Algorithmic number theory and the allied theory of theta functions

Christophe Ritzenthaler

Institut de Mathématiques de Luminy, CNRS
Edinburgh 10-10
e-mail: ritzenth@iml.univ-mrs.fr web: http://iml.univ-mrs.fr/~ritzenth/

Outline

(1) Link with number theory, cryptography and coding theory
(2) Period matrices and Thetanullwerte

- Period matrices
- Thetanullwerte
- From the Thetanullwerte to the Riemann matrix
- From the Riemann matrix to the (quotients of) Thetanullwerte
(3) From the curve to its Jacobian
- Hyperelliptic case and the first tool: s_{ε}
- Non hyperelliptic case and the second tool: Jacobian Nullwerte

4 From the Jacobian to its curve

- Even characteristics
- Odd characteristics

Diffie-Hellman key exchange

Let $(G=<g>, \times)$ be a cyclic group of order N.

A priori, the difficulty for an adversary is to compute $g^{k_{A} k_{B}}$ knowing $g^{k_{A}}$ et $g^{k_{B}}$.

DLP and Jacobians

In many cases, it is known to be equivalent to the Discrete Logarithm Problem:

$$
\text { giving } g \text { and } g^{a} \text { find } a .
$$

Two constraints:

- the operations in G are fast;
- the best attack to solve the DLP is the 'generic attack' which requires $\approx \sqrt{\# G}$ operations.

Currently, the best G are the groups of rational points on the Jacobians of curves over finite fields with prime order.

Problem: how to construct/find such curves ?

- No brute force method: the finite field is typically $\mathbb{F}_{2^{127}-1}$ for a genus 2 curve.
- Many methods have been developed to get 'polynomial time' algorithms: ℓ-adic cohomology, p-adic cohomology, deformation, CM,...

CM method: CM-type + fundamental unit \rightsquigarrow lattice + polarization \rightsquigarrow period matrix \rightsquigarrow Thetanullwerte $\rightsquigarrow\left\{\begin{array}{l}\text { the curve over } \mathbb{C} \\ \text { invariants }\end{array} \rightsquigarrow\right.$ curve $/ \mathbb{F}_{q}$.

AGM for point counting: curve $/ \mathbb{F}_{q} \rightsquigarrow$ lift \rightsquigarrow quotients of Thetanullwerte \rightsquigarrow canonical lift + info on Weil polynomial \rightsquigarrow Weil polynomial.

Important points:

- the theory must be developed over any field (however the intuition comes from \mathbb{C});
- the theory must be explicit;
- computations should be fast.

Coding theory origin

Context: to construct good error-correcting codes, one needs curves over finite fields with many rational points.

Problem: find a closed formula for the maximal number of points of a curve of genus g over a finite field k.
\rightsquigarrow For $g=1,2,3$ prove that a certain $(A, a) / k$ is a Jacobian.

Proposition (Precise Torelli theorem)

Let $(A, a) / K$ be a principally polarized abelian variety which is the Jacobian of a curve C over \bar{K}, then it is the Jacobian of a curve over $L=K(\sqrt{d})$ for a unique $d \in K^{*} /\left(K^{*}\right)^{2}$. Moreover if C is hyperelliptic then we can take $L=K$.

Serre's strategy for $g=3$: d is the product of the 36 Thetanullwerte (correctly normalized).
(1) Link with number theory, cryptography and coding theory
(2) Period matrices and Thetanullwerte

- Period matrices
- Thetanullwerte
- From the Thetanullwerte to the Riemann matrix
- From the Riemann matrix to the (quotients of) Thetanullwerte
(3) From the curve to its Jacobian
- Hyperelliptic case and the first tool: S_{E}
- Non hyperelliptic case and the second tool: Jacobian Nullwerte

4 From the Jacobian to its curve

- Even characteristics
- Odd characteristics

Definitions

Let C be a curve over $k \subset \mathbb{C}$ of genus $g>0$.
The Jacobian of C is a torus $\operatorname{Jac}(C) \simeq \mathbb{C}^{g} / \Lambda$ where

- the lattice $\Lambda=\Omega \mathbb{Z}^{2 g}$,
- the matrix $\Omega=\left[\Omega_{1}, \Omega_{2}\right] \in M_{g, 2 g}(\mathbb{C})$ is a period matrix and

$$
\tau=\Omega_{2}^{-1} \Omega_{1} \in \mathbb{H}_{g}=\left\{M \in \operatorname{GL}_{g}(\mathbb{C}),{ }^{t} M=M, \operatorname{Im} M>0\right\}
$$

is a Riemann matrix.

