing all degree-n hyperelliptic cov-
ers with arbitrary given discriminant D (satisfiying the latter restrictions 3) & 4)),
and supplementary combinatorial data (see 4.3.(1)). They can be effectively con-
structed in terms of the polynomial reduction method mentioned above (which
goes back to H.Langes’s work, as explained in [1]; see also [3] & [4] for the genus-2
case). We will actually produce a system of N polynomial equations in N variables
(N ≤ 2n - 2+ 1

2degD ), in the complement of a hypersurface of CN , whose solutions
parameterize the isomorphism classes of the latter hyperelliptic covers, and give
Rosenheim affine equations representing them.

There is yet another interesting family of hyperelliptic covers, π : p ∈ Γ → X,
loosely defined hereafter, for which we can propose a similar presentation. Recall
that Ap(Γ), the image of Γ by the Abel map, intersects the elliptic curve ιπ(X)
at the origin 0 ∈ JacΓ. We will say that π is a hyperelliptic tangential cover,
whenever the latter curves are tangent at 0 ∈ JacΓ. One can weaken the tangency
condition as follows. For any 1 ≤ d ≤ g, let Vd,p denote the d-th hyperosculating
subspace to Ap(Γ) at Ap(p) = 0 ∈ JacΓ; we will call π : p ∈ Γ → q ∈ X a hy-
perelliptic d-osculating cover, if and only if the tangent to ιπ(X) at 0 is contained
in Vd,p\Vd-1,p . These covers have been extensively studied and exist in arbitrary
degree (or arbitrary genus), over any elliptic curve (cf. [7] & [6]).

For fixed elliptic curve X and degree n ≥ 2, there can only exist a finite num-
ber of hyperelliptic tangential covers, all of them with genus g bounded as follows:
(2g + 1)2 ≤ 8n + 1 (e.g.: [7], [5] and all the references in both articles). However,
their existence was only proved when 2n - 3 ≤ (2g + 1)2, leaving even the genus-2
case completely unanswered (for any n > 14). Similar results hold for the hyperel-
liptic d-osculating covers. As for the preceding family, given n, we will construct a
system of N polynomial equations and N variables (N ≤ 3n + 2), parameterizing
degree-n hyperelliptic tangential covers of the initial elliptic curve (X, q) (as well as
similar results for the d-osculating case). Last but not least, we should stress that,
although such a system may have no solution, an easy application of the Theorem of
Bezout gives us an upper bound of the number of corresponding hyperelliptic covers.
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2. Hyperelliptic covers of an elliptic curve - General properties

Let P1 and X denote, respectively, the projective line and a fixed smooth pro-
jective curve of genus 1, both defined over C. Choosing an arbitrary point q ∈ X
as its origin, the pair (X, q) becomes an elliptic curve, having an inverse homo-
morphism [ - 1] : X → X fixing ωo := q ∈ X, as well as three other half-periods,
{ω1, ω2, ω3} ⊂ X. The quotient curve is isomorphic to P1, and ϕX : X → P1 will
denote the corresponding degree-2 projection, sending the triplet (ωo, ω1, ω2) onto
{∞, 0, 1} ⊂ P1. The remaining half-period projects onto ϕX(ω3) = λ 6= 0, 1.

Classically ϕX is represented, in affine coordinates, as follows. The equation
y2 = x(x - 1)(x -λ) defines a smooth affine plane cubic, which can be compactified
inside P1×P1, by adding the unibranch singular point (∞,∞). Up to desingulariz-
ing the resulting curve at (∞,∞), we obtain an elliptic curve isomorphic to (X, q),
equipped with a marked degree-2 projection, identified with ϕX :{

(x, y) ∈ C2, y2 = x(x− 1)(x− λ)
}
−→ C, (x, y) 7→ x, q 7→ ∞.

Definition 2.1.

(1) We will call hyperelliptic curve any projective curve of genus g ≥ 2, having
an involution τΓ : Γ → Γ, such that the quotient curve Γ/τΓ is isomorphic
to P1. The corresponding degree-2 projection ϕΓ : Γ→ Γ/τΓ = P1 is there-
fore ramified at 2g + 2 (so-called Weierstrass) points.

(2) We obtain a (so-called Rosenheim) affine equation for ϕΓ as follows: choose
a triplet of Weierstrass points (p, p′, p′′) and identify Γ/τΓ with P1, by pro-
jecting (p, p′, p′′) onto (∞, 0, 1). The equation v2 = t(t - 1)Π2g−3

j=1 (t -αj),
where {αj} are the projections of the remaining 2g - 3 Weierstrass points,
defines an affine curve which can be compactified inside P1×P1, by adding
the unibranch singular point (∞,∞). Up to desingularizing the resulting
curve at (∞,∞), we obtain a hyperelliptic curve isomorphic to Γ, equipped
with a marked degree-2 projection, identified with ϕΓ:{

(t, v) ∈ C2, v2 = t(t− 1)Π2g−3
j=1 (t -αj)

}
−→ C (t, v) 7→ t, p 7→ ∞.

(3) We will call π : Γ→ X hyperelliptic cover, if and only if Γ is a hyperellip-
tic curve (and will usually mark it with the choices of a Weierstrass point
p ∈ Γ and q := π(p) as origin of X).

Proposition 2.2.

