Monopoles and monopole-antimonopole systems

Jutta Kunz

Institute of Physics CvO University Oldenburg

The higher-genus sigma function and applications Edinburgh, Oct 12 2010

イロト イボト イヨト イヨト

Denmark

Netherlands

Oldenburg

Germany Belgium

Switzerland

Italy

Luxembourg

Tchech Republic

France

Slovenia

Austria

roatia

Jutta Kunz (Universität Oldenburg)

UK

Monopoles and monopole-antimonopole systems

Bosn Edinburgh, Oct 12 2010 2 / 48

Polanc

Hunga

Outline

Monopoles in Flat Space

- Non-Abelian Monopoles
- Multimonopoles
- Monopole-Antimonopole Pairs
- Monopole-Antimonopole Systems
- Dyons and Rotation

Gravitating Monopoles and Black Holes

- Monopoles in Curved Space
- Black Holes within Monopoles

Outline

Monopoles in Flat Space Non-Abelian Monopoles

- Multimonopoles
- Monopole-Antimonopole Pairs
- Monopole-Antimonopole Systems
- Oyons and Rotation

Gravitating Monopoles and Black Holes

- Monopoles in Curved Space
- Black Holes within Monopoles

Yang-Mills-Higgs Monopoles

't Hooft 1974, Polyakov 1974

- globally regular static solutions
- finite energy
- magnetic charge
- gauge group SU(2)

イロト イポト イヨト イヨト

Yang-Mills-Higgs Monopoles

GUTs generic prediction magnetic monopoles $t \approx 10^{-34}$ s $T \approx 10^{14} \text{ GeV}$

- at GUT phase transition
- monopoles: huge mass
- motivation for inflation

<ロ> (日) (日) (日) (日) (日)

SU(2) Yang-Mills-Higgs Theory

Lagrangian \mathcal{L}

Higgs

$$\mathcal{L} = -\underbrace{\frac{1}{2} \operatorname{Tr} \{F_{\mu\nu} F^{\mu\nu}\}}_{\text{gauge field}} - \underbrace{\frac{1}{4} \operatorname{Tr} \{D_{\mu} \Phi D^{\mu} \Phi\}}_{\text{Higgs field}} - \underbrace{\frac{\lambda}{8} \operatorname{Tr} \left(\Phi^{2} - \eta^{2}\right)^{2}}_{\text{Higgs potential}}$$
gauge field
$$A_{\mu} = A_{\mu}^{a} \tau_{a}$$
field strength tensor
$$F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + ig[A_{\mu}, A_{\nu}]$$
Higgs field triplet
$$\Phi = \Phi^{a} \tau_{a}$$
covariant derivative
$$D_{\mu} \Phi = \partial_{\mu} \Phi + ig[A_{\mu}, \Phi]$$
constants
$$g, \lambda, \eta$$

Jutta Kunz (Universität Oldenburg)

<ロ> <同> <同> < 同> < 同>

Monopoles in Flat Space Non-Abelian Monopoles

SU(2) Yang-Mills-Higgs Theory

Higgs Potential $V(\Phi)$ "Mexican hat"–Potential

$$V(\Phi) = \frac{\lambda}{8} \text{Tr} \left(\Phi^2 - \eta^2\right)^2$$

Peter Higgs 1929

spontaneous symmetry breaking $SU(2) \longrightarrow U(1)$

gauge bosons: Higgs boson:

$$m_{W^{\pm}} = g\eta , \quad m_{\gamma} = 0$$
$$m_{H} = \sqrt{2\lambda}\eta$$

Monopoles: Static Solutions with Finite Energy

energy functional

$$E = \int d^3x \left[\frac{1}{4} F^a_{ij} F^{aij} + \frac{1}{2} D_i \Phi^a D^i \Phi^a + \frac{\lambda}{4} (\Phi^a \Phi^a - \eta^2)^2 \right]$$

static equations of motion

$$D_i F^{aij} = g \epsilon^{abc} (D^j \Phi^b) \Phi^c$$
$$D_i D^i \Phi^a = -\lambda (\Phi^b \Phi^b) \Phi^a + \lambda \eta^2 \Phi^a$$

finite energy: boundary conditions

$$|\Phi| \xrightarrow{r \to \infty} \eta \quad \Longleftrightarrow \quad \Phi^a / \eta \xrightarrow{r \to \infty} \hat{\Phi}^a_{\infty} \text{ unit vector}$$

Higgs field at infinity induces mapping from physical space to internal space

$$\hat{\Phi}_{\infty}(\theta,\varphi) : \quad S^2_{\infty}(\theta,\varphi) \longrightarrow S^2 : \quad \pi_2(S^2) = Z$$