Construction

- v_{1}, \ldots, v_{g} be a k-basis of $H^{0}\left(C, \Omega^{1}\right)$,
- $\delta_{1}, \ldots, \delta_{2 g}$ be generators of $H_{1}(C, \mathbb{Z})$ such that $\left(\delta_{i}\right)_{1 \ldots 2 g}$ form a symplectic basis for the intersection pairing on C.

$$
\Omega:=\left[\Omega_{1}, \Omega_{2}\right]=\left[\int_{\delta_{j}} v_{i}\right]_{\substack{i=1, \ldots, g \\ j=1, \ldots, 2 g}}
$$

- Magma (Vermeulen): can compute Ω for a hyperelliptic curve.
- Maple (Deconinck, van Hoeij) can compute Ω for any plane model. Remark: it would be nice to have a free implementation (in SAGE).

Example

Ex: $E: y^{2}=x^{3}-35 x-98=(x-7)(x-a)(x-\bar{a})$ which has complex multiplication by $\mathbb{Z}[\alpha]$ with $\alpha=\frac{-1-\sqrt{-7}}{2}$ and $a=\frac{-7}{2}-\frac{\sqrt{-7}}{2}$.

$$
\Omega=\left[2 \int_{a}^{\bar{a}} \frac{d x}{2 y}, 2 \int_{a}^{7} \frac{d x}{2 y}\right]=c \cdot[\alpha, 1] .
$$

(Chowla, Selberg 67) formula gives

$$
c=\frac{1}{8 \pi \sqrt{7}} \cdot \Gamma\left(\frac{1}{7}\right) \cdot \Gamma\left(\frac{2}{7}\right) \cdot \Gamma\left(\frac{4}{7}\right)
$$

with

$$
\Gamma(x)=\int_{0}^{\infty} t^{z-1} \exp (-t) d t
$$

(1) Link with number theory, cryptography and coding theory
(2) Period matrices and Thetanullwerte

- Period matrices
- Thetanullwerte
- From the Thetanullwerte to the Riemann matrix
- From the Riemann matrix to the (quotients of) Thetanullwerte
(3) From the curve to its Jacobian
- Hyperelliptic case and the first tool: S_{ε}
- Non hyperelliptic case and the second tool: Jacobian Nullwerte
(4) From the Jacobian to its curve
- Even characteristics
- Odd characteristics

Projective embedding

The intersection pairing on C induces a principal polarization j on $\operatorname{Jac}(C)$. \Longleftrightarrow The map $\operatorname{Sym}^{g-1} C \rightarrow \operatorname{Jac}(C)$ defines an ample divisor D on $\operatorname{Jac}(C)$ (up to translation).

Theorem (Lefschetz, Mumford, Kempf)

For $n \geq 3, n D$ is very ample, i.e. one can embed $\operatorname{Jac}(C)$ in a $\mathbb{P}^{n^{g}-1}$ with a basis of sections of $\mathcal{L}(n D)$.

For $n=4$, the embedding is given by intersection of quadrics, whose equations are completely determined by the image of 0 .