Any hyperelliptic cover π : p ∈ Γ → q ∈ X satisfies [ - 1] ◦ π = π ◦ τΓ, and can
be pushed down to a morphism R : ∞ ∈ P1 → ∞ ∈ P1, fitting in the following
commutative diagram:
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p ∈ Γ

π

��

τΓ // p ∈ Γ

π

��

ϕΓ //∞ ∈ P1

R

��
q ∈ X

[−1] // q ∈ X ϕX //∞ ∈ P1

Proof. Recall that for all q′ ∈ X, its inverse with respect to the group structure
of (X, q), denoted [ - 1](q′), is the unique point such that [ - 1](q′) - q is linearly equiv-
alent to q - q′. Recall also that for any r′ ∈ Γ the divisor r′+τΓ(r′) is linearly equiv-
alent to 2p. In other words, there exists a meromorphic function f : Γ→ P1, with
divisor of zeroes and poles equal to (f) := (f)0 - (f)∞ = r′ + τΓ(r′) - 2p. Consider
the corresponding norm function, Nmπ(f) : X → P1, defined for any z ∈ X \{q} as
Nmπ(f)(z) := Πn

i=1f(π(pi(z))), where {π(pi(z)), i = 1, . . . , n} = f−1(z) ⊂ Γ. Its
divisor is equal to

(
Nmπ(f)

)
= q′ + q′′ - 2q, where q′ := π(r′) and q′′ := π(τΓ(r′)).

Hence q′ - q is linearly equivalent to q - q′′, implying that ( q′′ = [ - 1](q′), and) for
all r′ ∈ Γ, π

(
τΓ(r′)

)
= [ - 1]

(
π(r′)

)
as asserted. Classical results imply that π can

be pushed down to a morphism between the quotients. We can also define R(α),
for any α ∈ P1, as the unique point in ϕX

(
π
(
ϕ−1

Γ (α)
))

. �

Corollary 2.3.

Let π be a degree-n hyperelliptic cover as above, Ramπ its ramification divisor,
WΓ its set of Weierstrass points, and for any i = 0, . . . , 3, let mπ,i denote the num-
ber of Weierstrass points, other than p, lying over the half-period ωi. Then:

(1) π(WΓ) ⊂ {ωi} and, at any w ∈WΓ, π has odd ramification index indπ(w);

(2) Ramπ is τΓ-invariant and degRamπ = 2g - 2, where g is the genus of Γ;

(3) mπ,0 + 1 ≡ mπ,1 ≡ mπ,2 ≡ mπ,3 ≡ n(mod.2);

(4) the genus and degree of π satisfy indπ(p) ≤ 2g - 1 ≤ 4n - 3;

(5) the discriminant Discπ is [ -1]-invariant and has degree 2g - 2.

Moreover, for any w ∈WΓ and morphism R : P1 → P1 as in 2.2., π and R have
same ramification indices, indπ(w) = indR

(
ϕΓ(w)

)
, at w and ϕΓ(w). Last but not

least, given (p, p′, p′′) ∈W 3
Γ , there exists a unique projection R : P1 → P1 such that

R ◦ ϕΓ = ϕX ◦ π and ϕΓ

(
(p, p′, p′′)

)
= (∞, 0, 1).

Proof.

1) Knowing that [ - 1] ◦ π = π ◦ τΓ, one can apply classical results implying that
π can be pushed down to a morphism between the quotients, fitting in the latter
diagram. Furthermore, since R

(
ϕΓ(p)

)
= ϕX

(
π(p)

)
and indϕΓ(p) = 2 = indϕX (q),

we easily deduce that indπ(p) = indR(∞).
2) & 5) The equality [ - 1] ◦ π = π ◦ τΓ implies that WΓ, the fixed-point set of
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τΓ, projects onto {ωi}, the fixed-point set of [ - 1]. It also follows that Ramπ

and Discπ are τΓ and [ - 1] invariant, respectively. Applying the Hurwitz for-
mula to π and ϕΓ we deduce that deg(Discπ) = deg

(
π(Ramπ)

)
= 2g - 2 and

]WΓ = deg(RamϕΓ) = 2g + 2, respectively.
3) Each fiber π−1(ωi) being τΓ invariant, its subset of non-Weierstrass points is
made of pairs of points; hence n -mπ,i - δi,0 ≡ 0(mod.2).
4)We know that indπ(p) - 1 ≤ deg(Ramπ) = 2g - 2 = - 4 + ]WΓ = - 3 +

∑3
i=omπ,i,

as well as mπ,i + δi,0 ≤ n, for any i = 0, · · · , 3. Hence indπ(p) ≤ 2g - 1 ≤ 4n - 3.
At last, once (p, p′, p′′) ∈ W 3

Γ is choosed, there exists a unique isomorphism
Γ/τΓ ' P1, identifying ϕΓ

(
(p, p′, p′′)

)
with (∞, 0, 1). The quotient curve X/[ - 1]

being already identified with P1, the uniqueness of R follows.�

3. Polynomial approach to hyperelliptic covers

Given the elliptic curve (X, q) and the degree-2 cover ϕX : X → P1, we have as-
sociated in 2.2., to any smooth hyperelliptic cover π : Γ→ X, marked at a triplet
(p, p′, p′′) ∈ W 3

Γ , a particular rational fraction R = P
Q . Conversely, we have the

following result.

Proposition 3.1.