Monopoles: Static Solutions with Finite Energy

energy functional

$$E = \int d^3x \left[\frac{1}{4} F^a_{ij} F^{aij} + \frac{1}{2} D_i \Phi^a D^i \Phi^a + \frac{\lambda}{4} (\Phi^a \Phi^a - \eta^2)^2 \right]$$

static equations of motion

$$D_i F^{aij} = g \epsilon^{abc} (D^j \Phi^b) \Phi^c$$
$$D_i D^i \Phi^a = -\lambda (\Phi^b \Phi^b) \Phi^a + \lambda \eta^2 \Phi^a$$

Higgs field at infinity induces mapping from physical space to internal space

$$\hat{\Phi}_{\infty}(\theta,\varphi) \ : \quad S^2_{\infty}(\theta,\varphi) \longrightarrow S^2 \ : \quad \pi_2(S^2) = Z$$

degree of map

energy bound

$$E_n \ge 4\pi\eta \frac{|n|}{g}$$

n integer

 $n = \frac{-i}{8\pi} \int_{S^2_{-}} \text{Tr}\{\hat{\Phi}\partial_{\theta}\hat{\Phi}\partial_{\varphi}\hat{\Phi}\} d\theta d\varphi$

Mappings

n=0 mapping: vacuum configuration $\vec{\Phi}=\eta\vec{e}_z$

n=1 mapping: hedgehog configuration $\vec{\Phi}=\eta \vec{e_r}$

・ロト ・回ト ・ 回ト ・

Magnetic Charge

gauge invariant electromagnetic field strength tensor

$$\mathcal{F}_{\mu\nu} = \operatorname{Tr}\left\{\hat{\Phi}F_{\mu\nu} - \frac{i}{2g}\hat{\Phi}D_{\mu}\hat{\Phi}D_{\nu}\hat{\Phi}\right\}$$

$$= \operatorname{Tr}\left\{\partial_{\mu}(\hat{\Phi}A_{\nu}) - \partial_{\nu}(\hat{\Phi}A_{\mu})\right\} - \frac{i}{2g}\operatorname{Tr}\left\{\hat{\Phi}\partial_{\mu}\hat{\Phi}\partial_{\nu}\hat{\Phi}\right\}$$

when $\hat{\Phi} = \vec{e}_z \cdot \vec{\tau}$

$$\mathcal{F}_{\mu\nu} = \partial_{\mu}A^3_{\nu} - \partial_{\nu}A^3_{\mu}$$

イロト イポト イヨト イヨト

Magnetic Charge

gauge invariant electromagnetic field strength tensor

$$\mathcal{F}_{\mu\nu} = \operatorname{Tr}\left\{\hat{\Phi}F_{\mu\nu} - \frac{i}{2g}\hat{\Phi}D_{\mu}\hat{\Phi}D_{\nu}\hat{\Phi}\right\}$$

$$= \operatorname{Tr}\left\{\partial_{\mu}(\hat{\Phi}A_{\nu}) - \partial_{\nu}(\hat{\Phi}A_{\mu})\right\} - \frac{i}{2g}\operatorname{Tr}\left\{\hat{\Phi}\partial_{\mu}\hat{\Phi}\partial_{\nu}\hat{\Phi}\right\}$$

magnetic field has non-zero divergence

$$\vec{\nabla}\cdot\vec{\mathcal{B}} = \frac{4\pi}{g}k^0$$

with topological current k^{μ}

$$k_{\mu} = \frac{1}{8\pi} \epsilon_{\mu\nu\rho\sigma} \epsilon_{abc} \partial^{\nu} \hat{\Phi}^{a} \partial^{\rho} \hat{\Phi}^{b} \partial^{\sigma} \hat{\Phi}^{c}$$

Jutta Kunz (Universität Oldenburg)

Magnetic Charge

gauge invariant electromagnetic field strength tensor

$$\mathcal{F}_{\mu\nu} = \operatorname{Tr}\left\{\hat{\Phi}F_{\mu\nu} - \frac{i}{2g}\hat{\Phi}D_{\mu}\hat{\Phi}D_{\nu}\hat{\Phi}\right\}$$

$$= \operatorname{Tr}\left\{\partial_{\mu}(\hat{\Phi}A_{\nu}) - \partial_{\nu}(\hat{\Phi}A_{\mu})\right\} - \frac{i}{2g}\operatorname{Tr}\left\{\hat{\Phi}\partial_{\mu}\hat{\Phi}\partial_{\nu}\hat{\Phi}\right\}$$

magnetic field has non-zero divergence

$$\vec{\nabla}\cdot\vec{\mathcal{B}} = \frac{4\pi}{g}k^0$$

magnetic charge

$$P = \frac{1}{4\pi} \int_{S^2_{\infty}} \mathcal{F}_{\theta\varphi} d\theta d\varphi = \frac{n}{g}$$

