Geodesic equation in axially symmetric space–times — Analytic solutions and observables —

Claus Lämmerzahl with Eva Hackmann, Valeria Kagramanova, and Jutta Kunz

Centre for Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359 Bremen, Germany

The higher-genus sigma function and applications Edinburgh 11. - 15. 10. 2010

Geodesic equation in axially symmetric space–times — Analytic solutions and observables —

Claus Lämmerzahl with Eva Hackmann, Valeria Kagramanova, and Jutta Kunz

Centre for Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359 Bremen, Germany

The higher-genus sigma function and applications Edinburgh 11. - 15. 10. 2010

Where we are

Analytic solutions of the geodesic equation

Where we are

Where we are

ZARM

The Bremen drop tower

C. Lämmerzahl (ZARM, Bremen)

The Bremen drop tower

Space Science

- Fundamental Physics
- Key Technologies
- Control systems
- Space technology
- Micro satellites

Fluid mechanics

- Fluid dynamics
- Energy and propulsion
- Computational fluid dynamics
- Experimental fluid mechanics

Fundamental Physics at ZARM: Scope

Scope of Fundamental Physics at ZARM

- Development of new technologies
 - for microgravity experiments (drop tower, ISS, satellite)
 - for applications in space
- Accompanying theoretical investigations
 - motivation for experiments and missions
 - theory for experiments and applications
- High precision modeling
 - experimental devices
 - whole spacecraft
 - whole missions
 - quantum modeling

23 members

3 Professors, 3 post-docs, 14 PhD students, 1 diploma student, 2 technicians

Center of Applied Space Technology and Microgravity Research areas

Center of Applied Space Technology and Microgravity

- Satellite dynamics
 - modeling
 - disturbance forces
 - thermal and stress analysis
 - HPS (High Performance satellite dynamics Simulator)

Center of Applied Space Technology and Microgravity

- Satellite dynamics
 - modeling
 - disturbance forces
 - thermal and stress analysis
 - HPS (High Performance satellite dynamics Simulator)
- Quantum physics
 - Bose–Einstein Condensate, BEC (exp, theory & modeling)
 - atom interferometry (exp & theory)
 - quantum tests (equivalence principle, decoherence, linearity, ...)
 - development of corresponding space technology

Center of Applied Space Technology and Microgravity

- Satellite dynamics
 - modeling
 - disturbance forces
 - thermal and stress analysis
 - HPS (High Performance satellite dynamics Simulator)
- Quantum physics
 - Bose–Einstein Condensate, BEC (exp, theory & modeling)
 - atom interferometry (exp & theory)
 - quantum tests (equivalence principle, decoherence, linearity, ...)
 - development of corresponding space technology

Center of Applied Space Technology and Microgravity

- Satellite dynamics
 - modeling
 - disturbance forces
 - thermal and stress analysis
 - HPS (High Performance satellite dynamics Simulator)
- Quantum physics
 - Bose–Einstein Condensate, BEC (exp, theory & modeling)
 - atom interferometry (exp & theory)
 - quantum tests (equivalence principle, decoherence, linearity, ...)
 - development of corresponding space technology
- Gravitational physics
 - tests of Equivalence Principle
 - analytical and numerical solutions for orbits
 - quantum gravity phenomenology
 - theoretical description of experiments testing SR and GR

Center of Applied Space Technology and Microgravity

- Satellite dynamics
 - modeling
 - disturbance forces
 - thermal and stress analysis
 - HPS (High Performance satellite dynamics Simulator)
- Quantum physics
 - Bose–Einstein Condensate, BEC (exp, theory & modeling)
 - atom interferometry (exp & theory)
 - quantum tests (equivalence principle, decoherence, linearity, ...)
 - development of corresponding space technology
- Gravitational physics
 - tests of Equivalence Principle
 - analytical and numerical solutions for orbits
 - quantum gravity phenomenology
 - theoretical description of experiments testing SR and GR

BEC in microgravity

design of capsule

vacuum chamber

capsule

C. Lämmerzahl (ZARM, Bremen)

Analytic solutions of the geodesic equation

Edinburgh, 13.10.2010 7 / 86

First BEC in microgravity / extended free fall

LU Hannover, ZARM, MPQ Munich, U Hamburg, HU Berlin, U Ulm

C. Lämmerzahl (ZARM, Bremen)

Analytic solutions of the geodesic equation

Edinburgh, 13.10.2010 8 / 86

BEC in microgravity - long free evolution

 10^4 atoms, 1 s free evolution time (not possible on ground) van Zoest et al, Science 2010

C. Lämmerzahl (ZARM, Bremen)

Analytic solutions of the geodesic equation

BEC in microgravity – long free evolution

 10^4 atoms, 1 s free evolution time (not possible on ground) van Zoest et al, Science 2010

C. Lämmerzahl (ZARM, Bremen)

Analytic solutions of the geodesic equation

Edinburgh, 13.10.2010

9 / 86

BEC in free fall

Status

- until now almost 200 drops
- BEC is created regularly
- extremely robust (survives $\sim 50\,g)$

Worldwide most advanced technology towards space application and fundamental quantum physics in μg

Ongoing work

- PRIMUS (PRäzisions–Interferometrie mit Materiewellen Unter Schwerelosigkeit)
- FOKUS (FaserOptischer FrequenzKamm Unter Schwerelosigkeit)
- ATUS (Atom Interferometer Modeling)
- Fluctuations in Quantum Systems

In future

- Fundamental Physics experiments
- Drop tower Texus ISS
- Inertial sensors
- High precision clocks

10 / 86

High precision quantum modeling

GOST: trampolin with a Bose-Einstein condensate

BEC described by Gross-Pitaevskii equation

$$i\partial_t \psi = \Delta \psi + V(\boldsymbol{x})\psi + g|\psi|^2\psi$$

- wide class of solutions known
- dynamical solutions in gravitational field $V(\boldsymbol{x}) = \boldsymbol{g} \cdot \boldsymbol{x}$ (Chen & Lee, PRL 1976)
- $\bullet\,$ stationary and dynamical solutions in gravito–optical surface trap: boundary condition $\psi=0$ for z=0
- ullet nonlinear hydrogen atom $V(oldsymbol{x})=1/r$
- solutions in periodic potentials
- solutions in gravitational waves
- solitons, vortices

Multi-component BEC

for testing the Universality of Free Fall: two BECs in the same trap \rightarrow multicomponent BEC multi-component BEC described by

$$i\partial_t \Psi_a = \Delta \Psi_a + V(\boldsymbol{x})\Psi_a + g \|\Psi\|^2 \Psi_a$$

with

$$\Psi = \begin{pmatrix} \Psi_1 \\ \vdots \\ \Psi_n \end{pmatrix}$$

- vector Schrödinger equation: analytical solutions? In gravitational fields?
- skyrmions

ions

Leslie et al, PRL 2009

13 / 86

The Pioneer anomaly

Anomalous acceleration toward Sun

- anomalous gravity?
- systematics?