Given a projection R : ∞ ∈ P1 → ∞ ∈ P1, such that indR(∞), indR(0) and
indR(1) are odd, and R(0), R(1) ∈ {∞, 0, 1, λ}, there exists a unique smooth hy-
perelliptic cover π : Γ→ X, equipped with a triplet of Weierstrass points (p, p′, p′′)
projecting onto (∞, 0, 1), such that R ◦ ϕΓ = ϕX ◦ π.

Sketch of proof. Choosing a projection R : ∞ ∈ P1 → ∞ ∈ P1, with odd
ramification indices at (∞, 0, 1), such that R(0), R(1) ∈ {∞, 0, 1, λ}, is equivalent
to choosing a rational fraction R(t) = P (t)

Q(t) , such that degP - degQ is an odd positive
integer, P ′Q -PQ′ has odd multiplicities indR(0) and indR(1), and t(t - 1) divides
PQ(P -Q)(P -λQ). Replacing the variable x by the rational fraction R(t) in the
equation y2 = x(x - 1)(x -λ), multiplying it by Q(t)4 and making the birational
change of variable w = yQ(t)2, gives the affine equation of the fiber product of
R : P1 → P1 with ϕX : X → P1, i.e.: w2 = P (t)Q(t)

(
P (t) -Q(t)

)(
P (t) -λQ(t)

)
.

The corresponding completion in P1 × P1, say Γ, comes with a degree-2 cover
ϕΓ : (t, w) ∈ Γ 7→ t ∈ P1, ramified at the triplet (p, p′, p′′) =

(
(∞,∞), (0, 0), (1, 0)

)
,

as well as the projection π : (t, w) ∈ Γ 7→ (x, y) = (R(t), w
Q(t)2 ) ∈ X. The corre-

sponding involution τΓ : (t, w) 7→ (t, -w), fixes the triplet (p, p′, p′′) of unibranch
points, and ϕΓ

(
(p, p′, p′′)

)
= (∞, 0, 1). Hence, up to desingularizing Γ, we ob-

tain a smooth hyperelliptic cover, fitting in a commutative diagram as above, and
equipped with a triplet (p, p′, p′′) ∈W 3

Γ , such that ϕΓ

(
(p, p′, p′′)

)
= (∞, 0, 1). �

Remark 3.2.

(1) The results 2.3. and 3.1. set up a one to one correspondence between
degree-n isomorphism classes of smooth triply marked hyperelliptic covers{
π : Γ→ X}, and pairs of coprime polynomials

{
P,Q)

}
, such that degP =

n and R := P
Q satisfies the conditions of 3.1..
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(2) According to 2.3., degRamπ = 2g- 2 and Γ has 2g + 2 Weierstrass points,
at any one of which π has odd ramification index. Hence, there must be
at least g + 3 ones with indπ = 1. In particular, we may choose the above
triplet (p, p′, p′′) ∈ W 3

Γ without ramification, or equivalently, R := P
Q with

indR(∞) = indR(0) = indR(1) = 1.
(3) Given such a pair (P,Q), the product P (t)Q(t)

(
P (t) -Q(t)

)(
P (t) -λQ(t)

)
can be uniquely factored as t(t - 1)A(t)B(t)2, where B(t) is monic, A has
odd degree and t(t - 1)A(t) has no multiple root. It follows that the affine
curve {(t, v) ∈ C2, v2 = t(t - 1)A(t)}, completed as explained in 2.1.(2),
and equipped with the projection (t, v) 7→ (x, y) :=

(P (t)
Q(t) ,

vB(t)
Q(t)2)

)
, gives the

smooth hyperelliptic cover of (X, q), uniquely associated to (P,Q).

Working locally with the corresponding equations one easily deduces the ramifica-
tion divisor Ramπ, out of RamR, as follows.

Lemma 3.3.

Let π : p ∈ Γ→ q ∈ X be the smooth hyperelliptic cover associated to the projec-
tion R : ∞ ∈ P1 → ∞ ∈ P1, and ϕΓ : p ∈ Γ → ∞ ∈ P1 the corresponding degree-2
projection. Then, for any α ∈ P1:

(1) if R(α) /∈ {0, 1, λ,∞}, the fiber ϕ−1
Γ (α) has two points, say r 6= τΓ(r) ∈ Γ,

and indπ(r) = indπ
(
τΓ(r)

)
= indR(α);

(2) if R(α) ∈ {0, 1, λ,∞} and indR(α) is even, the fiber ϕ−1
R (α) has two points,

say r 6= τΓ(r) ∈ Γ, and indπ(r) = indπ
(
τΓ(r)

)
= 1

2 indR(α);

(3) if R(α) ∈ {0, 1, λ,∞} and indR(α) is odd, there is a unique (Weierstrass)
point in ϕ−1

R (α), say r = τΓ(r) ∈WΓ, and indπ(r) = indR(α).

Proposition 3.4.

Let π : p ∈ Γ → q ∈ X be the smooth hyperelliptic cover associated to
R : ∞ ∈ P1 → ∞ ∈ P1. Then, Ramπ can be deduced from RamR. More pre-
cisely, if

RamR =
∑
J ljγj +

∑
K 2mkαk +

∑
S(2rs - 1)βs, where

∀j ∈ J, R(γj) /∈ {0, 1, λ,∞}, and ∀k ∈ K, ∀s ∈ S, R(αk), R(βs) ∈ {0, 1, λ,∞},

then, Ramπ =
∑
J ljϕ

−1
Γ (γj) +

∑
K 2mkϕ

−1
Γ (αk) +

∑
S(rs - 1)ϕ−1

Γ (βs).