Thetanullwert

A basis of sections of $\mathcal{L}(4 D)$ is given by theta functions $\theta[\varepsilon](2 z, \tau)$ with integer characteristics $[\varepsilon]=\left(\epsilon, \epsilon^{\prime}\right) \in\{0,1\}^{2 g}$ where

$$
\theta\left[\begin{array}{c}
\epsilon \\
\epsilon^{\prime}
\end{array}\right](z, \tau)=\sum_{n \in \mathbb{Z}^{g}} \exp \left(i \pi\left(n+\frac{\epsilon}{2}\right) \tau^{t}\left(n+\frac{\epsilon}{2}\right)+2 i \pi\left(n+\frac{\epsilon}{2}\right)^{t}\left(z+\frac{\epsilon^{\prime}}{2}\right)\right) .
$$

When $\epsilon^{t} \epsilon^{\prime} \equiv 0(\bmod 2),[\varepsilon]$ is said even and one calls Thetanullwert

$$
\theta\left[\begin{array}{c}
\epsilon \\
\epsilon^{\prime}
\end{array}\right](0, \tau)=\theta\left[\begin{array}{c}
\epsilon \\
\epsilon^{\prime}
\end{array}\right](\tau)=\theta[\varepsilon](\tau)=\theta_{a b}
$$

where the binary representations of a and b are $\epsilon, \epsilon^{\prime}$.

Example

Let $q=\exp (\pi i \tau)$. There are 3 genus 1 Thetanullwerte:

$$
\begin{gathered}
\theta_{00}=\theta\left[\begin{array}{l}
0 \\
0
\end{array}\right](0, \tau)=\sum_{n \in \mathbb{Z}} q^{n^{2}}, \\
\theta_{10}=\theta\left[\begin{array}{l}
1 \\
0
\end{array}\right](0, \tau)=\sum_{n \in \mathbb{Z}} q^{\left(n+\frac{1}{2}\right)^{2}}, \\
\theta_{01}=\theta\left[\begin{array}{l}
0 \\
1
\end{array}\right](0, \tau)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{n^{2}} .
\end{gathered}
$$

(1) Link with number theory, cryptography and coding theory
(2) Period matrices and Thetanullwerte

- Period matrices
- Thetanullwerte
- From the Thetanullwerte to the Riemann matrix
- From the Riemann matrix to the (quotients of) Thetanullwerte
(3) From the curve to its Jacobian
- Hyperelliptic case and the first tool: S_{ε}
- Non hyperelliptic case and the second tool: Jacobian Nullwerte

4 From the Jacobian to its curve

- Even characteristics
- Odd characteristics

Case $g=1$ Gauss, Cox 84, Dupont 07

- Let $z=\theta_{01}(\tau)^{2} / \theta_{00}(\tau)^{2}$.
- Duplication formulae vs AGM formulae :

$$
\begin{array}{rlrl}
\theta_{00}(2 \tau)^{2} & =\frac{\theta_{00}(\tau)^{2}+\theta_{01}(\tau)^{2}}{2} & & =\frac{a_{n-1}+b_{n-1}}{2}, \\
a_{n} & & =\sqrt{a_{n-1} \cdot b_{n-1}}, \\
\theta_{01}(2 \tau)^{2} & =\theta_{00}(\tau) \cdot \theta_{01}(\tau) & b_{n} & :=\lim a_{n}=\lim b_{n} \\
\theta_{10}(2 \tau)^{2} & =\frac{\theta_{00}(\tau)^{2}-\theta_{01}(\tau)^{2}}{2} & A G M\left(a_{0}, b_{0}\right) & \\
\Rightarrow A G M\left(\theta_{00}(\tau)^{2}, \theta_{01}(\tau)^{2}\right)=\lim \theta_{00}\left(2^{n} \tau\right)^{2}=1 \Rightarrow A G M(1, z)=\frac{1}{\theta_{00}(\tau)^{2}} .
\end{array}
$$

$\Rightarrow \theta_{10}(\tau)^{2}=\sqrt{\theta_{00}(\tau)^{4}-\theta_{01}(\tau)^{4}}$.