Jutta Kunz (Universität Oldenburg)

Spherically Symmetric Monopoles: n = 1

Wu-Yang Ansatz

$$\begin{aligned} A_{\mu}dx^{\mu} &= \frac{1}{2g} \left[\tau_{\varphi} \left(1 - K(r) \right) d\theta - \tau_{\theta} \left(1 - K(r) \right) \sin \theta d\varphi \right] \\ \Phi &= \eta H(r) \tau_{r} \qquad \left(\tau_{r} = \vec{\tau} \cdot \vec{e}_{r} \ , \quad \tau_{\theta} = \vec{\tau} \cdot \vec{e}_{\theta} \ , \quad \tau_{\varphi} = \vec{\tau} \cdot \vec{e}_{\varphi} \right) \end{aligned}$$

boundary conditions

K(0) = 1, $K(\infty) = 0$ H(0) = 0, $H(\infty) = 1$

monopole properties

• magnetic charge:
$$P = \frac{1}{g}$$

イロト イポト イヨト イヨト

Spherically Symmetric Monopoles: n = 1

Wu-Yang Ansatz

$$\begin{aligned} A_{\mu}dx^{\mu} &= \frac{1}{2g} \left[\tau_{\varphi} \left(1 - K(r) \right) d\theta - \tau_{\theta} \left(1 - K(r) \right) \sin \theta d\varphi \right] \\ \Phi &= \eta H(r) \tau_{r} \qquad \left(\tau_{r} = \vec{\tau} \cdot \vec{e}_{r} \ , \quad \tau_{\theta} = \vec{\tau} \cdot \vec{e}_{\theta} \ , \quad \tau_{\varphi} = \vec{\tau} \cdot \vec{e}_{\varphi} \right) \end{aligned}$$

Μ

• size: core \approx

Spherically Symmetric Monopoles: n = 1

Wu-Yang Ansatz

m

$$A_{\mu}dx^{\mu} = \frac{1}{2g} \left[\tau_{\varphi} \left(1 - K(r) \right) d\theta - \tau_{\theta} \left(1 - K(r) \right) \sin \theta d\varphi \right]$$

$$\Phi = \eta H(r)\tau_{r} \qquad (\tau_{r} = \vec{\tau} \cdot \vec{e}_{r} \ , \quad \tau_{\theta} = \vec{\tau} \cdot \vec{e}_{\theta} \ , \quad \tau_{\varphi} = \vec{\tau} \cdot \vec{e}_{\varphi} \right)$$
onopole properties
• magnetic charge: $P = \frac{1}{g}$
 ξ_{W}
 $I_{1,0}$
 $E = \frac{4\pi\eta}{g} f(\lambda) \ge \frac{4\pi\eta}{g}$
 $I_{1,0}$
 $I_{1,0}$

<ロ> <同> <同> < 同> < 同>

Bogomol'nyi Bound

Bogomol'nyi 1976 energy functional

$$E = \int d^3x \left[\frac{1}{4} F^a_{ij} F^{aij} + \frac{1}{2} D_i \Phi^a D^i \Phi^a + \frac{\lambda}{4} (\Phi^a \Phi^a - \eta^2)^2 \right]$$

first and second term

$$\int d^3x \left[\frac{1}{4} F^a_{ij} F^{aij} + \frac{1}{2} D_i \Phi^a D^i \Phi^a \right]$$
$$= \int d^3x \sum_{ija} \frac{1}{4} \left(F^a_{ij} - \varepsilon_{ijk} D_k \Phi^a \right)^2 + \int d^3x \frac{1}{2} \varepsilon_{ijk} F^a_{ij} D_k \Phi^a$$

energy functional

$$E = \int d^3x \sum_{ija} \frac{1}{4} \left(F_{ij}^a - \varepsilon_{ijk} D_k \Phi^a \right)^2 + \frac{4\pi n\eta}{g} + \int d^3x \frac{\lambda}{4} (\Phi^a \Phi^a - \eta^2)^2$$

Bogomol'nyi Bound

$$E \ge \frac{4\pi n\eta}{g}$$

Jutta Kunz (Universität Oldenburg)