In particular, its genus is g = 1 +
∑
J lj +

∑
K mk +

∑
S(rs - 1).

According to the Hurwitz formula, we must have deg(RamR) = 2n - 2 and
deg(Ramπ) = 2g - 2. We deduce the following characterization:
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Corollary 3.5.

The genus of Γ equals 2 if, and only if, one of the following conditions is satisfied:

(1) either, R has one point with ramification index 3 and 2n - 4 other points
with ramification index 2, all of them projecting into {∞, 0, 1, λ} ⊂ P1;

(2) or, R has 2n - 2 points with ramification index 2, all but one projecting into
{∞, 0, 1, λ} ⊂ P1.

In case (1), Ramπ = 2p′, for some p′ = τΓ(p′) ∈WΓ, and Discπ = 2π(p′), while
in case (2), Ramπ = p′+τΓ(p′), where τΓ(p′) 6= p′ and Discπ = π(p′)+[ - 1]

(
π(p′)

)
.

Definition 3.6.

(1) Let π : Γ → X be a smooth hyperelliptic cover, Wπ,i = WΓ ∩ π−1(ωi) the
subset of Weierstrass points projecting onto ωi, and mπ,i := ]Wπ,i its car-
dinal (i = 0, · · · , 3). We will call (mπ,i) the Weierstrass type of π.

(2) Each fiber π−1(ωi) being τΓ-invariant, its non-Weierstrass points come in
(say m∨π,i) pairs, and it must decompose as

π−1(ωi) =
mπ,i∑
ki=1

indπ(pki)pki +
m∨π,i∑
si=1

indπ(psi)
(
psi + τΓ(psi)

)
.

In particular, taking degrees we obtain a decomposition of n := deg(π),

n =
mπ,i∑
ki=1

indπ(pki) +
m∨π,i∑
si=1

2indπ(psi) ,

as a sum of mπ,i odd positive integers, plus m∨π,i even positive integers.
We will arrange the latter odd and even coefficients in increasing order,
and denote ~Indπ,i = ( ~indπ,Wi ,

~indπ,W∨i ) ∈ Nmπ,i×Nm
∨
π,i the corresponding

pair of increasing sequences.

(3) We will call
(
Discπ, ,

(
~Indπ,i

))
the augmented discriminant of π.

(4) Taking into account that R ◦ ϕΓ = ϕX ◦ π, the above decomposition of
π−1(ωi) gives:

R−1
(
ϕΓ(ωi)

)
=

mπ,i∑
ki=1

indπ(pki)ϕΓ(pki) +
m∨π,i∑
si=1

2indπ(psi)ϕΓ(psi) .

In other words, the vector ( ~Indπ,i) also codifies the structure of the fibers

of R over ϕX({ωi}) = {∞, 0, 1, λ}. We will call
(
DiscR, ,

(
~Indπ,i

))
the

λ-augmented discriminant of R.

Remark 3.7.
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(1) Given two coprime polynomials P and Q, such that ρ := degP - degQ is an
odd positive integer, the morphism R := P (t)

Q(t) : ∞ ∈ P1 → ∞ ∈ P1 and
the corresponding hyperelliptic cover π : p ∈ Γ→ q ∈ X, have same degree
n := degP and same ramification indices indπ(p) = ρ = indR(∞). On the
other hand, since w2 = P (t)Q(t)

(
P (t) -Q(t)

)(
P (t) -λQ(t)

)
defines a bira-

tional model of Γ, its genus satisfies ρ ≤ 2g - 1 ≤ 4n - ρ, with maximal genus
if and only if P (t)Q(t)

(
P (t) -Q(t)

)(
P (t) -λQ(t)

)
has no multiple root.

(2) The ramification divisor RamR is equal to (P ′Q -PQ′)o + (ρ - 1)∞, where
(P ′Q -PQ′)o denotes the degree-(2n - 2) zero-divisor of P ′Q -PQ′.

(3) We may have two rational fractions sharing the same discriminant and yet
defining smooth hyperelliptic covers of different genus. In fact, the relation
between Discπ and DiscR is many to one in both directions.

(4) However, there is a one to one correspondance between the augmented
discriminants of π and R (3.11.).

The following straightforward Lemmas will help us in:

(1) finding all morphisms R = P
Q with given discriminant D;

(2) linking the multiplicities of the roots of P, Q, P -Q, and P -λQ, with the
ramification indices of R over {∞, 0, 1, λ};

(3) deducing the augmented discriminant of π, out of the λ-augmented dis-
criminant of R (3.11.).

At last, they will be instrumental in 4, for the construction of all hyperelliptic
covers with given augmented discriminant.

Lemma 3.8.

For any polynomial A ∈ C[t] let disc(A) denote its discriminant; i.e.: the
resultant of A(t) and its derivative A′(t). Then, D(x, y) := disc(xP - yQ) is a
degree-(2n - 2) form, with divisor of zeroes equal to DiscR, the discriminant of the
morphism R := P

Q : P1 → P1.

Lemma 3.9.

Let
(
P (t), Q(t)

)
be a pair of coprime polynomials as in 3.7.(1) and λ ∈ C\{0, 1}.

Then, α ∈ C is a root of multiplicity m ≥ 2 of PQ(P -Q)(P -λQ), if and only if,
P (α)
Q(α) ∈ {0, 1, λ,∞} and α is a root of multiplicity m - 1 of P ′Q -PQ′.

