
Computing braid orbits

A. James and S. Shpectorov

School of Mathematics, University of Birmingham

ICMS Sigma Workshop, 15th October 2010

Origin

Consider a meromorphic function f : P1 → P1. Associated with f ,
there is its monodromy group G = G(f), which is a permutation
group on n points, where n is the degree of f . Hence G is always
finite, but its size is unlimited

Guralnick–Thompson Conjecture

Every composition factor of G is either the alternating group Ak for
some k ≥ 5, or it belongs to a finite list of exceptions.

This was later generalized to the case of a meromorphic function on a
Rieman surface of bounded genus g (same conclusion, but the list of
exceptions grows with g).
This conjecture was finally proved (for arbitrary g) by Frohardt and
Magaard in 2001.
Magaard also wanted to determine the complete list of exceptional
simple groups at least for g = 0, but if possible also for other small g.

Origin

Consider a meromorphic function f : P1 → P1. Associated with f ,
there is its monodromy group G = G(f), which is a permutation
group on n points, where n is the degree of f .

Hence G is always
finite, but its size is unlimited

Guralnick–Thompson Conjecture

Every composition factor of G is either the alternating group Ak for
some k ≥ 5, or it belongs to a finite list of exceptions.

This was later generalized to the case of a meromorphic function on a
Rieman surface of bounded genus g (same conclusion, but the list of
exceptions grows with g).
This conjecture was finally proved (for arbitrary g) by Frohardt and
Magaard in 2001.
Magaard also wanted to determine the complete list of exceptional
simple groups at least for g = 0, but if possible also for other small g.

Origin

Consider a meromorphic function f : P1 → P1. Associated with f ,
there is its monodromy group G = G(f), which is a permutation
group on n points, where n is the degree of f . Hence G is always
finite, but its size is unlimited

Guralnick–Thompson Conjecture

Every composition factor of G is either the alternating group Ak for
some k ≥ 5, or it belongs to a finite list of exceptions.

This was later generalized to the case of a meromorphic function on a
Rieman surface of bounded genus g (same conclusion, but the list of
exceptions grows with g).
This conjecture was finally proved (for arbitrary g) by Frohardt and
Magaard in 2001.
Magaard also wanted to determine the complete list of exceptional
simple groups at least for g = 0, but if possible also for other small g.

Origin

Consider a meromorphic function f : P1 → P1. Associated with f ,
there is its monodromy group G = G(f), which is a permutation
group on n points, where n is the degree of f . Hence G is always
finite, but its size is unlimited

Guralnick–Thompson Conjecture

Every composition factor of G is either the alternating group Ak for
some k ≥ 5, or it belongs to a finite list of exceptions.

This was later generalized to the case of a meromorphic function on a
Rieman surface of bounded genus g (same conclusion, but the list of
exceptions grows with g).
This conjecture was finally proved (for arbitrary g) by Frohardt and
Magaard in 2001.
Magaard also wanted to determine the complete list of exceptional
simple groups at least for g = 0, but if possible also for other small g.

Origin

Consider a meromorphic function f : P1 → P1. Associated with f ,
there is its monodromy group G = G(f), which is a permutation
group on n points, where n is the degree of f . Hence G is always
finite, but its size is unlimited

Guralnick–Thompson Conjecture

Every composition factor of G is either the alternating group Ak for
some k ≥ 5, or it belongs to a finite list of exceptions.

This was later generalized to the case of a meromorphic function on a
Rieman surface of bounded genus g

(same conclusion, but the list of
exceptions grows with g).
This conjecture was finally proved (for arbitrary g) by Frohardt and
Magaard in 2001.
Magaard also wanted to determine the complete list of exceptional
simple groups at least for g = 0, but if possible also for other small g.

Origin

Consider a meromorphic function f : P1 → P1. Associated with f ,
there is its monodromy group G = G(f), which is a permutation
group on n points, where n is the degree of f . Hence G is always
finite, but its size is unlimited

Guralnick–Thompson Conjecture

Every composition factor of G is either the alternating group Ak for
some k ≥ 5, or it belongs to a finite list of exceptions.

This was later generalized to the case of a meromorphic function on a
Rieman surface of bounded genus g (same conclusion, but the list of
exceptions grows with g).

This conjecture was finally proved (for arbitrary g) by Frohardt and
Magaard in 2001.
Magaard also wanted to determine the complete list of exceptional
simple groups at least for g = 0, but if possible also for other small g.

Origin

Consider a meromorphic function f : P1 → P1. Associated with f ,
there is its monodromy group G = G(f), which is a permutation
group on n points, where n is the degree of f . Hence G is always
finite, but its size is unlimited

Guralnick–Thompson Conjecture

Every composition factor of G is either the alternating group Ak for
some k ≥ 5, or it belongs to a finite list of exceptions.

This was later generalized to the case of a meromorphic function on a
Rieman surface of bounded genus g (same conclusion, but the list of
exceptions grows with g).
This conjecture was finally proved (for arbitrary g) by Frohardt and
Magaard in 2001.

Magaard also wanted to determine the complete list of exceptional
simple groups at least for g = 0, but if possible also for other small g.

Origin

Consider a meromorphic function f : P1 → P1. Associated with f ,
there is its monodromy group G = G(f), which is a permutation
group on n points, where n is the degree of f . Hence G is always
finite, but its size is unlimited

Guralnick–Thompson Conjecture

Every composition factor of G is either the alternating group Ak for
some k ≥ 5, or it belongs to a finite list of exceptions.

This was later generalized to the case of a meromorphic function on a
Rieman surface of bounded genus g (same conclusion, but the list of
exceptions grows with g).
This conjecture was finally proved (for arbitrary g) by Frohardt and
Magaard in 2001.
Magaard also wanted to determine the complete list of exceptional
simple groups at least for g = 0, but if possible also for other small g.

Braid orbits

Different (from the group theory point of view) cases of functions f
correspond to the braid orbits on the generating tuples of the
permutation group G.
Generating tuples are tuples (g1, . . . , gr), where G = 〈g1, . . . , gr〉 and
also g1 · . . . · gr = 1.
The action of the braid group on r strands, Br, on the set of
generating tuples of G is given by:

τi : (g1, . . . , gi, gi+1, . . . , gr)→ (g1, . . . , gi+1, g
−1
i+1gigi+1, . . . , gr),

where τ1, . . . , τr−1 are elementary braids. The elementary braid τi
takes the ith strand over the next strand. The τi generate Br.
Note that the tuple on the right is again a generating tuple of G, so
we indeed have an action of Br and orbits.

Braid orbits

Different (from the group theory point of view) cases of functions f
correspond to the braid orbits on the generating tuples of the
permutation group G.

Generating tuples are tuples (g1, . . . , gr), where G = 〈g1, . . . , gr〉 and
also g1 · . . . · gr = 1.
The action of the braid group on r strands, Br, on the set of
generating tuples of G is given by:

τi : (g1, . . . , gi, gi+1, . . . , gr)→ (g1, . . . , gi+1, g
−1
i+1gigi+1, . . . , gr),

where τ1, . . . , τr−1 are elementary braids. The elementary braid τi
takes the ith strand over the next strand. The τi generate Br.
Note that the tuple on the right is again a generating tuple of G, so
we indeed have an action of Br and orbits.