The Pioneer anomaly

Anomalous acceleration toward Sun

- anomalous gravity?
- systematics?

High precision modeling

New method for high precision modeling of

- experimental devices
- spacecraft

Needed for

- ground experiments (Michelson–Morley, gravitational wave interferometers, etc.)
- analysis of Pioneer anomaly
- LISA, LISA pathfinder, geodesy missions, ...

Rievers, C.L., List, Bremer & Dittus, NJP 2009

15 / 86

High precision modeling – FE

Main topics

- Thermal modeling
- Strains and stresses
- Drag and recoil forces
- Analytical solutions

Aim

- Accuracy $\sim 10^{-20}$
- motivated by cavities and optical clocks

$$\nu = \frac{2n\pi}{L}c \qquad \Rightarrow \qquad \frac{\delta c}{c} = \sqrt{\left(\frac{\delta\nu}{\nu}\right)^2 + \left(\frac{\delta L}{L}\right)^2}$$

future frequency stability $\sim 10^{-18}$ requires same mechanical stability

High precision modeling - FE

Modeling an optical resonator

applications to gravitational wave interferometers, LISA, LISA Pathfinder, clock missions, \dots

Analytic solution of Lamé-Navier equation in gravity gradient

$$\mu \Delta u^i + (\lambda + \mu) (\operatorname{grad} \operatorname{div} u)^i + K^i = 0$$

Homogenous part implies biharmonic equation

$$\Delta \Delta u = 0$$

Scheithauer & C.L., CQG 2006

18 / 86

C. Lämmerzahl (ZARM, Bremen)

The Pioneer anomaly

Anomalous acceleration toward Sun

- anomalous gravity?
- systematics?

The Pioneer anomaly

Anomalous acceleration toward Sun

- anomalous gravity?
- systematics?

Orbits in gravitational fields

- New analytic solutions, based on algebra-geometric methods
- Analytic solution of differential equations of the form

$$\left(\frac{dx}{ds}\right)^2 = P_n(x) \qquad \text{and} \qquad \left(x\frac{dx}{ds}\right)^2 = P_n(x)$$

 $P_n =$ polynomial of degree n

- Application: influence of cosmological constant on motion
 - Plebański–Demiański space–times without acceleration in 4D (Petrov D)
 - higher dimensions
 - in space-times with mass multipoles
- Practical application
 - Pioneer anomaly, dark matter problems
 - geodesy
 - clocks in space

Hackmann & Lämmerzahl, PRL 2008, PRD 2008, Hackmann, Kagramanova, Kunz & Lämmerzahl, PRD 2008, 2009, 2010, EPL 2009

C. Lämmerzahl (ZARM, Bremen)

- 1
- Introduction and motivation
- 2 General Relativity

- Introduction and motivation
- 2 General Relativity
- Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times

- Introduction and motivation
- 2 General Relativity
- Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times
- Solutions of the geodesic equation
 - The solutions
 - Examples for orbits
 - Classification of orbits

- Introduction and motivation
- 2 General Relativity
- Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times
- 4 Solutions of the geodesic equation
 - The solutions
 - Examples for orbits
 - Classification of orbits
- 5 Observables
 - Observables for bound orbits
 - Observables for escape orbits

- Introduction and motivation
- 2 General Relativity
- Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times
- 4 Solutions of the geodesic equation
 - The solutions
 - Examples for orbits
 - Classification of orbits
- 5 Observables
 - Observables for bound orbits
 - Observables for escape orbits
- Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

Introduction and motivation

- 2 General Relativity
- 3 Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times
- 4 Solutions of the geodesic equation
 - The solutions
 - Examples for orbits
 - Classification of orbits
- 5 Observables
 - Observables for bound orbits
 - Observables for escape orbits
- Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

The problem

gravity can only be explored through the motion of particles and light

- particles (spacecraft, stars, pulsars, black holes, ...) and light
 - point particles and light rays \rightarrow geodesic equation
 - $\bullet\,$ spinning particles and polarized light $\to\, MPD$ equation
 - particles with mass multipoles \rightarrow MPD equation

Known solutions

gravity can only be explored through the motion of particles and light

- analytic solutions for geodesic equations in vacuum space-times
 - Schwarzschild (Hagihara, JJGA 1931)
 - Reissner–Nordström (Chandrasekhar 1983)
 - Kerr (Carter 1968, Chandrasekhar 1983)
 - Schwarzschild-de Sitter (Hackmann & C.L. PRL 2008, PRD 2008)
 - spherically symmetric space-times in higher dimensions (Hackmann, Kagramanova, Kunz, C.L., PRD 2008)
 - Plebański–Demiański (Hackmann, Kagramanova, Kunz, C.L., EPL 2009)
 - Kerr-de Sitter (Hackmann, Kagramanova, Kunz, C.L., PRD 2010)
 - Taub-NUT (Kagramanova, Kunz, Hackmann, C.L., PRD 2010)
 - Taub–NUT–de Sitter (Hackmann, Kagramanova, Kunz, C.L., in preparation)
- analytic solutions for geodesic equations in nonvacuum space-times
 - Schwarzschild-string (Hackmann, Hartmann, C.L., Sirimachan, PRD 2010)
 - Kerr-string (Hackmann, Hartmann, C.L., Sirimachan, PRD 2010)
 - Plebański–Demiański–string (Hackmann, Hartmann, C.L., Sirimachan, in prep.)

Known solutions

gravity can only be explored through the motion of particles and light

- analytical solutions for extended particles
 - spinning particles in Schwarzschild (Micolaut, ZP 1967)
 - spinning particle in spherically symmetric space-times (C.L. & Schaffer, in prep.)