BPS Limit

Bogomol'nyi 1976, Prasad, Sommerfield 1975

vanishing Higgs self-coupling: $\lambda = 0$

Bogomol'nyi equations (1st order)

$$F_{ij}^a = \epsilon_{ijk} D_k \Phi^a$$

energy saturates Bogomol'nyi bound

$$E_{\rm BPS} = n \, \frac{4\pi\eta}{g}$$

exact solutions: n = 1

$$K_{\rm BPS}(r) = \frac{g\eta r}{\sinh(g\eta r)}$$
$$H_{\rm BPS}(r) = \frac{1}{\tanh(g\eta r)} - \frac{1}{g\eta r}$$

Nahm equation

$$\frac{dT_i(s)}{ds} = \frac{1}{2}\varepsilon_{ijk} \left[T_j(s), T_k(s) \right]$$

 $n\times n$ Nahm matrices $T_1(s),$ $T_2(s),$ $T_3(s)$ defined on $-1\leq s\leq 1$ Weyl equation

$$\left(1_{2n}\frac{d}{ds} + iT_j(s) \otimes \tau_j - 1_n \otimes x^j \tau_j\right) v(s) = 0$$

two normalizable spinors $v_a(s): a = 1, 2$

$$\int_{-1}^{1} v_a^{\dagger}(s) v_b(s) ds = \delta_{ab}$$

Higgs field

gauge field

$$\Phi(\vec{x})_{ab} = i \int_{-1}^{1} s v_a^{\dagger}(s) v_b(s) ds$$
$$A_i(\vec{x})_{ab} = \int_{-1}^{1} s v_a^{\dagger}(s) \frac{\partial}{\partial x^i} v_b(s) ds$$

charge-1 monopole 1×1 Nahm matrices: $T_i(s) = ic_i$, c_i constant Weyl equation

$$\left(\frac{d}{ds} - \tau \cdot \vec{x}\right)v(s) = 0$$

two solutions

Higgs

$$v_{1}(s) = \sqrt{\frac{r}{2\sinh r}} \left(\cosh\frac{sr}{2} + \sinh\frac{sr}{2}\hat{x} \cdot \tau\right) \begin{pmatrix} 1\\0 \end{pmatrix}$$
$$v_{2}(s) = \sqrt{\frac{r}{2\sinh r}} \left(\cosh\frac{sr}{2} + \sinh\frac{sr}{2}\hat{x} \cdot \tau\right) \begin{pmatrix} 0\\1 \end{pmatrix}$$
field
$$\Phi(\vec{x})_{ab} = i \int_{-1}^{1} sv_{a}^{\dagger}(s)v_{b}(s)ds$$
$$\Phi(\vec{x})_{ab} = i \left(\coth r - \frac{1}{r}\right)\hat{x} \cdot \tau_{ab}$$

Outline

Monopoles in Flat Space

Non-Abelian Monopoles

Multimonopoles

- Monopole-Antimonopole Pairs
- Monopole-Antimonopole Systems
- Dyons and Rotation

Gravitating Monopoles and Black Holes

- Monopoles in Curved Space
- Black Holes within Monopoles

Axially Symmetric Multimonopoles

Rebbi, Rossi 1980 n > 1: axially symmetric multimonopoles

$$A_{\mu}dx^{\mu} = \frac{1}{2gr} \left[\tau_{\phi}^{n} \left(H_{1}dr + (1 - H_{2})rd\theta \right) - n \left(\tau_{r}^{n}H_{3} + \tau_{\theta}^{n} \left(1 - H_{4} \right) \right) r\sin\theta d\phi \right]$$

$$\Phi = \Phi_1 \tau_r^n + \Phi_2 \tau_\theta^n$$

$$\begin{aligned} \tau^n_r &= \vec{\tau} \cdot (\sin\theta\cos n\varphi, \sin\theta\sin n\varphi, \cos\theta) \\ \tau^n_\theta &= \vec{\tau} \cdot (\cos\theta\cos n\varphi, \cos\theta\sin n\varphi, -\sin\theta) \\ \tau^n_\varphi &= \vec{\tau} \cdot (-\sin n\varphi, \cos n\varphi, 0) \end{aligned}$$

winding number $n \implies$ magnetic charge $P = \frac{n}{a}$

Axially Symmetric Multimonopoles

Ward 1981 Forgacs, Horvath, Palla 1981 Prasad, Rossi 1981 Corrigan, Goddard 1981

exact BPS multimonopoles

properties

- *n* superimposed monopoles located at origin
- Higgs field zero $|\Phi| = 0$ at origin
- energy density: torus

general charge-2 monopoles

Nahm equation

$$\frac{dT_i(s)}{ds} = \frac{1}{2}\varepsilon_{ijk} \left[T_j(s), T_k(s) \right]$$