Braid orbits

Different (from the group theory point of view) cases of functions f
correspond to the braid orbits on the generating tuples of the
permutation group G.
Generating tuples are tuples (g1, . . . , gr), where G = 〈g1, . . . , gr〉 and
also g1 · . . . · gr = 1.

The action of the braid group on r strands, Br, on the set of
generating tuples of G is given by:

τi : (g1, . . . , gi, gi+1, . . . , gr)→ (g1, . . . , gi+1, g
−1
i+1gigi+1, . . . , gr),

where τ1, . . . , τr−1 are elementary braids. The elementary braid τi
takes the ith strand over the next strand. The τi generate Br.
Note that the tuple on the right is again a generating tuple of G, so
we indeed have an action of Br and orbits.

Braid orbits

Different (from the group theory point of view) cases of functions f
correspond to the braid orbits on the generating tuples of the
permutation group G.
Generating tuples are tuples (g1, . . . , gr), where G = 〈g1, . . . , gr〉 and
also g1 · . . . · gr = 1.
The action of the braid group on r strands, Br, on the set of
generating tuples of G is given by:

τi : (g1, . . . , gi, gi+1, . . . , gr)→ (g1, . . . , gi+1, g
−1
i+1gigi+1, . . . , gr),

where τ1, . . . , τr−1 are elementary braids. The elementary braid τi
takes the ith strand over the next strand. The τi generate Br.
Note that the tuple on the right is again a generating tuple of G, so
we indeed have an action of Br and orbits.

Braid orbits

Different (from the group theory point of view) cases of functions f
correspond to the braid orbits on the generating tuples of the
permutation group G.
Generating tuples are tuples (g1, . . . , gr), where G = 〈g1, . . . , gr〉 and
also g1 · . . . · gr = 1.
The action of the braid group on r strands, Br, on the set of
generating tuples of G is given by:

τi : (g1, . . . , gi, gi+1, . . . , gr)→ (g1, . . . , gi+1, g
−1
i+1gigi+1, . . . , gr),

where τ1, . . . , τr−1 are elementary braids. The elementary braid τi
takes the ith strand over the next strand. The τi generate Br.
Note that the tuple on the right is again a generating tuple of G, so
we indeed have an action of Br and orbits.

Braid orbits

Different (from the group theory point of view) cases of functions f
correspond to the braid orbits on the generating tuples of the
permutation group G.
Generating tuples are tuples (g1, . . . , gr), where G = 〈g1, . . . , gr〉 and
also g1 · . . . · gr = 1.
The action of the braid group on r strands, Br, on the set of
generating tuples of G is given by:

τi : (g1, . . . , gi, gi+1, . . . , gr)→ (g1, . . . , gi+1, g
−1
i+1gigi+1, . . . , gr),

where τ1, . . . , τr−1 are elementary braids.

The elementary braid τi
takes the ith strand over the next strand. The τi generate Br.
Note that the tuple on the right is again a generating tuple of G, so
we indeed have an action of Br and orbits.

Braid orbits

Different (from the group theory point of view) cases of functions f
correspond to the braid orbits on the generating tuples of the
permutation group G.
Generating tuples are tuples (g1, . . . , gr), where G = 〈g1, . . . , gr〉 and
also g1 · . . . · gr = 1.
The action of the braid group on r strands, Br, on the set of
generating tuples of G is given by:

τi : (g1, . . . , gi, gi+1, . . . , gr)→ (g1, . . . , gi+1, g
−1
i+1gigi+1, . . . , gr),

where τ1, . . . , τr−1 are elementary braids. The elementary braid τi
takes the ith strand over the next strand.

The τi generate Br.
Note that the tuple on the right is again a generating tuple of G, so
we indeed have an action of Br and orbits.

Braid orbits

Different (from the group theory point of view) cases of functions f
correspond to the braid orbits on the generating tuples of the
permutation group G.
Generating tuples are tuples (g1, . . . , gr), where G = 〈g1, . . . , gr〉 and
also g1 · . . . · gr = 1.
The action of the braid group on r strands, Br, on the set of
generating tuples of G is given by:

τi : (g1, . . . , gi, gi+1, . . . , gr)→ (g1, . . . , gi+1, g
−1
i+1gigi+1, . . . , gr),

where τ1, . . . , τr−1 are elementary braids. The elementary braid τi
takes the ith strand over the next strand. The τi generate Br.

Note that the tuple on the right is again a generating tuple of G, so
we indeed have an action of Br and orbits.

Braid orbits

Different (from the group theory point of view) cases of functions f
correspond to the braid orbits on the generating tuples of the
permutation group G.
Generating tuples are tuples (g1, . . . , gr), where G = 〈g1, . . . , gr〉 and
also g1 · . . . · gr = 1.
The action of the braid group on r strands, Br, on the set of
generating tuples of G is given by:

τi : (g1, . . . , gi, gi+1, . . . , gr)→ (g1, . . . , gi+1, g
−1
i+1gigi+1, . . . , gr),

where τ1, . . . , τr−1 are elementary braids. The elementary braid τi
takes the ith strand over the next strand. The τi generate Br.
Note that the tuple on the right is again a generating tuple of G, so
we indeed have an action of Br and orbits.

BRAID

Around 1999-2000 SSh attended a talk by Kay Magaard on the
Guralnick-Thompson conjecture, where Kay mentioned hand
computation of braid orbits.
After the lecture SSh told him that this is much better done by
computer, and within a week they got together and the first
unsophisticated version of BRAID was written.
Within a short time, BRAID went through several versions, each
improving performance by a large factor.
It has two main routines:

BraidOrbit computes a braid orbit starting from a single tuple.

BraidOrbits computes all braid orbits where the entries gi are
selected within the given set of r conjugacy classes C1, . . . , Cr of
elements of G.

BraidOrbits generates random tuples with product 1 condition, but
possibly nongenerating, and calls BraidOrbit to construct new orbits
until the total reaches the structure constant. The latter is
precomputed from the character table of G.

BRAID

Around 1999-2000 SSh attended a talk by Kay Magaard on the
Guralnick-Thompson conjecture, where Kay mentioned hand
computation of braid orbits.

After the lecture SSh told him that this is much better done by
computer, and within a week they got together and the first
unsophisticated version of BRAID was written.
Within a short time, BRAID went through several versions, each
improving performance by a large factor.
It has two main routines:

BraidOrbit computes a braid orbit starting from a single tuple.

BraidOrbits computes all braid orbits where the entries gi are
selected within the given set of r conjugacy classes C1, . . . , Cr of
elements of G.

BraidOrbits generates random tuples with product 1 condition, but
possibly nongenerating, and calls BraidOrbit to construct new orbits
until the total reaches the structure constant. The latter is
precomputed from the character table of G.

BRAID

Around 1999-2000 SSh attended a talk by Kay Magaard on the
Guralnick-Thompson conjecture, where Kay mentioned hand
computation of braid orbits.
After the lecture SSh told him that this is much better done by
computer, and within a week they got together and the first
unsophisticated version of BRAID was written.