Lemma 3.10.

Let π : p ∈ Γ → q ∈ X be the hyperelliptic cover, with odd ramification index
ρ := degP - degQ at p, associated to a rational fraction R = P

Q as in 3.7.(1), and
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P = A1B
2
1 , Q = AoB

2
o , P -Q = A2B

2
2 , P -λQ = A3B

2
3 denote the unique factor-

izations such that ∀i = 0, · · · , 3, Bi is monic and Ai has no multiple root. Then,

(1) Γ \ {p} is isomorphic to the affine curve
{

(t, v) ∈ C2, v2 = ΠiAi
}

;

(2) the Weierstrass type of π is equal to (degAi);

(3) the genus of Γ, say g, satisfies 2g + 1 =
∑
i degAi.

Furthermore, for any p′ ∈ π−1(ωi), let m′ denote the multiplicity of AiB2
i at

t′ := ϕΓ(p′). Then, either m′ is odd, p′ ∈ WΓ and indπ(p′) = m′, or m′ is even,
p′ /∈WΓ and indπ(p′) = 1

2m
′.

Proposition 3.11.

Let π : Γ→ X be the hyperelliptic cover associated to R := P
Q (3.7.(1)), (mπ,i)

its Weierstrass type and (m∨π,i) ∈ N4 such that mπ,i +m∨π,i = ] π−1(ωi). Let also

~Indπ,i = ( ~indπ,Wi
, ~indπ,W∨i ) ∈ Nmπ,i × Nm

∨
π,i , (i = 0, · · · , 3),

denote the positive integer vector deduced from π−1(ωi), and codifying the corre-
sponding decomposition of n (cf. 3.6.(2)). Then,

(
Discπ, ( ~Indπ,i)

)
, the augmented

discriminant of π, can be deduced out of
(
DiscR, ( ~Indπ,i)

)
, the λ-augmented dis-

criminant of R, and vice-versa.

Proof. Given the vector ( ~Indπ,i), the discriminant Ramπ must be equal to

∑
J

ljϕ
−1
Γ (γj) +

3∑
i=0

(mπ,i∑
ki=1

(
indπ(pki) - 1

)
pki +

m∨π,i∑
si=1

(
indπ(psi) - 1

)(
psi + τΓ(psi)

))
,

where R(γj) /∈ {∞, 0, 1, λ}, for any j ∈ J , while π(pki) = π(psi) = ωi, for any ki
and si (cf. 3.6.(2)). It also follows that RamR must be equal (cf. 3.4.) to

∑
J

ljγj +
3∑
i=0

(mπ,i∑
ki=1

(
indπ(pki) -1

)
ϕΓ(pki) +

m∨π,i∑
si=1

(
2indπ(psi) -1

)
ϕΓ(psi)

)
.

Projecting on X and P1 we end up obtaining that

Discπ =
∑
J

ljϕ
−1
X

(
R(γj)

)
+

3∑
i=0

(mπ,i∑
ki=1

(
indπ(pki) - 1

)
+
m∨π,i∑
si=1

(
2indπ(psi) - 2

))
ωi ,

and

DiscR =
∑
J

ljR(γj) +
3∑
i=0

(mπ,i∑
ki=1

(
indπ(pki) - 1

)
+
m∨π,i∑
si=1

(
2indπ(psi) - 1

))
ϕX(ωi) .
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The latter formulae imply the relations,

ϕX(Discπ +
3∑
i=0

m∨π,iωi) = DiscR +
∑
J

ljR(γj)

and

ϕ−1
X

(
DiscR -

3∑
i=0

m∨π,iϕX(ωi)
)

= 2DiscR -
∑
J

ljϕ
−1
X

(
R(γj)

)
.

Whence, a one to one correspondance between the augmented discriminants. �

Corollary 3.12.

Let π : p ∈ Γ → q ∈ X be the hyperelliptic cover with ramification index ρ at
p ∈ Γ, associated to a rational fraction R :∞ ∈ P1 →∞ ∈ P1 as in 3.7.(1). Then,
the genus of Γ attains its minimal value g := 1

2 (ρ+ 1) , if and only if the following
equivalent conditions are satisfied:

i) Ramπ = (ρ - 1)p;
ii) P ′Q -PQ′ has no multiple root and divides PQ(P -Q)(P -λQ).

In the latter case (P ′Q -PQ′)2 divides PQ(P -Q)(P -λQ)
)

= (P ′Q -PQ′)2T ,
and outside π−1({p}) the projection π : Γ −→ X is isomorphic to

(t, v) ∈ {v2 = T (t)} 7−→
(
R(t), v.R′(t)

)
= (x, y) ∈ {y2 = x(x-1)(x-λ)} .

Proof. Property 3.12.(ii), coupled with 3.9., imply that all (simple) roots of
P ′(t)Q(t) -P (t)Q′(t) are double roots of P (t)Q(t)

(
P (t) -Q(t)

)(
P (t) -λQ(t)

)
. In

other words, PQ(P -Q)(P -λQ) = (P ′Q -PQ′)2T , where T has only simple roots
(again 3.9.) and degT = 4n - ρ - 2

(
2n - (ρ + 1)

)
= ρ + 2. Hence, replacing w =

v(P ′Q -PQ′) in the equation w2 = P (t)Q(t)
(
P (t) -Q(t)

)(
P (t) -λQ(t)

)
, which de-

fines a birational model for Γ (3.7.(1)), simplifies it to v2 = T (t) and defines Γ. It
follows that 2g + 1 = degT = ρ + 2 as asserted. We can also check that outside
π−1({p}), π is given by the projection (t, v) 7−→

(
R(t), v.R′(t)

)
.