- Transformation formula :

$$
\theta_{00}(\tau)^{2}=\frac{i}{\tau} \cdot \theta_{00}\left(\frac{-1}{\tau}\right)^{2}, \quad \theta_{10}(\tau)^{2}=\frac{i}{\tau} \cdot \theta_{01}\left(\frac{-1}{\tau}\right)^{2}
$$

$\Rightarrow \operatorname{AGM}\left(\theta_{00}(\tau)^{2}, \theta_{10}(\tau)^{2}\right)=\frac{i}{\tau} \cdot \lim \theta_{00}\left(2^{n} \cdot \frac{-1}{\tau}\right)^{2}=\frac{i}{\tau} \cdot 1$
$\Rightarrow \operatorname{AGM}\left(1, \sqrt{1-z^{2}}\right)=\frac{i}{\tau} \cdot \frac{1}{\theta_{00}(\tau)^{2}}$.

Proposition

Difficulty: define the correct square root when the values are complex.

Case $g \geq 2$

Particular case: real Weierstrass points and $g=2$ (Bost-Mestre 88).
General case (Dupont 07): under some (experimentally verified) conjectures.

Proposition

One can compute τ in terms of $\theta[\varepsilon](\tau)^{2} / \theta[0](\tau)^{2}$ in time

$$
O\left(g^{2} \cdot 2^{g} \cdot n^{1+\epsilon}\right)
$$

for n digits of precision.
For comparison, integration takes $O\left(n^{2+\epsilon}\right)$.
(2) Period matrices and Thetanullwerte

- Period matrices
- Thetanullwerte
- From the Thetanullwerte to the Riemann matrix
- From the Riemann matrix to the (quotients of) Thetanullwerte
(3) From the curve to its Jacobian
- Hyperelliptic case and the first tool: S_{E}
- Non hyperelliptic case and the second tool: Jacobian Nullwerte

4 From the Jacobian to its curve

- Even characteristics
- Odd characteristics

The work of (Dupont 07)

Naive method: $O(n \sqrt{n})$ for $g=1$ and $O\left(n^{2+\epsilon}\right)$ for $g=2$.
New method: invert the AGM. Complexity for n bits of precision on the quotients

- $O\left(n^{1+\epsilon}\right)$ for $g=1$,
- $O\left(n^{1+\epsilon}\right)$ for $g=2$ (conjectural algorithm).

Main idea for $g=1$: let

$$
f(z)=i \cdot \operatorname{AGM}(1, z)-\tau \cdot \operatorname{AGM}\left(1, \sqrt{1-z^{2}}\right)
$$

Then $f\left(\theta_{01}(\tau)^{2} / \theta_{00}(\tau)^{2}\right)=0$. Do a Newton algorithm on f.

- can we get rid of the conjectures ?
- can we generalize to all genera ?
- can we compute the Thetanullwerte alone ?
(1) Link with number theory, cryptography and coding theory
(2) Period matrices and Thetanullwerte
- Period matrices
- Thetanullwerte
- From the Thetanullwerte to the Riemann matrix
- From the Riemann matrix to the (quotients of) Thetanullwerte
(3) From the curve to its Jacobian
- Hyperelliptic case and the first tool: s_{ε}
- Non hyperelliptic case and the second tool: Jacobian Nullwerte

4 From the Jacobian to its curve

- Even characteristics
- Odd characteristics

Let C be a hyperelliptic curve $C: y^{2}=\prod_{i=1}^{2 g+1}\left(x-\lambda_{i}\right)$.

Theorem (Thomae's formulae)

$$
\theta[\varepsilon](\tau)^{4}= \pm\left(\frac{\operatorname{det} \Omega_{2}}{\pi^{g}}\right)^{2} \prod_{(i, j) \in I}\left(\lambda_{i}-\lambda_{j}\right)
$$

with the choice of the basis of differentials $x^{i} d x / y$ (the set I depends on $[\varepsilon]$ and on the basis of $H_{1}(C, \mathbb{Z})$).

Proof: see (Fay 73) using a variational method.
Proof for the quotients:

- study the zeroes of the section

$$
s_{\varepsilon}(P)=\theta[\varepsilon]\left(\phi_{P_{0}}(P)\right)
$$

where $P_{0} \in C$ and $\phi_{P_{0}}(P)=P-P_{0} \in \operatorname{Jac}(C)$.