Within a short time, BRAID went through several versions, each
improving performance by a large factor.
It has two main routines:

BraidOrbit computes a braid orbit starting from a single tuple.

BraidOrbits computes all braid orbits where the entries gi are
selected within the given set of r conjugacy classes C1, . . . , Cr of
elements of G.

BraidOrbits generates random tuples with product 1 condition, but
possibly nongenerating, and calls BraidOrbit to construct new orbits
until the total reaches the structure constant. The latter is
precomputed from the character table of G.

BRAID

Around 1999-2000 SSh attended a talk by Kay Magaard on the
Guralnick-Thompson conjecture, where Kay mentioned hand
computation of braid orbits.
After the lecture SSh told him that this is much better done by
computer, and within a week they got together and the first
unsophisticated version of BRAID was written.
Within a short time, BRAID went through several versions, each
improving performance by a large factor.

It has two main routines:

BraidOrbit computes a braid orbit starting from a single tuple.

BraidOrbits computes all braid orbits where the entries gi are
selected within the given set of r conjugacy classes C1, . . . , Cr of
elements of G.

BraidOrbits generates random tuples with product 1 condition, but
possibly nongenerating, and calls BraidOrbit to construct new orbits
until the total reaches the structure constant. The latter is
precomputed from the character table of G.

BRAID

Around 1999-2000 SSh attended a talk by Kay Magaard on the
Guralnick-Thompson conjecture, where Kay mentioned hand
computation of braid orbits.
After the lecture SSh told him that this is much better done by
computer, and within a week they got together and the first
unsophisticated version of BRAID was written.
Within a short time, BRAID went through several versions, each
improving performance by a large factor.
It has two main routines:

BraidOrbit computes a braid orbit starting from a single tuple.

BraidOrbits computes all braid orbits where the entries gi are
selected within the given set of r conjugacy classes C1, . . . , Cr of
elements of G.

BraidOrbits generates random tuples with product 1 condition, but
possibly nongenerating, and calls BraidOrbit to construct new orbits
until the total reaches the structure constant. The latter is
precomputed from the character table of G.

BRAID

Around 1999-2000 SSh attended a talk by Kay Magaard on the
Guralnick-Thompson conjecture, where Kay mentioned hand
computation of braid orbits.
After the lecture SSh told him that this is much better done by
computer, and within a week they got together and the first
unsophisticated version of BRAID was written.
Within a short time, BRAID went through several versions, each
improving performance by a large factor.
It has two main routines:

BraidOrbit computes a braid orbit starting from a single tuple.

BraidOrbits computes all braid orbits where the entries gi are
selected within the given set of r conjugacy classes C1, . . . , Cr of
elements of G.

BraidOrbits generates random tuples with product 1 condition, but
possibly nongenerating, and calls BraidOrbit to construct new orbits
until the total reaches the structure constant. The latter is
precomputed from the character table of G.

BRAID

Around 1999-2000 SSh attended a talk by Kay Magaard on the
Guralnick-Thompson conjecture, where Kay mentioned hand
computation of braid orbits.
After the lecture SSh told him that this is much better done by
computer, and within a week they got together and the first
unsophisticated version of BRAID was written.
Within a short time, BRAID went through several versions, each
improving performance by a large factor.
It has two main routines:

BraidOrbit computes a braid orbit starting from a single tuple.

BraidOrbits computes all braid orbits where the entries gi are
selected within the given set of r conjugacy classes C1, . . . , Cr of
elements of G.

BraidOrbits generates random tuples with product 1 condition, but
possibly nongenerating, and calls BraidOrbit to construct new orbits
until the total reaches the structure constant. The latter is
precomputed from the character table of G.

BRAID

Around 1999-2000 SSh attended a talk by Kay Magaard on the
Guralnick-Thompson conjecture, where Kay mentioned hand
computation of braid orbits.
After the lecture SSh told him that this is much better done by
computer, and within a week they got together and the first
unsophisticated version of BRAID was written.
Within a short time, BRAID went through several versions, each
improving performance by a large factor.
It has two main routines:

BraidOrbit computes a braid orbit starting from a single tuple.

BraidOrbits computes all braid orbits where the entries gi are
selected within the given set of r conjugacy classes C1, . . . , Cr of
elements of G.

BraidOrbits generates random tuples with product 1 condition, but
possibly nongenerating, and calls BraidOrbit to construct new orbits
until the total reaches the structure constant.

The latter is
precomputed from the character table of G.

BRAID

Around 1999-2000 SSh attended a talk by Kay Magaard on the
Guralnick-Thompson conjecture, where Kay mentioned hand
computation of braid orbits.
After the lecture SSh told him that this is much better done by
computer, and within a week they got together and the first
unsophisticated version of BRAID was written.
Within a short time, BRAID went through several versions, each
improving performance by a large factor.
It has two main routines:

BraidOrbit computes a braid orbit starting from a single tuple.

BraidOrbits computes all braid orbits where the entries gi are
selected within the given set of r conjugacy classes C1, . . . , Cr of
elements of G.

BraidOrbits generates random tuples with product 1 condition, but
possibly nongenerating, and calls BraidOrbit to construct new orbits
until the total reaches the structure constant. The latter is
precomputed from the character table of G.

Hurwitz loci

Helmut Völklein joined in as a customer and then also co-author and
he explained what the braid orbits were classifying—Hurwitz loci.

Hurwitz loci are the connected components of the Hurwitz space Hg,
the moduli space of all pairs (X,G), where X is compact Riemann
surface of genus g and G is a finite group of isotopic transformations
of X. Clearly, on every locus, G remains the same as an abstract finite
group, so the loci can be classified according which group they involve.
We will also use the same term “Hurwitz loci” for the images of
Hurwitz loci in the moduli space Mg of all compact Riemann surfaces
of genus g. This helps picturing the Hurwitz loci as forming a
structure under inclusion where the loci for larger groups G are
contained in the loci for their subgroups.
The braid orbits, as defined above, classify the loci for the given
group G, but only those where the orbit genus g0, that is, the genus of
the orbit curve Y/G, is zero (and so Y = P1).

Hurwitz loci

Helmut Völklein joined in as a customer and then also co-author and
he explained what the braid orbits were classifying—Hurwitz loci.
Hurwitz loci are the connected components of the Hurwitz space Hg,
the moduli space of all pairs (X,G), where X is compact Riemann
surface of genus g and G is a finite group of isotopic transformations
of X.

Clearly, on every locus, G remains the same as an abstract finite
group, so the loci can be classified according which group they involve.
We will also use the same term “Hurwitz loci” for the images of
Hurwitz loci in the moduli space Mg of all compact Riemann surfaces
of genus g. This helps picturing the Hurwitz loci as forming a
structure under inclusion where the loci for larger groups G are
contained in the loci for their subgroups.
The braid orbits, as defined above, classify the loci for the given
group G, but only those where the orbit genus g0, that is, the genus of
the orbit curve Y/G, is zero (and so Y = P1).