Applications

- analytical calculation of satellite orbits
- analytical calculation of general relativistic effects huge perihelion shift (binary black holes), Lense–Thirring effect, etc
- analytical calculation of effects of generalized gravity theories
- tests of numerical codes (for gravitational wave templates)
- binary systems and gravitational waves
 - calculation of gravitational wave templates for EMRIs
 - technique can be applied to effective one-body formalism
 - self force calculation
- accretion discs
- further application: motion in mass multipole fields
- pulsar timing formula

inclusion of spin / quadrupole \rightarrow modification, in particular enhancement, of effects

further issue: solutions of field equations

Introduction and motivation

General Relativity

- Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times
- 4 Solutions of the geodesic equation
 - The solutions
 - Examples for orbits
 - Classification of orbits
- 5 Observables
 - Observables for bound orbits
 - Observables for escape orbits
- 6 Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

The geometry and the Einstein equations

All foundations and predictions of GR are experimentally well tested and confirmed

Foundations

The Einstein Equivalence Principle

- Universality of Free Fall
- Universality of Gravitational Redshift
- Local Lorentz Invariance

The geometry and the Einstein equations

All foundations and predictions of GR are experimentally well tested and confirmed

Foundations

The Einstein Equivalence Principle

- Universality of Free Fall
- Universality of Gravitational Redshift
- Local Lorentz Invariance

\Downarrow

Implication

Gravity is a metrical theory

The geometry and the Einstein equations

All foundations and predictions of GR are experimentally well tested and confirmed

Foundations

The Einstein Equivalence Principle

- Universality of Free Fall
- Universality of Gravitational Redshift
- Local Lorentz Invariance

₩

Implication

Gravity is a metrical theory

Predictions for metrical theories

- Solar system effects
 - Perihelion shift
 - Gravitational redshift
 - Deflection of light
 - Gravitational time delay
 - Lense–Thirring effect
 - Schiff effect
- Strong gravitational fields
 - Binary systems
 - Black holes
- Gravitational waves

28 / 86

 \Rightarrow

The geometry and the Einstein equations

All foundations and predictions of GR are experimentally well tested and confirmed

Foundations

The Einstein Equivalence Principle

- Universality of Free Fall
- Universality of Gravitational Redshift
- Local Lorentz Invariance

₩

Implication

Gravity is a metrical theory

Predictions for metrical theories

- Solar system effects
 - Perihelion shift
 - Gravitational redshift
 - Deflection of light
 - Gravitational time delay
 - Lense–Thirring effect
 - Schiff effect
- Strong gravitational fields
 - Binary systems
 - Black holes
- Gravitational waves

 \downarrow

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \kappa T_{\mu\nu}$$

 \Rightarrow

Equations of motion: Point particles and light rays

Geodesic equation

$$0 = (D_u u)^{\mu} = \frac{d^2 x^{\mu}}{ds^2} + \left\{\begin{smallmatrix} \mu\\ \rho\sigma \end{smallmatrix}\right\} \frac{dx^{\rho}}{ds} \frac{dx^{\sigma}}{ds}$$

with

$$\left\{ {}^{\mu}_{\rho\sigma} \right\} = \frac{1}{2} g^{\mu\nu} \left(\partial_{\rho} g_{\mu\sigma} + \partial_{\sigma} g_{\mu\rho} - \partial_{\mu} g_{\rho\sigma} \right)$$

and

$$\begin{array}{ll} g_{\mu\nu}u^{\mu}u^{\nu}=1 & \quad \mbox{for point particles} \\ g_{\mu\nu}u^{\mu}u^{\nu}=0 & \quad \mbox{for light rays} \end{array} \ \ \, \mbox{with} \quad \ \ \, u^{\mu}=\frac{dx^{\mu}}{ds} \end{array}$$

where $g_{\mu\nu}$ is the pseudo-Riemannian space-time metric • reading of clocks = proper time of massive particles

$$s = \int_{\text{orbit}} ds = \int_{\text{orbit}} \sqrt{g_{\mu\nu} dx^{\mu} dx^{\nu}} = \int_{\text{orbit}} \sqrt{g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}} dt$$

Equations of motion: Extended bodies

Equation of motion for matter field

 $D_{\nu}T^{\mu\nu} = 0$

is partial differential equation: difficult to solve task: reduction of this PDE to a set of ordinary differential equations \rightarrow Mathisson–Papapetrou–Dixon

Equations of motion: Extended bodies

Mathisson-Papapetrou-Dixon: equation of particle with mass multipole and spin

$$v^{\mu} = \frac{dx^{\mu}}{ds}$$

$$D_{v}p_{\mu} = R_{\mu\nu\rho\sigma}v^{\nu}S^{\rho\sigma} + D_{\mu}R_{\rho\sigma\tau\kappa}J^{\rho\sigma\tau\kappa}$$

$$D_{v}S^{\mu\nu} = v^{\mu}p^{\nu} - v^{\nu}p^{\mu}$$

$$S^{\mu\nu}p_{\nu} = 0$$

Quantities involved

- v^{μ} gives the geometric trajectory of the body
- p_{μ} is an auxiliary quantity describing the momentum (if p_{μ} is considered as derived from $T^{\mu}{}_{\nu}$ then p_{μ} is the primary quantity and v^{μ} is an auxiliary quantity which however possesses the same interpretation as geometric orbit)
- $S^{\mu\nu}$ spin of particle
- $J^{\rho\sigma\tau\kappa...}$ mass multipole moments special case: standard mass quadrupole $J^{\rho\sigma\tau\kappa} = -3p^{[\rho}Q^{\sigma][\tau}p^{\kappa]}$ with $Q^{\mu\nu}p_{\nu} = 0$

Equations of motion: Extended bodies

Mathisson-Papapetrou-Dixon: equation of particle with mass multipole and spin

$$\begin{aligned} v^{\mu} &= \frac{dx^{\mu}}{ds} \\ D_{v}p_{\mu} &= R_{\mu\nu\rho\sigma}v^{\nu}S^{\rho\sigma} + D_{\mu}R_{\rho\sigma\tau\kappa}J^{\rho\sigma\tau\kappa} \\ D_{v}S^{\mu\nu} &= v^{\mu}p^{\nu} - v^{\nu}p^{\mu} \\ S^{\mu\nu}p_{\nu} &= 0 \end{aligned}$$

Meaning

- direct access to curvature
- quadrupole motion in quadrupole space-time
 - special case: aligned quadrupoles
 - equatorial orbit possible: analytic solution?
 - exact quadrupole–quadrupole interaction in GR

- Introduction and motivation
- General Relativity
- Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times
- 4 Solutions of the geodesic equation
 - The solutions
 - Examples for orbits
 - Classification of orbits
- 5 Observables
 - Observables for bound orbits
 - Observables for escape orbits
- Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

- Introduction and motivation
- General Relativity
- 3 Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times
- 4 Solutions of the geodesic equation
 - The solutions
 - Examples for orbits
 - Classification of orbits
- 5 Observables
 - Observables for bound orbits
 - Observables for escape orbits
- Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