- c.f(P) $=\frac{s_{\varepsilon}(P)^{2}}{s_{\varepsilon^{\prime}}(P)^{2}}$ for an explicit $f \in \mathbb{C}(C)$.
- $c=\frac{s_{\varepsilon}\left(P_{1}\right)^{2}}{s_{\varepsilon^{\prime}}\left(P_{1}\right)^{2} f\left(P_{1}\right)}=\frac{s_{\varepsilon}\left(P_{2}\right)^{2}}{s_{\varepsilon^{\prime}}\left(P_{2}\right)^{2} f\left(P_{2}\right)}$ for P_{1}, P_{2} such that $\frac{s_{\varepsilon}\left(P_{2}\right)^{2}}{s_{\varepsilon^{\prime}}\left(P_{2}\right)^{2}}=\frac{s_{\varepsilon^{\prime}}\left(P_{1}\right)^{2}}{s_{\varepsilon}\left(P_{1}\right)^{2}}$.
(1) Link with number theory, cryptography and coding theory
(2) Period matrices and Thetanullwerte
- Period matrices
- Thetanullwerte
- From the Thetanullwerte to the Riemann matrix
- From the Riemann matrix to the (quotients of) Thetanullwerte
(3) From the curve to its Jacobian
- Hyperelliptic case and the first tool: s_{ε}
- Non hyperelliptic case and the second tool: Jacobian Nullwerte
(4) From the Jacobian to its curve
- Even characteristics
- Odd characteristics

Non hyperelliptic case genus 3

Let C be a smooth plane quartic.

Theorem (Weber 1876)

$$
\left(\frac{\theta[\varepsilon](\tau)}{\theta\left[\varepsilon^{\prime}\right](\tau)}\right)^{4}=\frac{\left[b_{i}, b_{j}, b_{i j}\right]\left[b_{i k}, b_{j k}, b_{i j}\right]\left[b_{j}, b_{j k}, b_{k}\right]\left[b_{i}, b_{i k}, b_{k}\right]}{\left[b_{j}, b_{j k}, b_{i j}\right]\left[b_{i}, b_{i k}, b_{i j}\right]\left[b_{i}, b_{j}, b_{k}\right]\left[b_{i k}, b_{j k}, b_{k}\right]}
$$

where the $b_{i}, b_{i j}$ are linear equations of certain bitangents of C and $\left[b_{i}, b_{j}, b_{k}\right]$ is the determinant of the matrix of the coefficients of (once for all fixed) equations of the bitangents.

- Weber's proof uses $s_{\varepsilon}(P)$.
- Nart, R. unpublished: more natural proof using derivative of theta functions and a generalization of Jacobi's derivative formula.

Question: can we find a formula for a Thetanullwert alone like in the hyperelliptic case?

Derivative of theta functions

When $\epsilon^{t} \epsilon^{\prime} \equiv 1(\bmod 2),[\varepsilon]$ is said odd and we write $[\mu]$ instead.

Definition

The theta gradient (with odd characteristic $[\boldsymbol{\mu}]$) is the vector

$$
\nabla \theta[\boldsymbol{\mu}]:=\left(\frac{\partial \theta[\boldsymbol{\mu}](z, \tau)}{\partial z_{1}}(0, \tau), \ldots, \frac{\partial \theta[\boldsymbol{\mu}](z, \tau)}{\partial z_{g}}(0, \tau)\right) .
$$

The theta hyperplane is the projective hyperplane

$$
\nabla \theta[\mu] \cdot\left(X_{1}, \ldots, X_{g}\right)=0
$$

of \mathbb{P}^{g-1} defined by a theta gradient.
We denote the matrix

$$
J\left[\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{g}\right]:=\left(\nabla \theta\left[\boldsymbol{\mu}_{1}\right], \ldots, \nabla \theta\left[\boldsymbol{\mu}_{g}\right]\right)
$$

and $\left[\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{g}\right]$ its determinant (called Jacobian Nullwerte).