Hurwitz loci

Helmut Völklein joined in as a customer and then also co-author and
he explained what the braid orbits were classifying—Hurwitz loci.
Hurwitz loci are the connected components of the Hurwitz space Hg,
the moduli space of all pairs (X,G), where X is compact Riemann
surface of genus g and G is a finite group of isotopic transformations
of X. Clearly, on every locus, G remains the same as an abstract finite
group, so the loci can be classified according which group they involve.

We will also use the same term “Hurwitz loci” for the images of
Hurwitz loci in the moduli space Mg of all compact Riemann surfaces
of genus g. This helps picturing the Hurwitz loci as forming a
structure under inclusion where the loci for larger groups G are
contained in the loci for their subgroups.
The braid orbits, as defined above, classify the loci for the given
group G, but only those where the orbit genus g0, that is, the genus of
the orbit curve Y/G, is zero (and so Y = P1).

Hurwitz loci

Helmut Völklein joined in as a customer and then also co-author and
he explained what the braid orbits were classifying—Hurwitz loci.
Hurwitz loci are the connected components of the Hurwitz space Hg,
the moduli space of all pairs (X,G), where X is compact Riemann
surface of genus g and G is a finite group of isotopic transformations
of X. Clearly, on every locus, G remains the same as an abstract finite
group, so the loci can be classified according which group they involve.
We will also use the same term “Hurwitz loci” for the images of
Hurwitz loci in the moduli space Mg of all compact Riemann surfaces
of genus g.

This helps picturing the Hurwitz loci as forming a
structure under inclusion where the loci for larger groups G are
contained in the loci for their subgroups.
The braid orbits, as defined above, classify the loci for the given
group G, but only those where the orbit genus g0, that is, the genus of
the orbit curve Y/G, is zero (and so Y = P1).

Hurwitz loci

Helmut Völklein joined in as a customer and then also co-author and
he explained what the braid orbits were classifying—Hurwitz loci.
Hurwitz loci are the connected components of the Hurwitz space Hg,
the moduli space of all pairs (X,G), where X is compact Riemann
surface of genus g and G is a finite group of isotopic transformations
of X. Clearly, on every locus, G remains the same as an abstract finite
group, so the loci can be classified according which group they involve.
We will also use the same term “Hurwitz loci” for the images of
Hurwitz loci in the moduli space Mg of all compact Riemann surfaces
of genus g. This helps picturing the Hurwitz loci as forming a
structure under inclusion where the loci for larger groups G are
contained in the loci for their subgroups.

The braid orbits, as defined above, classify the loci for the given
group G, but only those where the orbit genus g0, that is, the genus of
the orbit curve Y/G, is zero (and so Y = P1).

Hurwitz loci

Helmut Völklein joined in as a customer and then also co-author and
he explained what the braid orbits were classifying—Hurwitz loci.
Hurwitz loci are the connected components of the Hurwitz space Hg,
the moduli space of all pairs (X,G), where X is compact Riemann
surface of genus g and G is a finite group of isotopic transformations
of X. Clearly, on every locus, G remains the same as an abstract finite
group, so the loci can be classified according which group they involve.
We will also use the same term “Hurwitz loci” for the images of
Hurwitz loci in the moduli space Mg of all compact Riemann surfaces
of genus g. This helps picturing the Hurwitz loci as forming a
structure under inclusion where the loci for larger groups G are
contained in the loci for their subgroups.
The braid orbits, as defined above, classify the loci for the given
group G, but only those where the orbit genus g0, that is, the genus of
the orbit curve Y/G, is zero (and so Y = P1).

Application: Hurwitz loci for large groups G

We say that the isotopies group G is large if |G| > 4(g − 1). This
condition guarantees that the orbit genus is zero, hence BRAID could
be used.
We determined (2002) all Hurwitz loci for large groups G with g ≤ 10.
Tony Shaska joined us in this project and he additionally wrote the
exact equations of curves in each locus for g = 3.
This computation was based on the previous work of Breuer, who
determined all groups G that can act on compact Riemann surfaces
with 2 ≤ g < 50 and also determined all corresponding types
(C1, . . . , Cr).

Application: Hurwitz loci for large groups G

We say that the isotopies group G is large if |G| > 4(g − 1).

This
condition guarantees that the orbit genus is zero, hence BRAID could
be used.
We determined (2002) all Hurwitz loci for large groups G with g ≤ 10.
Tony Shaska joined us in this project and he additionally wrote the
exact equations of curves in each locus for g = 3.
This computation was based on the previous work of Breuer, who
determined all groups G that can act on compact Riemann surfaces
with 2 ≤ g < 50 and also determined all corresponding types
(C1, . . . , Cr).

Application: Hurwitz loci for large groups G

We say that the isotopies group G is large if |G| > 4(g − 1). This
condition guarantees that the orbit genus is zero, hence BRAID could
be used.

We determined (2002) all Hurwitz loci for large groups G with g ≤ 10.
Tony Shaska joined us in this project and he additionally wrote the
exact equations of curves in each locus for g = 3.
This computation was based on the previous work of Breuer, who
determined all groups G that can act on compact Riemann surfaces
with 2 ≤ g < 50 and also determined all corresponding types
(C1, . . . , Cr).

Application: Hurwitz loci for large groups G

We say that the isotopies group G is large if |G| > 4(g − 1). This
condition guarantees that the orbit genus is zero, hence BRAID could
be used.
We determined (2002) all Hurwitz loci for large groups G with g ≤ 10.
Tony Shaska joined us in this project and he additionally wrote the
exact equations of curves in each locus for g = 3.

This computation was based on the previous work of Breuer, who
determined all groups G that can act on compact Riemann surfaces
with 2 ≤ g < 50 and also determined all corresponding types
(C1, . . . , Cr).

Application: Hurwitz loci for large groups G

We say that the isotopies group G is large if |G| > 4(g − 1). This
condition guarantees that the orbit genus is zero, hence BRAID could
be used.
We determined (2002) all Hurwitz loci for large groups G with g ≤ 10.
Tony Shaska joined us in this project and he additionally wrote the
exact equations of curves in each locus for g = 3.
This computation was based on the previous work of Breuer, who
determined all groups G that can act on compact Riemann surfaces
with 2 ≤ g < 50 and also determined all corresponding types
(C1, . . . , Cr).

Arbitrary orbit genus?

Of course, it would be great to be able to do the general case of
arbitrary orbit genus. However, not all necessary ingredients were
readily available and so they needed to be worked out.
The changes involved:

Standard tuples.

Mapping class groups.

Group–subgroup correspondence.

Arbitrary orbit genus?

Of course, it would be great to be able to do the general case of
arbitrary orbit genus.

However, not all necessary ingredients were
readily available and so they needed to be worked out.
The changes involved:

Standard tuples.

Mapping class groups.

Group–subgroup correspondence.

Arbitrary orbit genus?

Of course, it would be great to be able to do the general case of
arbitrary orbit genus. However, not all necessary ingredients were
readily available and so they needed to be worked out.

The changes involved:

Standard tuples.

Mapping class groups.

Group–subgroup correspondence.

Arbitrary orbit genus?

Of course, it would be great to be able to do the general case of
arbitrary orbit genus. However, not all necessary ingredients were
readily available and so they needed to be worked out.
The changes involved:

Standard tuples.