Plebański–Demiański space-time

stationary axially symmetric metric

$$ds^{2} = \frac{\Delta_{r}}{p^{2}} \left(dt - A_{\vartheta} d\varphi \right)^{2} - \frac{p^{2}}{\Delta_{r}} dr^{2} - \frac{\Delta_{\vartheta}}{p^{2}} \sin^{2} \vartheta (adt - A_{r} d\varphi)^{2} - \frac{p^{2}}{\Delta_{\vartheta}} d\vartheta^{2}$$

where

$$p^{2} = r^{2} + (n - a \cos \vartheta)^{2}$$

$$\Delta_{\vartheta} = 1 + \frac{1}{3}a^{2}\Lambda\cos^{2}\vartheta - \frac{4}{3}\Lambda an\cos\vartheta$$

$$\Delta_{r} = (1 - \frac{1}{3}\Lambda r^{2})(r^{2} + a^{2}) - 2Mr - n^{2} + Q_{e}^{2} + Q_{m}^{2} - \Lambda n^{2}(2r^{2} + a^{2} - n^{2})$$

$$A_{\vartheta} = a\sin^{2}\vartheta + 2n\cos\vartheta$$

$$A_{r} = r^{2} + a^{2} + n^{2}$$

- M = mass, a = Kerr parameter, $\Lambda =$ cosmological constant, n = NUT parameter, $Q_{\rm e} =$ electric charge, $Q_{\rm m} =$ magnetic charge
- this metric contains all standard black hole space-times, Petrov Type D
- Plebański & Demiański, AP 1976; Griffiths & Podolski, IJMP 2006
- horizons given by $\Delta_r = 0$

Conservation laws

There are two Killing vectors ∂_t and ∂_{φ} \Rightarrow two conservation laws

$$E := g_{tt}\dot{t} + g_{t\varphi}\dot{\varphi}$$
$$-L := g_{\varphi t}\dot{t} + g_{\varphi\varphi}\dot{\varphi}$$

or

$$\begin{split} E &= \frac{\Delta_r}{p^2} (\dot{t} - A_\vartheta \dot{\varphi}) - a \frac{\Delta_\vartheta}{p^2} \sin^2 \vartheta (a \dot{t} - A_r \dot{\varphi}) \\ L &= A_\vartheta \frac{\Delta_r}{p^2} (\dot{t} - A_\vartheta \dot{\varphi}) - A_r \frac{\Delta_\vartheta}{p^2} \sin^2 \vartheta (a \dot{t} - A_r \dot{\varphi}) \,, \end{split}$$

this corresponds to

- energy
- angular momentum in z-direction

- Introduction and motivation
- General Relativity

Space-times

Vacuum space-times: Plebański-Demiański space-time

String space-times

- Higher dimensions
- PPN space-times

4 Solutions of the geodesic equation

- The solutions
- Examples for orbits
- Classification of orbits
- 5 Observables
 - Observables for bound orbits
 - Observables for escape orbits
- Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

String space-times

Plebański–Demiański string space–time $d\varphi \to \beta d\varphi$

$$ds^{2} = \frac{\Delta_{r}}{p^{2}} \left(dt - A_{\vartheta} \beta d\varphi \right)^{2} - \frac{p^{2}}{\Delta_{r}} dr^{2} - \frac{\Delta_{\vartheta}}{p^{2}} \sin^{2} \vartheta (adt - A_{r} \beta d\varphi)^{2} - \frac{p^{2}}{\Delta_{\vartheta}} d\vartheta^{2}$$

describes space-time with string along symmetry axis (space-time with matter)

- same Killing vectors
- conserved energy and angular momentum
- \longrightarrow see Betti's talk

- Introduction and motivation
- General Relativity

Space-times

- Vacuum space-times: Plebański-Demiański space-time
- String space-times
- Higher dimensions
- PPN space-times
- 4 Solutions of the geodesic equation
 - The solutions
 - Examples for orbits
 - Classification of orbits
- 5 Observables
 - Observables for bound orbits
 - Observables for escape orbits
- Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

Space-times Higher dimensions

General Relativity in higher dimensions

spherically symmetric space-times in d dimensions: Reissner-Nordström-(anti-)de Sitter

$$ds^{2} = g_{tt}dt^{2} - g_{rr}dr^{2} - r^{2}d\Omega_{d-2}^{2}$$

with

$$g_{tt} = \frac{1}{g_{rr}} = 1 - \frac{M^{d-3}}{r^{d-3}} + \frac{q^{2(d-3)}}{r^{2(d-3)}} - \frac{2\Lambda}{(d-1)(d-2)}r^2$$

Equation of motion

$$\begin{pmatrix} \frac{dr}{d\varphi} \end{pmatrix}^2 = \frac{r^4}{L^2} \frac{1}{g_{rr}g_{tt}} \left(E^2 - g_{tt} \left(\epsilon + \frac{L^2}{r^2} \right) \right)$$

$$= \frac{r^4}{L^2} \left(E^2 - \left(1 - \frac{M^{d-3}}{r^{d-3}} + \frac{q^{2(d-3)}}{r^{2(d-3)}} - \frac{2\Lambda}{(d-1)(d-2)} r^2 \right) \left(\epsilon + \frac{L^2}{r^2} \right) \right)$$

Substitution $u = \frac{m}{r}$, various cases can be solved by elliptic and hyperelliptic integrals \rightarrow for general case, see Valeria's talk

- Introduction and motivation
- General Relativity

Space-times

- Vacuum space-times: Plebański-Demiański space-time
- String space-times
- Higher dimensions
- PPN space-times

4 Solutions of the geodesic equation

- The solutions
- Examples for orbits
- Classification of orbits
- 5 Observables
 - Observables for bound orbits
 - Observables for escape orbits
- Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

PPN space-times

PPN metric

$$g_{00} = 1 - 2U + 2\beta U^2 + \dots$$

$$g_{0i} = 0$$

$$g_{ij} = -(1 + 2\gamma U)\delta_{ij}$$

with Newtonian potential

$$U(t, \boldsymbol{x}) = \int \frac{\rho(t, \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} d^3 x'$$

- same Killing vectors
- conserved energy and angular momentum
- geodesic equation leads to differential equations which have the same mathematical structure as in Schwarzschild space-time

- 1 Introduction and motivation
- 2 General Relativity
- 3 Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times

Solutions of the geodesic equation

- The solutions
- Examples for orbits
- Classification of orbits

5 Observables

- Observables for bound orbits
- Observables for escape orbits
- Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

- 1 Introduction and motivation
- 2 General Relativity
- 3 Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times