Conversely, assuming g = 1
2 (ρ+ 1) is equivalent to Ramπ = (ρ - 1)p, and implies

(cf. 3.4.) that indR(t) = 2, ∀t ∈ P1 \ {∞} in the support of RamR, and that
all roots of P ′Q -PQ′ must be simple and should lie in R−1

(
{∞, 0, 1, λ}

)
as well.

Hence (cf. 3.9.)
(
P ′Q -PQ′

)2 divides PQ(P -Q)(P -λQ). �

Remark 3.13.

For ρ = 3, any hyperelliptic cover π : p ∈ Γ→ q ∈ X as above, has genus g = 2
implying that JacΓ splits, up to isogeny, as a sum X + X∗, where X∗ ⊂ JacΓ is
an elliptic curve. Furthermore, π being ramified at p ∈ Γ forces X∗ to be tangent to
the Abel image of (Γ, p) at the origin Ap(p) = 0 ∈ JacΓ (cf. [2]). In other words,
π∗ : p ∈ Γ→ 0 ∈ X∗ is a hyperelliptic tangential cover (cf. [7]).
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4. hyperelliptic covers and polynomial equations

4.1. According to Proposition 2.3. and Proposition 3.1., there is a bijection be-
tween the set of hyperelliptic covers π : p ∈ Γ→ q ∈ Xλ, marked at (p, p′, p′′) ∈W 3

Γ ,
and the set of projections R : ∞ ∈ P1 → ∞ ∈ P1 with odd ramification indices at
{∞, 0, 1}, such that R(0), R(1) ∈ {∞, 0, 1, λ}. Therefore, fixing in advance some
properties of the latter covers is tantamount to putting further restrictions on the
corresponding rational fractions. As for the ones with fixed degree n, odd ramifi-
cation index ρ = indπ(p) and minimal genus g = 1

2 (ρ+ 1) (cf. 3.12.), they make a
finite subset, say H (n, ρ), for which we have the following basic result.

Proposition 4.2.
There exists a system of 2n+ 1 - ρ polynomial equations in 2n+ 1 - ρ variables,

such that H (n, ρ) parameterizes its set of isolated solutions.

Proof. Any π ∈ H(n, ρ), corresponds to a unique pair of coprime polynomials,
of degrees n and n - ρ respectively: P unitary equal to P (t) = tn +

∑n−1
i=0 αit

i and
Q(t) =

∑n−ρ
j=0 βjt

j , satisfying 3.7.(1) & 3.12., as explained hereafter.
Dividing PQ(P -Q)(P -λQ) by P ′Q -PQ′ gives a remainder S(t) =

∑2n−ρ−2
k=0 skt

k,
of degree strictly smaller than 2n - 1 - ρ, with coefficients {sk} depending polyno-
mially on those of P and Q. Assuming P ′Q -PQ′ divides PQ(P -Q)(P -λQ) is
equivalent to the system {sk(αi, βj) = 0, k = 0, . . . , 2n - 2 - ρ}, of 2n - 1 - ρ polyno-
mial equations in the 2n+ 1 - ρ variables {αi, βj}.

We must also assume P ′Q -PQ′ without multiple roots, implying the factor-
ization PQ(P -Q)(P -λQ) = (P ′Q -PQ′)2T (3.9.). Adding the supplementary
equations T (0) = 0 = T (1), which reflect the conditions R(0) = R(1) = 0, we thus
obtain a system of 2n+ 1 - ρ polynomial equations in 2n+ 1 - ρ variables.

Conversely, any pair (P,Q) of polynomials, P (t) = tn +
∑n−1
i=0 αit

i, and Q(t) =∑n−ρ
j=0 βjt

j , satisfying the latter system of equations, as well as the open conditions
{degQ = n - ρ, disc(P ′Q -PQ′) 6= 0 , PGCD(P,Q) = 1}, give rise to a degree-n
morphism R = P

Q satisfying 3.7.(1) & 3.12. Hence, the corresponding hyperelliptic
cover belongs to H(n, ρ) �

Definition 4.3.

(1) Given n, g ∈ N∗ and a [ - 1]-invariant degree-(2g - 2) effective divisor

D =
∑
J

ljϕ
−1
X (γj) +

3∑
i=0

aiωi ,

and for any i = 0, · · · , 3, a pair of increasing sequences of odd and even
positive integers ( ~indi, ~ind

∨
i ) :=

(
(2hi,ki + 1), (2gi,si)

)
∈ Nmi × Nm∨i , of

lengths (mi,m
∨
i ), codifying a decomposition of n,

mi∑
ki=1

(2hi,ki + 1) +
m∨i∑
si=1

2gi,si = n ,
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such that
mi∑
ki=1

2hi,ki +
m∨i∑
si=1

(2gi,si - 1) = ai .

We remark that (mi) ∈ N4 satisfies mo + 1 ≡ m1 ≡ m2 ≡ m3 ≡ n(mod.2).
We will let H

(
n,D,

(
( ~indi, ~ind

∨
i )
))

denote the moduli space of degree-n

hyperelliptic covers π, with augmented discriminant
(
D,
(
( ~indi, ~ind

∨
i )
))

.