Mapping class groups.

Group–subgroup correspondence.

Arbitrary orbit genus?

Of course, it would be great to be able to do the general case of
arbitrary orbit genus. However, not all necessary ingredients were
readily available and so they needed to be worked out.
The changes involved:

Standard tuples.

Mapping class groups.

Group–subgroup correspondence.

Arbitrary orbit genus?

Of course, it would be great to be able to do the general case of
arbitrary orbit genus. However, not all necessary ingredients were
readily available and so they needed to be worked out.
The changes involved:

Standard tuples.

Mapping class groups.

Group–subgroup correspondence.

Arbitrary orbit genus?

Of course, it would be great to be able to do the general case of
arbitrary orbit genus. However, not all necessary ingredients were
readily available and so they needed to be worked out.
The changes involved:

Standard tuples.

Mapping class groups.

Group–subgroup correspondence.

Standard tuples

First of all, the generating tuples (g1, . . . , gr) had to be substituted
with more complicatedly looking standard tuples. These are tuples

(a1, . . . , ag0 , b1, . . . , bg0 , c1, . . . , cr),

which again (1) must generate G, and (2) instead of the product 1
condition, must satisfy:

[a1, b1] · · · [ag0 , bg0]c1 · · · cr = 1.

Here [a, b] = a−1b−1ab is the commutator of a and b.
This comes from the consideration of the fundamental group of Ŷ ,
which is the orbit curve Y with all ramified points removed
(punctured).

Standard tuples

First of all, the generating tuples (g1, . . . , gr) had to be substituted
with more complicatedly looking standard tuples.

These are tuples

(a1, . . . , ag0 , b1, . . . , bg0 , c1, . . . , cr),

which again (1) must generate G, and (2) instead of the product 1
condition, must satisfy:

[a1, b1] · · · [ag0 , bg0]c1 · · · cr = 1.

Here [a, b] = a−1b−1ab is the commutator of a and b.
This comes from the consideration of the fundamental group of Ŷ ,
which is the orbit curve Y with all ramified points removed
(punctured).

Standard tuples

First of all, the generating tuples (g1, . . . , gr) had to be substituted
with more complicatedly looking standard tuples. These are tuples

(a1, . . . , ag0 , b1, . . . , bg0 , c1, . . . , cr),

which again (1) must generate G, and (2) instead of the product 1
condition, must satisfy:

[a1, b1] · · · [ag0 , bg0]c1 · · · cr = 1.

Here [a, b] = a−1b−1ab is the commutator of a and b.
This comes from the consideration of the fundamental group of Ŷ ,
which is the orbit curve Y with all ramified points removed
(punctured).

Standard tuples

First of all, the generating tuples (g1, . . . , gr) had to be substituted
with more complicatedly looking standard tuples. These are tuples

(a1, . . . , ag0 , b1, . . . , bg0 , c1, . . . , cr),

which again (1) must generate G, and (2) instead of the product 1
condition, must satisfy:

[a1, b1] · · · [ag0 , bg0]c1 · · · cr = 1.

Here [a, b] = a−1b−1ab is the commutator of a and b.

This comes from the consideration of the fundamental group of Ŷ ,
which is the orbit curve Y with all ramified points removed
(punctured).

Standard tuples

First of all, the generating tuples (g1, . . . , gr) had to be substituted
with more complicatedly looking standard tuples. These are tuples

(a1, . . . , ag0 , b1, . . . , bg0 , c1, . . . , cr),

which again (1) must generate G, and (2) instead of the product 1
condition, must satisfy:

[a1, b1] · · · [ag0 , bg0]c1 · · · cr = 1.

Here [a, b] = a−1b−1ab is the commutator of a and b.
This comes from the consideration of the fundamental group of Ŷ ,
which is the orbit curve Y with all ramified points removed
(punctured).

Fundamenta group of Ŷ

The following elements of π1(Ŷ) are called its standard generators.

∞

α1

β1

αgα2

. . .

. . .

. βg

β2

γ1

γ2

γr

These loops satisfy

[α1, β1] · · · [αg0 , βg0]γ1 · · · γr = 1.

The standard tuples in G are simply the images in G of these
standard generators. They form an orbit under the action of the
mapping class group Modg,r+1 of Ŷ − {∞}.

Fundamenta group of Ŷ
The following elements of π1(Ŷ) are called its standard generators.

∞

α1

β1

αgα2

. . .

. . .

. βg

β2

γ1

γ2

γr

These loops satisfy

[α1, β1] · · · [αg0 , βg0]γ1 · · · γr = 1.

The standard tuples in G are simply the images in G of these
standard generators. They form an orbit under the action of the
mapping class group Modg,r+1 of Ŷ − {∞}.

Fundamenta group of Ŷ
The following elements of π1(Ŷ) are called its standard generators.

∞

α1

β1

αgα2

. . .

. . .

. βg

β2

γ1

γ2

γr

These loops satisfy

[α1, β1] · · · [αg0 , βg0]γ1 · · · γr = 1.

The standard tuples in G are simply the images in G of these
standard generators. They form an orbit under the action of the
mapping class group Modg,r+1 of Ŷ − {∞}.

Fundamenta group of Ŷ
The following elements of π1(Ŷ) are called its standard generators.

∞

α1

β1

αgα2

. . .

. . .

. βg

β2

γ1

γ2

γr

These loops satisfy

[α1, β1] · · · [αg0 , βg0]γ1 · · · γr = 1.

The standard tuples in G are simply the images in G of these
standard generators. They form an orbit under the action of the
mapping class group Modg,r+1 of Ŷ − {∞}.

Fundamenta group of Ŷ
The following elements of π1(Ŷ) are called its standard generators.

∞

α1

β1

αgα2

. . .

. . .

. βg

β2

γ1

γ2

γr

These loops satisfy

[α1, β1] · · · [αg0 , βg0]γ1 · · · γr = 1.

The standard tuples in G are simply the images in G of these
standard generators.

They form an orbit under the action of the
mapping class group Modg,r+1 of Ŷ − {∞}.

Fundamenta group of Ŷ
The following elements of π1(Ŷ) are called its standard generators.

∞

α1

β1

αgα2

. . .

. . .

. βg

β2

γ1

γ2

γr

These loops satisfy

[α1, β1] · · · [αg0 , βg0]γ1 · · · γr = 1.

The standard tuples in G are simply the images in G of these
standard generators. They form an orbit under the action of the
mapping class group Modg,r+1 of Ŷ − {∞}.

Mapping class group

The mapping class group is the group of self homeomorphisms taken
up to isotopy.
The following set of generators was taken from a paper by Labruere
and Paris.

· · ·

· · ·
h1

h2

a1
a2

ar

m1

b2

c1

m1

b1
bg

∞

The arrows indicate half-twists (braid twists) and red dotted lines
indicate Dehn twists around the suitable loops.

Mapping class group

The mapping class group is the group of self homeomorphisms taken
up to isotopy.

The following set of generators was taken from a paper by Labruere
and Paris.