Solutions of the geodesic equation

- The solutions
- Examples for orbits
- Classification of orbits

5 Observables

- Observables for bound orbits
- Observables for escape orbits
- Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

geodesic equation

$$0 = \frac{d^2 x^{\mu}}{ds^2} + \left\{ \begin{smallmatrix} \mu \\ \rho \sigma \end{smallmatrix} \right\} \frac{dx^{\rho}}{ds} \frac{dx^{\sigma}}{ds}$$

is equivalent to the Hamilton-Jacobi equation

$$2\frac{\partial S}{\partial s} = g^{\mu\nu}\frac{\partial S}{\partial x^{\mu}}\frac{\partial S}{\partial x^{\mu}}$$

separation ansatz

$$S = \frac{1}{2}\epsilon s - Et + L\varphi + S_r(r) + S_\vartheta(\vartheta)$$

- insertion into Hamilton–Jacobi
- separation of r and ϑ equations
- separation constant = k = Carter constant (Carter, PR 1968)
- introduction of Mino time au through $d\tau = \rho^2 ds$ (Mino, PRD 2003)
- substitution $\xi = \cos \vartheta$
- renormalization: all quantities in units of $r_{\rm S}$ ٠

$$\begin{split} \left(\frac{dr}{d\tau}\right)^2 &= \left((r^2 + a^2 + n^2)E - aL\right)^2 - \Delta_r(\epsilon r^2 + k) \qquad =: R(r) \\ \left(\frac{d\xi}{d\tau}\right)^2 &= \Delta_{\xi}(1 - \xi^2)\left(k - \epsilon(n - a\xi)^2\right) - (L - A_{\xi}E)^2 \qquad =: \Theta(\xi) \\ \frac{d\varphi}{d\tau} &= a\frac{(r^2 + a^2 + n^2)E - aL}{\Delta_r} + \frac{L - A_{\xi}E}{\Delta_{\xi}(1 - \xi^2)} \qquad =: f(r) + g(\xi) \\ \frac{dt}{d\tau} &= A_r\frac{(r^2 + a^2 + n^2)E - aL}{\Delta_r} + \frac{A_{\xi}\left(L - A_{\xi}E\right)}{\Delta_{\xi}(1 - \xi^2)} \qquad =: h(r) + j(\xi) \end{split}$$

analytic solution given by hyperelliptic functions (Hackmann & C.L., PRL 2008)

$$\begin{split} r(\tau) &= \mp \frac{\sigma_2^{(r)}(\vec{x})}{\sigma_1^{(r)}(\vec{x})} + r_0 \qquad \text{with} \qquad \sigma^{(r)}(\vec{x}) = 0 \,, \quad \vec{x} = \begin{pmatrix} \tau_1 \\ \tau \end{pmatrix} \\ \xi(\tau) &= \mp \frac{\sigma_2^{(\xi)}(\vec{y})}{\sigma_1^{(\xi)}(\vec{y})} + \xi_0 \qquad \text{with} \qquad \sigma^{(\xi)}(\vec{y}) = 0 \,, \quad \vec{x} = \begin{pmatrix} \tau_1 \\ \tau \end{pmatrix} \end{split}$$

integration of φ and t motion

$$\varphi - \varphi_0 = \int_{r_0}^{r(\tau)} f(r) \frac{dr}{\sqrt{R}} + \int_{\xi_0}^{\xi(\tau)} g(\xi) \frac{d\xi}{\sqrt{\Theta(\xi)}}$$
$$t - t_0 = \int_{r_0}^{r(\tau)} h(r) \frac{dr}{\sqrt{R}} + \int_{\xi_0}^{\xi(\tau)} j(\xi) \frac{d\xi}{\sqrt{\Theta(\xi)}}$$

f, g, h, and j are rational functions

 \rightarrow partial fraction expansion: hyperelliptic integrals of first, second and third kind

$$\int \frac{x^p \, dx}{\sqrt{P_n(x)}} \,, \qquad \int \frac{x^q \, dx}{\sqrt{P_n(x)}} \,, \qquad \int \frac{dx}{(x-c)\sqrt{P_n(x)}}$$

with $p<\left[\frac{n-1}{2}\right]$ and $q\geq\left[\frac{n-1}{2}\right]$, can be integrated explicitly, but gives rather complicated expressions

regularity of geodesic equation for $\vartheta=0$ or π

solution for φ (similar for t)

$$\begin{split} \varphi &= \varphi_0 + \operatorname{sign}(r'_0) \left(C_1^r f^r (\tau - \tau_0^r) + C_2^r (\tau - \tau_0^r) + I_{34}^r (\tau - \tau_0^r) \right) \\ &- \operatorname{sign}(\vartheta'_0) \left(C_1^\vartheta f^\vartheta (\tau - \tau_0^\vartheta) + C_2^\vartheta (\tau - \tau_0^\vartheta) - a I_{32}^\vartheta (\tau - \tau_0^\vartheta) - I_{44}^\vartheta (\tau - \tau_0^\vartheta) \right) \end{split}$$

with

$$\begin{split} I_{mn}^{x}(w) &= \sum_{i=1}^{n} \frac{C_{m,i}^{x}}{\sqrt{P_{5}^{x}(u_{i})}} \left(- \left(\int_{w}^{fx}(w) - f^{x}(w_{0}) \\ w - w_{0} \right)^{T} \cdot \int_{p_{i}^{-}}^{p_{i}^{+}} d\vec{r} \right. \\ &+ \frac{1}{2} \log \frac{\sigma \left((f^{x}(w), w)^{T} - 2 \int_{\infty}^{p_{i}^{+}} d\vec{z} \right)}{\sigma \left((f^{x}(w), w)^{T} - 2 \int_{\infty}^{p_{i}^{-}} d\vec{z} \right)} - (w \leftrightarrow w_{0}) \end{split}$$

 $d\vec{r}=$ holomorphic differentials of second kind $d\vec{z}=$ meromorphic differentials of first kind

$$p_i^{\pm} = \begin{pmatrix} u_i \\ \pm \sqrt{P_5(u_i)} \end{pmatrix}$$
 with u_i pole

- 1 Introduction and motivation
- 2 General Relativity
- 3 Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times

Solutions of the geodesic equation

- The solutions
- Examples for orbits
- Classification of orbits
- 5 Observables
 - Observables for bound orbits
 - Observables for escape orbits
- Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

Schwarzschild

bound orbit

Hagihara, JJGA 1931

-4

42

8

6

4

homocline orbit

-6

-8

50 / 86

6 8

4

Schwarzschild

Schwarzschild-de Sitter

escape orbit

reflection at cosmic wall

Hackmann & C.L., PRL 2008, PRD 2008

Reissner-Nordström in higher dimensions

bound orbit many universe orbit escape orbit escape in different universe

Hackmann, Kagramanova, Kunz, & C.L., PRD 2008

53 / 86

C. Lämmerzahl (ZARM, Bremen)
Kerr space-time

parameter plots for r and ϑ

Kerr-de Sitter

bound orbit

escape orbit

Hackmann, Kagramanova, Kunz, C.L., PRD 2010

Taub–NUT

10-

bound orbit

Hackmann, Kagramanova, Kunz, & C.L., PRD 2010

56 / 86

C. Lämmerzahl (ZARM, Bremen)

Outline

- 1) Introduction and motivation
- 2 General Relativity
- 3 Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times