In other words, ( ~indi, 1
2
~ind
∨
i ) gives, for any i = 0, · · · , 3, the ramification

indices of π, at the Weierstrass and non-Weierstrass points of π−1(ωi).

(2) Let π : p ∈ Γ → q ∈ X be a hyperelliptic cover and consider the canon-
ical Abel embedding Ap : p ∈ Γ → 0 ∈ JacΓ and the homomorphism
ιπ : q ∈ X → 0 ∈ JacΓ (cf. 1) . We will call π a hyperelliptic tangential
cover, if and only if Ap(Γ) and ιπ(X) are tangent at 0 ∈ JacΓ (cf. [7]).

(3) For any 1 ≤ d ≤ g := dim(JacΓ), let Vd,p denote the d-th osculating sub-
space to Ap(Γ) at 0 (cf. [6]). We will call π : p ∈ Γ→ q ∈ X a hyperelliptic
d-osculating cover, if and only if the tangent to ιπ(X) at 0 is contained in
Vd,p\Vd-1,p . For d = 1 we recover the hyperelliptic tangential covers.

(4) For any n, d ∈ N∗ and (mi) ∈ N4, such that mo + 1 ≡ m1 ≡ m2 ≡ m3 ≡
n(mod.2), we will let HypOsc

(
n, d, (mi)

)
denote the moduli space of smooth

degree-n hyperelliptic d-osculating covers, having Weierstrass type (mi).

The families H
(
n,D,

(
( ~indi, ~ind

∨
i )
))

and HypOsc
(
n, 1, (mi)

)
, of hyperelliptic

covers, are classically known to be finite. We will prove that they can also be
parameterized by suitable polynomial systems, with as many equations as vari-
ables. As for the moduli spaces HypOsc

(
n, d, (mi)

)
, with d ≥ 2, all known families

have dimension d - 1 (cf. [6]), and we will parameterize them via polynomial sys-
tems of 3n+mo + 1 equations in 3n+mo + d variables.

Proposition 4.4.
For any data

(
n,D,

(
( ~indi, ~ind

∨
i )
))

as in 4.3., there exists a polynomial system

of N := 2n+ 2 +
∑
J lj equations, in an open dense subset of CN , such that its set

of solutions parameterizes the moduli space H
(
n,D,

(
( ~indi, ~ind

∨
i )
))

.

Proof. Up to choosing a triplet of Weierstrass points (cf. 3.1.& 3.2.(2)),
any class π ∈ H

(
n,D,

(
( ~indi, ~ind

∨
i )
))

corresponds to a unique rational morphism

R = P
Q : P1 → P1, such that degR = n (i.e.: P and Q are coprime polynomials),

R(∞) = ∞, {R(0), R(1)} ⊂ {∞, 0, 1, λ} and indR(∞) = indR(0) = indR(1) = 1.
Moreover,

(
( ~indi, ~ind

∨
i )
)

gives the multiplicities of all roots of Q, P , P -Q and
P -λQ:

Q = AoB
2
o = ΠKo(t− αo,ko)2ho,ko+1ΠSo(t− βo,so)2go,so

P = cA1B
2
1 = cΠK1(t− α1,k1)2h1,k1+1ΠS1(t− β1,s1)2g1,s1
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P -Q = cA2B
2
2 = cΠK2(t− α2,k2)2h2,k2+1ΠS2(t− β2,s2)2g2,s2

P -λQ = cA3B
2
3 = cΠK3(t− α3,k3)2h3,k3+1ΠS3(t− β3,s3)2g3,s3 .

It follows that Discπ must contain
∑3
i=0 aiωi, since for any i = 0, · · · , 3,

mi∑
ki=1

2hi,ki +
m∨i∑
si=1

(2gi,si - 1) = ai .

We still need Discπ to contain
∑
J ljϕ

−1
X

(
γj
)
, which amounts to DiscR con-

taining
∑
J ljγj . This last condition translates, by Lemma 3.8., to condition (4)

below. All in all, we have 1+
∑3
i=o(mi+m∨i ) variables, and the following equations:

(1) cA1B
2
1 -AoB2

o = cA2B
2
2 ;

(2) cA1B
2
1 -λAoB2

o = cA3B
2
3 ;

(3) R(0) = R(1) = 0 ;

(4) ΠJ

(
y - γj

)lj divides disc(P - yQ) .

Each side in (1) and (2), has c as highest coefficient. Identifying the other ones
gives us 2n polynomial equations in our variables. Taking into account (3) and (4),
gives 2+deg

(
ΠJ

(
y -R(tj)

)lj) = 2+
∑
J lj more equations, adding to 2n+2+

∑
J lj .

At last, it is enough to check that 1 +
∑3
i=o(mi +m∨i ) = 2n+ 2 +

∑
J lj .