Case of Riemann-Mumford-Kempf singularity theorem

Let C be any curve of genus $g>0$ and let κ_{0} be such that Sym ${ }^{g-1} C-\kappa_{0}=\{z, \theta[0](z, \tau)=0\}$.

Theorem

Let ϕ be the canonical map

$$
\phi: C \rightarrow \mathbb{P}^{g-1}, P \mapsto\left(\omega_{1}(P), \ldots, \omega_{g}(P)\right)
$$

Let D be an effective divisor of degree $g-1$ on C such that $h^{0}(D)=1$. Then

$$
\left(\frac{\partial \theta(z, \tau)}{\partial z_{1}}\left(D-\kappa_{0}, \tau\right), \frac{\partial \theta(z, \tau)}{\partial z_{g}}\left(D-\kappa_{0}, \tau\right)\right) \Omega_{2}^{-1 t}\left(X_{1}, \ldots, X_{g}\right)=0
$$

is an hyperplane of \mathbb{P}^{g-1} which contains the divisor $\phi(D)$ on the curve $\phi(C)$.

Remarks

- Jacobi's derivative formula expresses $\left[\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{g}\right]$ as a precise polynomial in the Thetanullwerte.
- For $g \leq 5$ it is known that $\left[\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{g}\right]$ is in $\mathbb{C}[\theta]$.In general, it is not true but $\left[\mu_{1}, \ldots, \mu_{g}\right]$ can be expresses as a quotient of two polynomials in the Thetanullwerte. There is also a precise conjectural formula (Igusa 80).
- Could we directly invert the formula, i.e. express a Thetanullwert is terms of Jacobian Nullwerte (at least for $g \leq 5$) ?
- (Nakayashili 97, Enolski, Grava 06): Thomae's formula for $y^{n}=\prod_{i=1}^{m}\left(x-\lambda_{i}\right)^{n-1} \cdot \prod_{i=m+1}^{2 m}\left(x-\lambda_{i}\right)$.
- a general theory exists (Klein vol. 3 p.429, Matone-Volpato 07 over \mathbb{C}, Shepherd-Barron preprint 08 over any field). Their expressions involve determinants of bases of $H^{0}\left(C, \mathcal{L}\left(2 K_{C}+\boldsymbol{\mu}\right)\right)$. But no formula or implementation has been done.
(1) Link with number theory, cryptography and coding theory
(2) Period matrices and Thetanullwerte
- Period matrices
- Thetanullwerte
- From the Thetanullwerte to the Riemann matrix
- From the Riemann matrix to the (quotients of) Thetanullwerte
(3) From the curve to its Jacobian
- Hyperelliptic case and the first tool: S_{ε}
- Non hyperelliptic case and the second tool: Jacobian Nullwerte

4) From the Jacobian to its curve

- Even characteristics
- Odd characteristics

Torelli theorem: classical versions

Let C / k be a curve of genus $g>0$.

Theorem

C is uniquely determined up to k-isomorphism by $(\operatorname{Jac}(C), j)$.

Corollary

C is uniquely determined up to \mathbb{C}-isomorphism by Ω or by the Thetanullwerte.

From the Jacobian to its curve: hyperelliptic case

$$
C: y^{2}=\prod_{i=1}^{2 g+1}\left(x-\lambda_{i}\right)
$$

Idea: invert quotient Thomae's formulae (Mumford Tata II p.136, Takase 96, Koizumi 97)

$$
\frac{\lambda_{k}-\lambda_{I}}{\lambda_{k}-\lambda_{m}}=i^{c} \cdot \frac{\theta\left[\varepsilon_{1}\right]^{2} \cdot \theta\left[\varepsilon_{2}\right]^{2}}{\theta\left[\varepsilon_{3}\right]^{2} \cdot \theta\left[\varepsilon_{4}\right]^{2}}, \quad c \in\{0,1,2,3\} .
$$