Solutions of the geodesic equation

- The solutions
- Examples for orbits
- Classification of orbits

5 Observables

- Observables for bound orbits
- Observables for escape orbits
- Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

Orbits

Types of orbits

- bound orbit: $r_{\min} \leq r \leq r_{\max}$
- escape orbit: $r_{\min} \leq r \leq \infty$
- * terminating bound orbit: $r \leq r_{
 m max}$, orbit terminates (falls into singularity)
- * terminating escape orbit $r \leq \infty$, orbit terminates (falls into singularity)
- r can also become negative \Rightarrow more possibilities

Orbits

Types of orbits allowing r < 0

- transit orbit: $-\infty < r < +\infty$
- bound orbit: $0 < r_{\min} < r < r_{\max}$
- ۰ crossover bound orbit: $r_{\min} \leq r \leq r_{\max}$ with $r_{\min} < 0 < r_{\max}$
- . escape orbit: $r_{\min} < r < \infty$
- <u>crossover escape</u> orbit: $r_{\min} \leq r \leq \infty$ with $r_{\min} < 0$ ۰ or $-\infty < r < r_{\max}$ with $0 < r_{\max}$
- terminating bound crossover orbit: bound orbit $|r| < r_{\max}$ terminates
- terminating escape crossover orbit: escape orbit terminates

Orbits

Further discussion of effects

- geodesic incompleteness
- geodesics in analytic continuation of space-time
- closed time–like curves (CTC)
- crossing horizons
- homocline orbits
- many crosses of z-axes
- fast, slow rotation

Taub-NUT space-time: incompleteness

- Taub–NUT space–time possess no curvature singularity
- but is geodesic incomplete ... during second transition through a horizon proper time terminates

(Hackmann, Kagramanova, Kunz, C.L. 2010)

Observables

Outline

- 1 Introduction and motivation
- 2 General Relativity
- 3 Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times
- 4 Solutions of the geodesic equation
 - The solutions
 - Examples for orbits
 - Classification of orbits
- 5 Observables
 - Observables for bound orbits
 - Observables for escape orbits
- Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

Outline

- 1 Introduction and motivation
- 2 General Relativity
- 3 Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times
- 4 Solutions of the geodesic equation
 - The solutions
 - Examples for orbits
 - Classification of orbits
- 6 Observables

Observables for bound orbits

- Observables for escape orbits
- Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

For bound orbits

- two oscillatory coordinates: r and ϑ (generalized Lissajous figures)
- two (secularly) increasing coordinates: t and φ

Periods radial period

$$\omega_r = 2 \int_{r_{\min}}^{r_{\max}} \frac{dr}{\sqrt{R}}$$

is time needed to go from r_{\min} to r_{\min}

polar angle period

$$\omega_{\vartheta} = 2 \int_{\vartheta_{\min}}^{\vartheta_{\max}} \frac{dr}{\sqrt{\Theta}}$$

is time needed to go from ϑ_{\min} to ϑ_{\max}

Secular increases

secular time increase

$$\Gamma = \left\langle \frac{dt}{d\tau} \right\rangle = \frac{2}{\omega_r} \int_{r_{\min}}^{r_{\max}} h(r) \frac{dr}{\sqrt{R}} + \frac{2}{\omega_{\vartheta}} \int_{\vartheta_{\min}}^{\vartheta_{\max}} j(\vartheta) \frac{dr}{\sqrt{\Theta}}$$

secular azimuthal increase

$$Y = \left\langle \frac{d\varphi}{d\tau} \right\rangle = \frac{2}{\omega_r} \int_{r_{\min}}^{r_{\max}} f(r) \frac{dr}{\sqrt{R}} + \frac{2}{\omega_{\vartheta}} \int_{\vartheta_{\min}}^{\vartheta_{\max}} g(\vartheta) \frac{dr}{\sqrt{\Theta}}$$

orbital frequencies (Drasco & Hughes, PRD 2004; Schmidt, CQG 2004)

$$\Omega_r = \frac{2\pi}{\Gamma\omega_r}, \qquad \Omega_\vartheta = \frac{2\pi}{\Gamma\omega_\vartheta}, \qquad \Omega_\varphi = \frac{Y}{\Gamma}$$

- angular velocity of r-oscillations
- ullet angular velocity of artheta-oscillations
- secular angular velocity

observables: self referential comparison, invariant

The observables

periastron shift

$$\Delta_{\text{periastron}} := \Omega_{\varphi} - \Omega_r = \left(Y - \frac{2\pi}{\omega_r}\right) \frac{1}{\Gamma}$$

Lense–Thirring effect

$$\Delta_{
m Lense-Thirring} := \Omega_{\varphi} - \Omega_{\vartheta} = \left(Y - rac{2\pi}{\omega_{\vartheta}}
ight)rac{1}{\Gamma}$$

- $\Delta_{\text{periastron}}$ compares the φ -advance for r_{\min} with 2π \rightarrow in weak field motion of r_{\min} within orbital plane or orbital cone
- $\Delta_{\text{Lense-Thirring}}$ compares the φ -advance for ϑ_{\min} with 2π \rightarrow in weak field precession of orbital plane or orbital cone

all observables for bound orbits should be functions of Ω_r , Ω_ϑ , and Ω_φ which can be evaluated explicitly by complete hyperelliptic integrals

• Schwarzschild, Schwarzschild-de Sitter, Reissner-Nordström, Taub-NUT:

 $\Delta_{\text{perihelion}} \neq 0, \qquad \Delta_{\text{Lense-Thirring}} = 0$

• Kerr, Kerr-de Sitter, Kerr-Newman, Kerr-NUT:

$$\Delta_{\text{perihelion}} \neq 0, \qquad \Delta_{\text{Lense-Thirring}} \neq 0$$

• Schwarzschild, Schwarzschild-de Sitter, Reissner-Nordström, Taub-NUT:

$$\Delta_{\text{perihelion}} \neq 0, \qquad \Delta_{\text{Lense-Thirring}} = 0$$

• Kerr, Kerr-de Sitter, Kerr-Newman, Kerr-NUT:

$$\Delta_{\text{perihelion}} \neq 0, \qquad \Delta_{\text{Lense-Thirring}} \neq 0$$

• task: expansion of $\Delta_{\text{perihelion}} = \Delta_{\text{perihelion}}(M, a, n, \Lambda, Q_e, Q_m)$ and $\Delta_{\text{Lense-Thirring}} = \Delta_{\text{Lense-Thirring}}(M, a, n, \Lambda, Q_e, Q_m)$ (Hackmann, Kagramanova, Kunz, C.L., in preparation)