Conversely, given c ∈ C∗ and a set of unitary polynomials {Ai, Bi}, subject to the
latter system of equations, plus the open condition resultant(A1B

2
1 , AoB

2
o) 6= 0,

the corresponding morphism R := P
Q : P1 → P1, has degR = n and corresponds

to a unique hyperelliptic cover π, having
(
n,D,

(
( ~indi, ~ind

∨
i )
))

as augmented dis-
criminant. �

Let π : p ∈ Γ → q ∈ X a degree-n hyperelliptic cover of Weierstrass type
(mπ,i) ∈ N4, associated to the rational fraction R := P

Q . Consider the canonical
factorizations of P = cA1B

2
1 , Q = cA1B

2
1 , P -Q = cA2B

2
2 and P -λQ = cA3B

2
3 ,

with unitary polynomials, (Ai) and (Bi), such that for any i = 0, · · · , 3, degAi = mi

and degB2
i = n -mi - δi,o. Recall that its genus satisfies 2g+1 =

∑
imi =

∑
i degAi,

and outside π−1(q) ⊂ Γ (cf. 3.2.), the projection π is isomorphic to

(t, v) ∈
{
v2 = c3ΠiAi

}
7→

(
R(t),

vΠiBi
Q2

)
= (x, y) ∈

{
y2 = x(x-1)(x-λ)

}
.

We will let z denote hereafter, the local coordinate of X at q, defined as z := P
yQ .

The following technical Lemmas will help us prove a result for HypOsc
(
n, d, (mi)

)
,

analogous to 4.4..

Lemma 4.5.
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The function κo := v
AoBo

: Γ → P1 is anti-τΓ-invariant (i.e.: κo ◦ τΓ = -κo ),
holomorphic outside π−1(q), has order 2deg(AoBo) - (2g + 1) ≥ - 1 at p ∈ Γ, and
a pole of same order as 1

z = yQ
P , at any other point of π−1(q).

Lemma 4.6.

Any anti-τΓ-invariant meromorphic function κ : Γ → P1, holomorphic outside
π−1(q), having a pole of order 2d - 1 at p ∈ Γ, and a pole of same order as 1

z = yQ
P ,

at any point other point of π−1(q), is equal to vM
AoBo

, for a unique polynomial M(t)
of degree degM = deg(AoBo) - g + d - 1.

Lemma 4.7.

Let κ = vM
AoBo

: Γ → P1 be as in 4.6.. Then, κ - 1
z has a pole of order 2d - 1 at

p ∈ Γ, and no other pole over π−1(q), if and only if AoBo divides MA1B1 -B2B3.

Proposition 4.8.
For any n, d ≥ 1 and (mi) ∈ N4 such that mo ≡ m1 ≡ m2 ≡ m3 ≡ n(mod.2),

there exists a polynomial system of N := 2n + 1 + 1
2 (n + mo + 1) equations, in

an open dense subset of CN+d−1, such that its set of solutions parameterizes the
moduli space HypOsc

(
n, d, (mi)

)
.

Proof. Consider c ∈ C∗, two arbitrary sequences of unitary polynomials, (Ai)
and (Bi), such that for any i = 0, · · · , 3, degAi = mi and degB2

i = n -mi - δi,o ,
and a polynomial M of degree degM = deg(AoBo) - g + d - 1. These data depend
upon 2n + 1 + deg(AoBo) + d = 2n + d + 1

2 (n + mo + 1) variables, and we ask
them to satisfy the following set of 2n+ 1 + 1

2 (n+mo + 1) equations:

cA1B
2
1 -AoB2

o = cA2B
2
2 , cA1B

2
1 -λAoB2

o = cA3B
2
3

and
t(t-1) divides ΠiAi and AoBo divides MA1B1-B2B3 .

Let P := cA1B
2
1 , Q := AoB

2
o and R := P

Q , and assume further the open condi-
tions

c 6= 0 disc(ΠiAi) 6= 0 and resultant(P,Q) 6= 0 .

Then, R := P
Q is a degree-n morphism, with an associated hyperelliptic cover π :

p ∈ Γ→ q ∈ P1 isomorphic (outside π−1(q)), to

(t, v) ∈
{
v2 = c3ΠiAi

}
7→

(
R(t),

vΠiBi
Q2

)
= (x, y) ∈

{
y2 = x(x-1)(x-λ)

}
.

Besides having Weierstrass type (mi), the meromorphic function κ := vM
AoBo

sat-
isfies all properties quoted in 4.6., implying that π is indeed a hyperelliptic d-
osculating cover. Conversely, let π ∈ HypOsc

(
n, d, (mi)

)
be a degree-n hyperel-

liptic d-osculating cover of Weierstrass type (mi) ∈ N4, associated to a rational
fraction R := P

Q as in 3.1.. Consider the canonical factorizations of P = cA1B
2
1 ,

Q = cA1B
2
1 , P -Q = cA2B

2
2 and P -λQ = cA3B

2
3 , with unitary polynomials, (Ai)

and (Bi), such that for any i = 0, · · · , 3, degAi = mi and degB2
i = n -mi - δi,o.

Needless to say that they satisfy the equations



16 ARMANDO TREIBICH

cA1B
2
1 -AoB2

o = cA2B
2
2 , cA1B

2
1 -λAoB2

o = cA3B
2
3

and
t(t-1) divides ΠiAi .

Moreover, there must be a meromorphic function satisfying properties 4.6.,
which must be uniquely expressed as vM

AoBo
for a unique polynomial M(t) of degree

deg(AoBo) - g+d - 1 . In other words, any class π ∈ HypOsc
(
n, d, (mi)

)
corresponds

to a unique solution of the latter systems of equations (and open conditions). �
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Université Lille Nord de France F 59000, FRANCE
UArtois Laboratoire de Mathématique de Lens EA2462,
Féderation CNRS Nord-Pas-de-Calais FR 2956
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