· · ·

· · ·
h1

h2

a1
a2

ar

m1

b2

c1

m1

b1
bg

∞

The arrows indicate half-twists (braid twists) and red dotted lines
indicate Dehn twists around the suitable loops.

Mapping class group

The mapping class group is the group of self homeomorphisms taken
up to isotopy.
The following set of generators was taken from a paper by Labruere
and Paris.

· · ·

· · ·
h1

h2

a1
a2

ar

m1

b2

c1

m1

b1
bg

∞

The arrows indicate half-twists (braid twists) and red dotted lines
indicate Dehn twists around the suitable loops.

Mapping class group

The mapping class group is the group of self homeomorphisms taken
up to isotopy.
The following set of generators was taken from a paper by Labruere
and Paris.

· · ·

· · ·
h1

h2

a1
a2

ar

m1

b2

c1

m1

b1
bg

∞

The arrows indicate half-twists (braid twists) and red dotted lines
indicate Dehn twists around the suitable loops.

Mapping class group

The mapping class group is the group of self homeomorphisms taken
up to isotopy.
The following set of generators was taken from a paper by Labruere
and Paris.

· · ·

· · ·
h1

h2

a1
a2

ar

m1

b2

c1

m1

b1
bg

∞

The arrows indicate half-twists (braid twists) and red dotted lines
indicate Dehn twists around the suitable loops.

Action

We computed (SSh, also recomputed by AJ) the action of these
generators of Modg,r+1 on the standard generators of π(Ŷ ,∞).
The following only shows the nontrivial part of the action.

The action of ai:

Tai(βi) = βiα
−1
i .

The action of ci−1:

Tci−1(αi) = αiβi−1α
−1
i β−1

i αi.

The action of ci:

Tci(αi) = α−1
i+1βi+1αi+1β

−1
i αi.

Tci(βi) = α−1
i+1βi+1αi+1β

−1
i α−1

i+1β
−1
i+1αi+1.

Action

We computed (SSh, also recomputed by AJ) the action of these
generators of Modg,r+1 on the standard generators of π(Ŷ ,∞).

The following only shows the nontrivial part of the action.

The action of ai:

Tai(βi) = βiα
−1
i .

The action of ci−1:

Tci−1(αi) = αiβi−1α
−1
i β−1

i αi.

The action of ci:

Tci(αi) = α−1
i+1βi+1αi+1β

−1
i αi.

Tci(βi) = α−1
i+1βi+1αi+1β

−1
i α−1

i+1β
−1
i+1αi+1.

Action

We computed (SSh, also recomputed by AJ) the action of these
generators of Modg,r+1 on the standard generators of π(Ŷ ,∞).
The following only shows the nontrivial part of the action.

The action of ai:

Tai(βi) = βiα
−1
i .

The action of ci−1:

Tci−1(αi) = αiβi−1α
−1
i β−1

i αi.

The action of ci:

Tci(αi) = α−1
i+1βi+1αi+1β

−1
i αi.

Tci(βi) = α−1
i+1βi+1αi+1β

−1
i α−1

i+1β
−1
i+1αi+1.

Action

We computed (SSh, also recomputed by AJ) the action of these
generators of Modg,r+1 on the standard generators of π(Ŷ ,∞).
The following only shows the nontrivial part of the action.

The action of ai:

Tai(βi) = βiα
−1
i .

The action of ci−1:

Tci−1(αi) = αiβi−1α
−1
i β−1

i αi.

The action of ci:

Tci(αi) = α−1
i+1βi+1αi+1β

−1
i αi.

Tci(βi) = α−1
i+1βi+1αi+1β

−1
i α−1

i+1β
−1
i+1αi+1.

Action

We computed (SSh, also recomputed by AJ) the action of these
generators of Modg,r+1 on the standard generators of π(Ŷ ,∞).
The following only shows the nontrivial part of the action.

The action of ai:

Tai(βi) = βiα
−1
i .

The action of ci−1:

Tci−1(αi) = αiβi−1α
−1
i β−1

i αi.

The action of ci:

Tci(αi) = α−1
i+1βi+1αi+1β

−1
i αi.

Tci(βi) = α−1
i+1βi+1αi+1β

−1
i α−1

i+1β
−1
i+1αi+1.

Action

We computed (SSh, also recomputed by AJ) the action of these
generators of Modg,r+1 on the standard generators of π(Ŷ ,∞).
The following only shows the nontrivial part of the action.

The action of ai:

Tai(βi) = βiα
−1
i .

The action of ci−1:

Tci−1(αi) = αiβi−1α
−1
i β−1

i αi.

The action of ci:

Tci(αi) = α−1
i+1βi+1αi+1β

−1
i αi.

Tci(βi) = α−1
i+1βi+1αi+1β

−1
i α−1

i+1β
−1
i+1αi+1.

Action

We computed (SSh, also recomputed by AJ) the action of these
generators of Modg,r+1 on the standard generators of π(Ŷ ,∞).
The following only shows the nontrivial part of the action.

The action of ai:

Tai(βi) = βiα
−1
i .

The action of ci−1:

Tci−1(αi) = αiβi−1α
−1
i β−1

i αi.

The action of ci:

Tci(αi) = α−1
i+1βi+1αi+1β

−1
i αi.

Tci(βi) = α−1
i+1βi+1αi+1β

−1
i α−1

i+1β
−1
i+1αi+1.

Action

We computed (SSh, also recomputed by AJ) the action of these
generators of Modg,r+1 on the standard generators of π(Ŷ ,∞).
The following only shows the nontrivial part of the action.

The action of ai:

Tai(βi) = βiα
−1
i .

The action of ci−1:

Tci−1(αi) = αiβi−1α
−1
i β−1

i αi.

The action of ci:

Tci(αi) = α−1
i+1βi+1αi+1β

−1
i αi.

Tci(βi) = α−1
i+1βi+1αi+1β

−1
i α−1

i+1β
−1
i+1αi+1.

Action

We computed (SSh, also recomputed by AJ) the action of these
generators of Modg,r+1 on the standard generators of π(Ŷ ,∞).
The following only shows the nontrivial part of the action.

The action of ai:

Tai(βi) = βiα
−1
i .

The action of ci−1:

Tci−1(αi) = αiβi−1α
−1
i β−1

i αi.

The action of ci:

Tci(αi) = α−1
i+1βi+1αi+1β

−1
i αi.

Tci(βi) = α−1
i+1βi+1αi+1β

−1
i α−1

i+1β
−1
i+1αi+1.

Action

The action of fi:

Tfi(α1) = α1γ
−1
n · · · γ−1

i+1α
−1
1 β−1

1 α1.

Tfi(γj) = (γi+1 · · · γnα−1
1 β−1

1 α1)γj(γi+1 · · · γnα−1
1 β−1

1 α1)
−1.

The action of mi:

Tmi(αi) = β−1
i αi

This action on the standard generators of π1(Ŷ ,∞) directly translates
to an action of Modg,r+1 on the standard tuples in G, giving us the
mapping class orbits that classify the arbitrary Hurwitz loci, just like
the braid orbits classify the Hurwitz loci with orbit genus zero.