Schwarzschild, Schwarzschild-de Sitter, Reissner-Nordström, Taub-NUT:

$$\Delta_{\text{perihelion}} \neq 0, \qquad \Delta_{\text{Lense-Thirring}} = 0$$

• Kerr, Kerr-de Sitter, Kerr-Newman, Kerr-NUT:

$$\Delta_{\text{perihelion}} \neq 0, \qquad \Delta_{\text{Lense-Thirring}} \neq 0$$

- task: expansion of $\Delta_{\text{perihelion}} = \Delta_{\text{perihelion}}(M, a, n, \Lambda, Q_e, Q_m)$ and $\Delta_{\text{Lense-Thirring}} = \Delta_{\text{Lense-Thirring}}(M, a, n, \Lambda, Q_e, Q_m)$ (Hackmann, Kagramanova, Kunz, C.L., in preparation)
- In general, for complicated potentials there are several periods
 ⇒ many perihelion shifts or Lense–Thirring effects (→ Valeria's talk)

Schwarzschild, Schwarzschild-de Sitter, Reissner-Nordström, Taub-NUT:

$$\Delta_{\text{perihelion}} \neq 0, \qquad \Delta_{\text{Lense-Thirring}} = 0$$

• Kerr, Kerr-de Sitter, Kerr-Newman, Kerr-NUT:

$$\Delta_{\text{perihelion}} \neq 0, \qquad \Delta_{\text{Lense-Thirring}} \neq 0$$

- task: expansion of $\Delta_{\text{perihelion}} = \Delta_{\text{perihelion}}(M, a, n, \Lambda, Q_e, Q_m)$ and $\Delta_{\text{Lense-Thirring}} = \Delta_{\text{Lense-Thirring}}(M, a, n, \Lambda, Q_e, Q_m)$ (Hackmann, Kagramanova, Kunz, C.L., in preparation)
- In general, for complicated potentials there are several periods
 ⇒ many perihelion shifts or Lense–Thirring effects (→ Valeria's talk)
- observables on higher dimensions: many φ_p , ϑ_p , $p = 1, \ldots, n-3$ periods possible to define Γ and Y_p , and

does this make sense?

Post-Schwarzschild of perihelion shift

Perihelion shift in Schwarzschild–de Sitter (for bound orbit, Kraniotis & Whitehouse, CQG 2003)

$$\delta \varphi_{\text{perihelion}} = 2\pi - \omega_{22} = 2\pi - \oint \frac{xdx}{\sqrt{P_5(x)}}$$

with

$$\begin{split} \oint_{a_2} \frac{xdx}{\sqrt{P_5(x)}} &= \oint_{a_2} \frac{1}{\sqrt{P_3(x)}} - \frac{2}{3}\Lambda m^2 \oint_{a_2} \frac{x^2 + \lambda}{x^2 P_3(x)\sqrt{P_3(x)}} dx + \mathcal{O}(\Lambda^2) \\ &= \omega_1 + \Lambda \frac{m^2}{96} \left(\sum_{j=1}^3 \frac{\eta_1 + \omega_1 z_j}{(\wp''(\rho_j))^2} \left(1 + \frac{\lambda}{(4z_j + \frac{1}{3})^2} \right) \right. \\ &+ \lambda \left(\frac{2\eta_1 - \frac{1}{6}\omega_1}{16(\wp'(u_0))^2} + \frac{6}{16} \frac{\wp''(u_0)}{(\wp'(u_0))^5} \left(\zeta(u_0) - \eta_1 u_0 \right) \right) \right) + \mathcal{O}(\Lambda^2) \end{split}$$

ullet Needs introduction of r_{\min} and r_{\max} or a and e for interpretation

Needs relativistic approximation for interpretation

C. Lämmerzahl (ZARM, Bremen)

Analytic solutions of the geodesic equation

Perihelion shift

$$\omega_1 = \int_{r_{\min}}^{r_{\max}} \frac{d\varphi}{dr} dr = \int_{e_2}^{e_3} \frac{d\varphi}{dx} dx = \int_{e_2}^{e_3} \frac{dx}{\sqrt{\left(\frac{dx}{d\varphi}\right)^2}} = \int_{e_2}^{e_3} \frac{dx}{\sqrt{4x^3 - g_2x - g_3}}$$

Perihelion shift

$$\delta\varphi = 2\omega_1 - 2\pi = \frac{4}{\sqrt{-e_2 - 2e_3}} \int_0^{\frac{\pi}{2}} \frac{dx}{\sqrt{1 - \frac{e_2 - e_3}{-e_2 - 2e_3}\sin^2 x}} - 2\pi \,.$$

One can identify

$$e_2 = \frac{2M}{r_{\min}} - \frac{1}{3}, \qquad e_3 = \frac{2M}{r_{\max}} - \frac{1}{3}.$$

- Can be used for approximation
- Can be used for representation in terms of semi-major axis and eccentricity

Further observables

- progression of nodes: determination of φ and t or τ for which $\vartheta=\pi/2:$ then

$$\Delta_i arphi = arphi(au_{i+1}) - arphi(au_i) \qquad ext{with} \qquad artheta(au_i) = rac{\pi}{2}\,, \quad i=1,2,\dots$$

one has to determine τ_i and then to integrate $d\varphi/d\tau$ from τ_i to τ_{i+1} (Gebhardt, Hackmann & C.L., in preparation)

- + clock effect $s_+ s_- \sim 4\pi \frac{J}{M} \sim 10^{-7} {\rm ~s}$ and generalizations of it ...
- analytic expressions still have to be calculated
- application to Galileo?

Outline

- 1 Introduction and motivation
- 2 General Relativity
- 3 Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times
- 4 Solutions of the geodesic equation
 - The solutions
 - Examples for orbits
 - Classification of orbits

5 Observables

- Observables for bound orbits
- Observables for escape orbits
- Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

Observables: for flyby orbits

flyby orbit:
$$r \to \infty$$
 for $s \to \pm \infty$
Then $\vartheta^{\pm} = \vartheta(\pm \infty)$ and $\varphi^{\pm} = \varphi(\pm \infty)$

Deflection angles

azimuthal deflection angle

$$\Delta \varphi = \varphi^+ - \varphi^-$$

polar deflection angle

$$\Delta \vartheta = \vartheta^+ - \vartheta^-$$

- analytic expressions still have to be calculated
- application to rotating black holes
- no impact on flyby anomaly (Hackmann & C.L. 2010)

In addition for light:

gravitational time delay

Further observables

- flyby at rotating body: different direction, different velocity
- no impact on flyby anomaly (Hackmann & C.L. 2010)
- deflection of light
- timing formula

will depend on impact parameter as well as on polar angle

Further observables

- flyby at rotating body: different direction, different velocity
- no impact on flyby anomaly (Hackmann & C.L. 2010)
- deflection of light
- timing formula

will depend on impact parameter as well as on polar angle

Question: frequency of pulses arriving at Earth — function of orbit (position, velocity, structure of gravitational field)