- For genus 1: $\lambda_{1}=\theta_{1}^{4} / \theta_{0}^{4}$.
- For genus 2 (Rosenhain formula):

$$
\lambda_{1}=-\frac{\theta_{01}^{2} \theta_{21}^{2}}{\theta_{30}^{2} \theta_{10}^{2}}, \quad \lambda_{2}=-\frac{\theta_{03}^{2} \theta_{21}^{2}}{\theta_{30}^{2} \theta_{12}^{2}}, \quad \lambda_{3}=-\frac{\theta_{03}^{2} \theta_{01}^{2}}{\theta_{10}^{2} \theta_{12}^{2}} .
$$

- For genus 3 (Weng 01):

$$
\lambda_{\mathbf{1}}=\frac{\left(\theta_{15} \theta_{\mathbf{3}}\right)^{4}+\left(\theta_{\mathbf{1 2}} \theta_{\mathbf{1}}\right)^{4}-\left(\theta_{\mathbf{1 4}} \theta_{\mathbf{2}}\right)^{4}}{2\left(\theta_{\mathbf{1 5}} \theta_{\mathbf{3}}\right)^{4}}, \lambda_{\mathbf{2}}=\frac{\left(\theta_{\mathbf{4}} \theta_{\mathbf{9}}\right)^{4}+\left(\theta_{\mathbf{6}} \theta_{\mathbf{1 1}}\right)^{4}-\left(\theta_{\mathbf{1 3}} \theta_{\mathbf{8}}\right)^{4}}{2\left(\theta_{\mathbf{4}} \theta_{\mathbf{9}}\right)^{4}}, \ldots
$$

From the Jacobian to its curve : non hyperelliptic genus 3

(Weber 1876) shows how to find the Riemann model:

$$
C: \sqrt{x\left(a_{1} x+a_{1}^{\prime} y+a_{1}^{\prime \prime} z\right)}+\sqrt{y\left(a_{2} x+a_{2}^{\prime} y+a_{2}^{\prime \prime} z\right)}+\sqrt{z\left(a_{3} x+a_{3}^{\prime} y+a_{3}^{\prime \prime} z\right)}=0
$$

with

$$
\begin{aligned}
& a_{1}=i \frac{\theta_{41} \theta_{05}}{\theta_{50} \theta_{14}}, \quad a_{1}^{\prime}=i \frac{\theta_{05} \theta_{66}}{\theta_{33} \theta_{50}}, \quad a_{1}^{\prime \prime}=-\frac{\theta_{66} \theta_{41}}{\theta_{14} \theta_{33}}, \\
& a_{2}=i \frac{\theta_{25} \theta_{61}}{\theta_{34} \theta_{70}}, \quad a_{2}^{\prime}=i \frac{\theta_{61} \theta_{02}}{\theta_{57} \theta_{34}}, \quad a_{2}^{\prime \prime}=\frac{\theta_{02} \theta_{25}}{\theta_{70} \theta_{57}}, \\
& a_{3}=i \frac{\theta_{07} \theta_{43}}{\theta_{16} \theta_{52}}, \quad a_{3}^{\prime}=i \frac{\theta_{40} \theta_{20}}{\theta_{75} \theta_{16}}, \quad a_{3}^{\prime \prime}=\frac{\theta_{20} \theta_{07}}{\theta_{52} \theta_{75}} .
\end{aligned}
$$

Question: can something be done for $g \geq 4$?
(1) Link with number theory, cryptography and coding theory

(2) Period matrices and Thetanullwerte

- Period matrices
- Thetanullwerte
- From the Thetanullwerte to the Riemann matrix
- From the Riemann matrix to the (quotients of) Thetanullwerte
(3) From the curve to its Jacobian
- Hyperelliptic case and the first tool: S_{ε}
- Non hyperelliptic case and the second tool: Jacobian Nullwerte
(4) From the Jacobian to its curve
- Even characteristics
- Odd characteristics

Torelli theorems: odd versions

Theorem (Grushevsky, Salvati Manni 04)

A generic abelian variety of dimension $g \geq 3$ is uniquely determined by its theta gradients.