Action

The action of fi:

Tfi(α1) = α1γ
−1
n · · · γ−1

i+1α
−1
1 β−1

1 α1.

Tfi(γj) = (γi+1 · · · γnα−1
1 β−1

1 α1)γj(γi+1 · · · γnα−1
1 β−1

1 α1)
−1.

The action of mi:

Tmi(αi) = β−1
i αi

This action on the standard generators of π1(Ŷ ,∞) directly translates
to an action of Modg,r+1 on the standard tuples in G, giving us the
mapping class orbits that classify the arbitrary Hurwitz loci, just like
the braid orbits classify the Hurwitz loci with orbit genus zero.

Action

The action of fi:

Tfi(α1) = α1γ
−1
n · · · γ−1

i+1α
−1
1 β−1

1 α1.

Tfi(γj) = (γi+1 · · · γnα−1
1 β−1

1 α1)γj(γi+1 · · · γnα−1
1 β−1

1 α1)
−1.

The action of mi:

Tmi(αi) = β−1
i αi

This action on the standard generators of π1(Ŷ ,∞) directly translates
to an action of Modg,r+1 on the standard tuples in G, giving us the
mapping class orbits that classify the arbitrary Hurwitz loci, just like
the braid orbits classify the Hurwitz loci with orbit genus zero.

Action

The action of fi:

Tfi(α1) = α1γ
−1
n · · · γ−1

i+1α
−1
1 β−1

1 α1.

Tfi(γj) = (γi+1 · · · γnα−1
1 β−1

1 α1)γj(γi+1 · · · γnα−1
1 β−1

1 α1)
−1.

The action of mi:

Tmi(αi) = β−1
i αi

This action on the standard generators of π1(Ŷ ,∞) directly translates
to an action of Modg,r+1 on the standard tuples in G, giving us the
mapping class orbits that classify the arbitrary Hurwitz loci, just like
the braid orbits classify the Hurwitz loci with orbit genus zero.

Action

The action of fi:

Tfi(α1) = α1γ
−1
n · · · γ−1

i+1α
−1
1 β−1

1 α1.

Tfi(γj) = (γi+1 · · · γnα−1
1 β−1

1 α1)γj(γi+1 · · · γnα−1
1 β−1

1 α1)
−1.

The action of mi:

Tmi(αi) = β−1
i αi

This action on the standard generators of π1(Ŷ ,∞) directly translates
to an action of Modg,r+1 on the standard tuples in G, giving us the
mapping class orbits that classify the arbitrary Hurwitz loci, just like
the braid orbits classify the Hurwitz loci with orbit genus zero.

Action

The action of fi:

Tfi(α1) = α1γ
−1
n · · · γ−1

i+1α
−1
1 β−1

1 α1.

Tfi(γj) = (γi+1 · · · γnα−1
1 β−1

1 α1)γj(γi+1 · · · γnα−1
1 β−1

1 α1)
−1.

The action of mi:

Tmi(αi) = β−1
i αi

This action on the standard generators of π1(Ŷ ,∞) directly translates
to an action of Modg,r+1 on the standard tuples in G,

giving us the
mapping class orbits that classify the arbitrary Hurwitz loci, just like
the braid orbits classify the Hurwitz loci with orbit genus zero.

Action

The action of fi:

Tfi(α1) = α1γ
−1
n · · · γ−1

i+1α
−1
1 β−1

1 α1.

Tfi(γj) = (γi+1 · · · γnα−1
1 β−1

1 α1)γj(γi+1 · · · γnα−1
1 β−1

1 α1)
−1.

The action of mi:

Tmi(αi) = β−1
i αi

This action on the standard generators of π1(Ŷ ,∞) directly translates
to an action of Modg,r+1 on the standard tuples in G, giving us the
mapping class orbits that classify the arbitrary Hurwitz loci, just like
the braid orbits classify the Hurwitz loci with orbit genus zero.

Reduction to subgroup

Magaard and SSh also developed an algorithm that, given a standard
tuple in G, computes a standard tuple in any subgroup H ≤ G
corresponding to the action of H on the same Riemann surface X.

This allows us to determine the inclusions between Hurwitz loci of
different groups.

Reduction to subgroup

Magaard and SSh also developed an algorithm that, given a standard
tuple in G, computes a standard tuple in any subgroup H ≤ G
corresponding to the action of H on the same Riemann surface X.
This allows us to determine the inclusions between Hurwitz loci of
different groups.

Application: Hurwitz loci for g ≤ 16

Using these tools we determined the complete structure (with
inclusions) of all Hurwitz loci for g ≤ 16. The tables are too big to be
shown here but they are available upon request.
They haven’t been independently verified.
However, for g = 3 and 4, they were compared with the published
“hand-made” results. In fact, we corrected a few errors there.
Another interesting feature is that we found many instances of equal
loci for different groups.

Application: Hurwitz loci for g ≤ 16

Using these tools we determined the complete structure (with
inclusions) of all Hurwitz loci for g ≤ 16.

The tables are too big to be
shown here but they are available upon request.
They haven’t been independently verified.
However, for g = 3 and 4, they were compared with the published
“hand-made” results. In fact, we corrected a few errors there.
Another interesting feature is that we found many instances of equal
loci for different groups.

Application: Hurwitz loci for g ≤ 16

Using these tools we determined the complete structure (with
inclusions) of all Hurwitz loci for g ≤ 16. The tables are too big to be
shown here but they are available upon request.

They haven’t been independently verified.
However, for g = 3 and 4, they were compared with the published
“hand-made” results. In fact, we corrected a few errors there.
Another interesting feature is that we found many instances of equal
loci for different groups.

Application: Hurwitz loci for g ≤ 16

Using these tools we determined the complete structure (with
inclusions) of all Hurwitz loci for g ≤ 16. The tables are too big to be
shown here but they are available upon request.
They haven’t been independently verified.

However, for g = 3 and 4, they were compared with the published
“hand-made” results. In fact, we corrected a few errors there.
Another interesting feature is that we found many instances of equal
loci for different groups.

Application: Hurwitz loci for g ≤ 16

Using these tools we determined the complete structure (with
inclusions) of all Hurwitz loci for g ≤ 16. The tables are too big to be
shown here but they are available upon request.
They haven’t been independently verified.
However, for g = 3 and 4, they were compared with the published
“hand-made” results.

In fact, we corrected a few errors there.
Another interesting feature is that we found many instances of equal
loci for different groups.

Application: Hurwitz loci for g ≤ 16

Using these tools we determined the complete structure (with
inclusions) of all Hurwitz loci for g ≤ 16. The tables are too big to be
shown here but they are available upon request.
They haven’t been independently verified.
However, for g = 3 and 4, they were compared with the published
“hand-made” results. In fact, we corrected a few errors there.

Another interesting feature is that we found many instances of equal
loci for different groups.

Application: Hurwitz loci for g ≤ 16

Using these tools we determined the complete structure (with
inclusions) of all Hurwitz loci for g ≤ 16. The tables are too big to be
shown here but they are available upon request.
They haven’t been independently verified.
However, for g = 3 and 4, they were compared with the published
“hand-made” results. In fact, we corrected a few errors there.
Another interesting feature is that we found many instances of equal
loci for different groups.