Timing formula

satellite

Question: frequency of satellites (time of satellites, Galileo) arriving at Earth — function of orbit

- signals arriving at fixed position on Earth
- signals arriving at surface of Earth

Outline

- 1 Introduction and motivation
- 2 General Relativity
- 3 Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times
- 4 Solutions of the geodesic equation
 - The solutions
 - Examples for orbits
 - Classification of orbits
- 5 Observables
 - Observables for bound orbits
 - Observables for escape orbits
 - Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

Outline

6

- Discussion, summary and outlook
 - Discussion

Discussion: General meaning

Theorem: Separability

The Hamilton–Jacobi equation for the geodesic equation is separable if and only if space-time is of Petrov type D without acceleration (Demianski & Francaviglia, JPA 1981)

Theorem: Petrov type D

The general type D Petrov space-times are exhausted by the electro-vac Plebański-Demiański solutions (Plebański & Demiański, AP 1976)

Theorem: Integration

The geodesic equation in a general electro-vac Plebański-Demiański space-time without acceleration can be integrated using the method of hyperelliptic integrals (Hackmann, Kagramanova, Kunz, C.L., EPL 2009)

Summary and outlook

Summary

- Complete analytic solution of geodesic equation in Plebański–Demiański space–times
- Analytic solution for all electro-vac space-times for which Hamilton-Jacobi separates
- Complete set of fundamental observables for bound orbits

mathematics is essentially under control \rightarrow discussion of solutions and observables

Summary and outlook

Outlook 1: discussion of obtained solutions

- analytic description of progression of nodes
- further observables (deflection angle, clock effect, timing, time delay, ...) ۰
- post-Newton, post-Schwarzschild, post-Kerr, ... expansions of solutions ۲
- post-Newton, post-Schwarzschild, post-Kerr, ... expansions of observables ۲

Outlook 2: new solutions

- motion in axially symmetric mass multipole fields (e.g. Quevedo, FP 1990)
- we are now able to analytically solve

$$\left(\frac{dr}{d\tau}\right)^2 = P_n(r) \qquad \text{for all } n$$

(Enolskii, Hackmann, Kagramanova, Kunz, C.L. in preparation, \longrightarrow see Valeria's talk)

Outline

- 1 Introduction and motivation
- 2 General Relativity
- 3 Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times
- 4 Solutions of the geodesic equation
 - The solutions
 - Examples for orbits
 - Classification of orbits
- 5 Observables
 - Observables for bound orbits
 - Observables for escape orbits
 - Discussion, summary and outlook
 - Discussion
 - The solution for spinning objects
 - Effective one-body problem

Spinning objects

spherically symmetric metric

$$ds^{2} = \alpha dt^{2} - \alpha^{-1} dr^{2} + r^{2} d\vartheta^{2} + r^{2} \sin^{2} \vartheta d\varphi^{2}, \qquad \alpha = 1 - \frac{2M}{r} - \frac{\Lambda r^{2}}{3} + \frac{Q^{2}}{r^{2}}$$

additional constant of motion

$$C \equiv \xi^{\mu} p_{\mu} + D_{\nu} \xi_{\mu} S^{\mu\nu}$$

spin motion can be solved

$$\frac{dS^{\mu\nu}}{ds} - \frac{1}{r}\frac{dr}{ds}S^{r\varphi} = 0 \quad \Rightarrow \quad S^{r\varphi} = \frac{S}{r}$$

equation of motion for radial coordinate (with J = L + S)

$$\left(\frac{dr}{ds}\right)^2 = E^2 - \frac{\left(\partial_r g_{tt}\right)SJ}{r} + g_{\varphi\varphi}g_{tt}\left(\frac{J^2 + 2JS}{r^4}\right) - g_{tt}$$

Spinning objects

for Reissner-Nordström-de Sitter

$$\left(\frac{dr}{ds}\right)^2 = E^2 - 1 + \frac{\Lambda r^2}{3} - \Lambda S^2 - \frac{2\Lambda LS}{3} + \frac{\Lambda L^2}{3} + \frac{2}{r} + \frac{S^2 - L^2 - Q^2}{r^2} + \frac{2LS + 2L^2}{r^3} - Q^2 \frac{(L+S)^2}{r^4}$$

Outline

- 1 Introduction and motivation
- 2 General Relativity
- 3 Space-times
 - Vacuum space-times: Plebański-Demiański space-time
 - String space-times
 - Higher dimensions
 - PPN space-times
- 4 Solutions of the geodesic equation
 - The solutions
 - Examples for orbits
 - Classification of orbits
- 5 Observables
 - Observables for bound orbits
 - Observables for escape orbits

Discussion, summary and outlook

- Discussion
- The solution for spinning objects
- Effective one-body problem

Effective one-body problem

- Newton: 2-body problem can be reduced to a one-body problem
- Einstein: not possible in closed form
- series expansion method for successive reduction to an "effective" one-body problem within post-Newtonian expansion
- effective dynamics of two black holes described by

$$ds^2c = -g_{tt}(r,\nu)dt^2 + g_{rr}(r,\nu)dr^2 + r^2(d\vartheta^2 + \sin^2\vartheta d\varphi^2)$$

with $u=2(M_{1}+M_{2})/r,\,\nu=M_{1}M_{2}/(M_{1}+M_{2})^{2}$ and

$$g_{tt}(r,\nu) = 1 - 2u + 2\nu u^3 + \nu a_4 u^4 + \mathcal{O}(u^5)$$
$$(g_{tt}(r,\nu)g_{rr}(r,\nu))^{-1} = 1 + 6\nu u^2 + 2(26 - 3\nu)\nu u^3 + \mathcal{O}(u^4)$$

effective one-body equation of motion

$$\left(\frac{dr}{d\varphi}\right)^2 = \frac{r^4}{L^2} \frac{1}{g_{rr}g_{tt}} \left(E^2 - g_{tt}\left(\epsilon + \frac{L^2}{r^2}\right)\right)$$

C. Lämmerzahl (ZARM, Bremen)
Effective one-body problem

- physical questions
 - orbits
 - last stable orbit
 - last spherical stable orbit
 - last circular stable orbit
- has to be complemented by radiation reaction effects
 - · variation of orbital parameters, variation of observables
 - gravitational radiation
 - inspiraling orbit
- ${\scriptstyle \bullet }$ can be supplemented by spin \rightarrow axially symmetric case

The End

Thank you

Also thanks to

- German Research Foundation DFG
- Center of Excellence QUEST
- German Space Agency DLR