Theorem (Caporaso, Sernesi 03)

A general curve C of genus $g \geq 3$ is uniquely determined by its theta hyperplanes.

Rem: the second result is not a corollary of the first.

Hyperelliptic case: genus 2 example (Guàrdia 01,07)

Let $\left[\boldsymbol{\mu}_{1}\right], \ldots,\left[\boldsymbol{\mu}_{6}\right]$ be the odd characteristics. Then C admits a symmetric model
$y^{2}=x\left(x-\frac{\left[\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{3}\right]}{\left[\boldsymbol{\mu}_{2}, \boldsymbol{\mu}_{3}\right]}\right)\left(x-\frac{\left[\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{4}\right]}{\left[\boldsymbol{\mu}_{2}, \boldsymbol{\mu}_{4}\right]}\right)\left(x-\frac{\left[\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{5}\right]}{\left[\boldsymbol{\mu}_{2}, \boldsymbol{\mu}_{5}\right]}\right)\left(x-\frac{\left[\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{6}\right]}{\left[\boldsymbol{\mu}_{2}, \boldsymbol{\mu}_{6}\right]}\right)$.
Remarks:

- his theory of symmetric models has nice invariants, nice reduction properties.

Non hyperelliptic curves of genus 3: Guàrdia 09

Refinement of Riemann model: a smooth plane quartic over k is k-isomorphic to

$$
\sqrt{\frac{\left[b_{7} b_{2} b_{3}\right]\left[b_{7} b_{2}^{\prime} b_{3}^{\prime}\right]}{\left[b_{1} b_{2} b_{3}\right]\left[b_{1}^{\prime} b_{2}^{\prime} b_{3}^{\prime}\right]} x_{1} X_{1}^{\prime}}+\sqrt{\frac{\left[b_{1} b_{7} b_{3}\right]\left[b_{7} b_{1}^{\prime} b_{3}^{\prime}\right]}{\left[b_{1} b_{2} b_{3}\right]\left[b_{1}^{\prime} b_{2}^{\prime} b_{3}^{\prime}\right]} x_{2} X_{2}^{\prime}}+\sqrt{\frac{\left[b_{1} b_{2} b_{7}\right]\left[b_{7} b_{1}^{\prime} b_{2}^{\prime}\right]}{\left[b_{1} b_{2} b_{3}\right]\left[b_{1}^{\prime} b_{2}^{\prime} b_{3}^{\prime}\right]} x_{3} X_{3}^{\prime}}=0
$$

where X_{i}, X_{i}^{\prime} are the equations of the bitangents b_{i}, b_{i}^{\prime}.

Ex: Take $A=E^{3}$ where E has $C M$ by $\sqrt{-19}+$ the unique undecomposable principal polarization. Then $A=\operatorname{Jac}(C)$ where

$$
C: x^{4}+(1 / 9) y^{4}+(2 / 3) x^{2} y^{2}-190 y^{2}-570 x^{2}+(152 / 9) y^{3}-152 x^{2} y-1083=0 .
$$

Summary

	$g=1$	$g=2$	$g \geq 3 \mathrm{~h}$.	$g=3 \mathrm{n} . \mathrm{h}$.	$g>3 \mathrm{n} . \mathrm{h}$.
$\theta \rightarrow \tau$	fast	fast conj.	fast conj.	fast conj.	fast conj.
$\tau \rightarrow \theta$	algo	algo	algo	algo	algo
	fast quotient	fast quot.			
$C \rightarrow \Omega$	fast	(free) algo	algo	algo	plane model
$C \rightarrow \theta$	fast	algo	algo	algo quot.	theory
$\theta \rightarrow C$	fast	fast	fast	fast	$?$
$\nabla \theta \rightarrow C$	fast	fast	fast	fast	$?$

algo: there exists an algorithm but slow. fast (conj.): there exists a fast (conjectural) algorithm. quot.: for the quotient of Thetanullwerte. theory: the theory is done but no implementation has been done. ?: nothing is done.