Surface braid group

AJ also computed the action of the surface braid group, which is a
normal subgroup of Modg,r+1.
The generators of the surface braid group are as follows.

· · ·

∞

a1

b1

a2

b2

z1

a3

b3

· · ·
h1

h2

Surface braid group

AJ also computed the action of the surface braid group, which is a
normal subgroup of Modg,r+1.

The generators of the surface braid group are as follows.

· · ·

∞

a1

b1

a2

b2

z1

a3

b3

· · ·
h1

h2

Surface braid group

AJ also computed the action of the surface braid group, which is a
normal subgroup of Modg,r+1.
The generators of the surface braid group are as follows.

· · ·

∞

a1

b1

a2

b2

z1

a3

b3

· · ·
h1

h2

Surface braid group

AJ also computed the action of the surface braid group, which is a
normal subgroup of Modg,r+1.
The generators of the surface braid group are as follows.

· · ·

∞

a1

b1

a2

b2

z1

a3

b3

· · ·
h1

h2

Surface braid group

Each generator is a product of two Dehn twists.

First, around one boundary loop of a thin annular neighbourhood of
the main loop, then around the second boundary loop in the opposite
direction (inverse). This product is trivial when the punctures are
filled.

Surface braid group

Each generator is a product of two Dehn twists.

First, around one boundary loop of a thin annular neighbourhood of
the main loop, then around the second boundary loop in the opposite
direction (inverse). This product is trivial when the punctures are
filled.

Surface braid group

Each generator is a product of two Dehn twists.

First, around one boundary loop of a thin annular neighbourhood of
the main loop, then around the second boundary loop in the opposite
direction (inverse). This product is trivial when the punctures are
filled.

Surface braid group

Each generator is a product of two Dehn twists.

First, around one boundary loop of a thin annular neighbourhood of
the main loop,

then around the second boundary loop in the opposite
direction (inverse). This product is trivial when the punctures are
filled.

Surface braid group

Each generator is a product of two Dehn twists.

First, around one boundary loop of a thin annular neighbourhood of
the main loop, then around the second boundary loop in the opposite
direction (inverse).

This product is trivial when the punctures are
filled.

Surface braid group

Each generator is a product of two Dehn twists.

First, around one boundary loop of a thin annular neighbourhood of
the main loop, then around the second boundary loop in the opposite
direction (inverse). This product is trivial when the punctures are
filled.

Larger orbits

Currently, we can compute orbits up to about a million (tuples up to
conjugation in G).
We are working on three ideas that will hopefully allow us to compute
much larger orbits.

Orbit computation is well suited for use of parallel processors.
We did a sample computation of an orbit of size 1.2 million using
SCSCP package.

We can use the smaller surface braid group action to only
enumerate a part of the mapping class orbit. Gives a factor of
hundreds or even thousands.

Jason Wang is trying to program an approach based on splitting
the tuple. The size is radically larger: ∼ 1015.

Larger orbits

Currently, we can compute orbits up to about a million (tuples up to
conjugation in G).

We are working on three ideas that will hopefully allow us to compute
much larger orbits.

Orbit computation is well suited for use of parallel processors.
We did a sample computation of an orbit of size 1.2 million using
SCSCP package.

We can use the smaller surface braid group action to only
enumerate a part of the mapping class orbit. Gives a factor of
hundreds or even thousands.

Jason Wang is trying to program an approach based on splitting
the tuple. The size is radically larger: ∼ 1015.

Larger orbits

Currently, we can compute orbits up to about a million (tuples up to
conjugation in G).
We are working on three ideas that will hopefully allow us to compute
much larger orbits.

Orbit computation is well suited for use of parallel processors.
We did a sample computation of an orbit of size 1.2 million using
SCSCP package.

We can use the smaller surface braid group action to only
enumerate a part of the mapping class orbit. Gives a factor of
hundreds or even thousands.

Jason Wang is trying to program an approach based on splitting
the tuple. The size is radically larger: ∼ 1015.

Larger orbits

Currently, we can compute orbits up to about a million (tuples up to
conjugation in G).
We are working on three ideas that will hopefully allow us to compute
much larger orbits.

Orbit computation is well suited for use of parallel processors.

We did a sample computation of an orbit of size 1.2 million using
SCSCP package.

We can use the smaller surface braid group action to only
enumerate a part of the mapping class orbit. Gives a factor of
hundreds or even thousands.

Jason Wang is trying to program an approach based on splitting
the tuple. The size is radically larger: ∼ 1015.

Larger orbits

Currently, we can compute orbits up to about a million (tuples up to
conjugation in G).
We are working on three ideas that will hopefully allow us to compute
much larger orbits.

Orbit computation is well suited for use of parallel processors.
We did a sample computation of an orbit of size 1.2 million using
SCSCP package.

We can use the smaller surface braid group action to only
enumerate a part of the mapping class orbit. Gives a factor of
hundreds or even thousands.

Jason Wang is trying to program an approach based on splitting
the tuple. The size is radically larger: ∼ 1015.

Larger orbits

Currently, we can compute orbits up to about a million (tuples up to
conjugation in G).
We are working on three ideas that will hopefully allow us to compute
much larger orbits.

Orbit computation is well suited for use of parallel processors.
We did a sample computation of an orbit of size 1.2 million using
SCSCP package.

We can use the smaller surface braid group action to only
enumerate a part of the mapping class orbit.

Gives a factor of
hundreds or even thousands.

Jason Wang is trying to program an approach based on splitting
the tuple. The size is radically larger: ∼ 1015.

Larger orbits

Currently, we can compute orbits up to about a million (tuples up to
conjugation in G).
We are working on three ideas that will hopefully allow us to compute
much larger orbits.

Orbit computation is well suited for use of parallel processors.
We did a sample computation of an orbit of size 1.2 million using
SCSCP package.

We can use the smaller surface braid group action to only
enumerate a part of the mapping class orbit. Gives a factor of
hundreds or even thousands.

Jason Wang is trying to program an approach based on splitting
the tuple. The size is radically larger: ∼ 1015.

Larger orbits

Currently, we can compute orbits up to about a million (tuples up to
conjugation in G).
We are working on three ideas that will hopefully allow us to compute
much larger orbits.

Orbit computation is well suited for use of parallel processors.
We did a sample computation of an orbit of size 1.2 million using
SCSCP package.

We can use the smaller surface braid group action to only
enumerate a part of the mapping class orbit. Gives a factor of
hundreds or even thousands.

Jason Wang is trying to program an approach based on splitting
the tuple.

The size is radically larger: ∼ 1015.

Larger orbits

Currently, we can compute orbits up to about a million (tuples up to
conjugation in G).
We are working on three ideas that will hopefully allow us to compute
much larger orbits.

Orbit computation is well suited for use of parallel processors.
We did a sample computation of an orbit of size 1.2 million using
SCSCP package.

We can use the smaller surface braid group action to only
enumerate a part of the mapping class orbit. Gives a factor of
hundreds or even thousands.

Jason Wang is trying to program an approach based on splitting
the tuple. The size is radically larger: ∼ 1015.