 2×2 Nahm matrices $T_1(s)\text{, }T_2(s)\text{, }T_3(s)$

$$T_1(s) = \frac{i}{2}f_1(s)\tau_1$$
, $T_2(s) = \frac{i}{2}f_2(s)\tau_2$, $T_3(s) = -\frac{i}{2}f_3(s)\tau_3$

 f_i satisfy the Euler equations

$$\frac{df_1}{ds} = f_2 f_3 \ , \quad \frac{df_2}{ds} = f_3 f_1 \ , \quad \frac{df_3}{ds} = f_1 f_2$$

scaling symmetry

$$f_j(s) = LF_j(u), \quad u = L(s+s_0)$$

L, s_0 arbitrary constants

general charge-2 monopoles

functions $f_i(s)$: elliptic functions

$$f_1 = \frac{-L \mathrm{dn}_k(u)}{\mathrm{sn}_k(u)}$$
, $f_2 = \frac{-L}{\mathrm{sn}_k(u)}$, $f_3 = \frac{-L \mathrm{cn}_k(u)}{\mathrm{sn}_k(u)}$

integration constant k

 $\operatorname{sn}_k(u)$ has zeros at u=0 and $u=2K_k$

$$K_k = \int_0^{\frac{1}{2}\pi} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}$$

complete elliptic integral of the first kind

functions F_i have required poles at $s=\pm 1$ when $L=K_k,\ s_0=1$

result: 1-parameter family of Nahm data parametrized by \boldsymbol{k}

general charge-2 monopoles

Weyl equation

$$\left(1_{2n}\frac{d}{ds} + iT_j(s) \otimes \tau_j - 1_n \otimes x^j \tau_j\right) v(s) = 0$$

two normalizable spinors $v_a(s): a = 1, 2$

$$\int_{-1}^{1} v_a^{\dagger}(s) v_b(s) ds = \delta_{ab}$$

Brown, Panagopoulos, Prasad 1982 2 separated monopoles in the ADHMN construction

analytical solutions for v only on the axis connecting the 2 monopoles analytical expression for Higgs field only on the axis connecting the 2 monopoles

17 / 48

general charge-2 monopoles

Weyl equation

$$\left(1_{2n}\frac{d}{ds} + iT_j(s) \otimes \tau_j - 1_n \otimes x^j \tau_j\right) v(s) = 0$$

Manton and Sutcliffe, 2004 numerical solutions for v(s)

parameter k:

measure of the splitting of the n = 2 monopole into 2 n = 1 monopoles

charge-n monopoles

Nahm data are known

- n > 2 axial
- n = 3 tetrahedral
- n = 4 cubic
- n = 5 octahedral
- n = 7 dodecahedral
- ...

numerical solution of Weyl equation

from: C. HOUGHTON and P.SUTCLIFFE, a) Commun. Math. Phys. 180 (1996) and b) Nonlinearity 9 (1996)

Houghton, Sutcliffe 1996

イロト イポト イヨト イヨト

Houghton, Sutcliffe 1996

spectral curve $\eta^3 - 6(a^2 + 4\epsilon)^{1/3}\kappa^2\eta\zeta^2 + 2i\kappa^3a(\zeta^5 - \zeta) = 0$ $\epsilon = \pm 1, \ a \in R, \ 2\kappa \text{ period of elliptic curve } y^2 = 4x^3 - 3(a^2 + 4\epsilon)^{2/3}x + 4\epsilon$

Multimonopoles and Rational Maps

Donaldson 1984 classification of multimonopoles with rational maps between spheres

$$\mathcal{R}(z) = rac{p(z)}{q(z)} , \quad z = an rac{ heta}{2} e^{i arphi}$$

point z on the sphere corresponds to unit vector \vec{n}_z

$$\frac{1}{1+|z|^2} \left(2\text{Re}\,z, 2\text{Im}\,z, 1-|z|^2 \right)$$

value of the rational map \mathcal{R} is associated with unit vector $\vec{n}_{\mathcal{R}}$

$$\frac{1}{1+|\mathcal{R}|^2}\left(2\mathrm{Re}\,\mathcal{R}, 2\mathrm{Im}\,\mathcal{R}, 1-|\mathcal{R}|^2\right)$$

from: C. HOUGHTON and P.SUTCLIFFE, a) Commun. Math. Phys. 180 (1996) and b) Nonlinearity 9 (1996)

Houghton, Sutcliffe 1996

Multimonopoles and Rational Maps

Donaldson 1984 classification of multimonopoles with rational maps between spheres

Houghton, Sutcliffe 1996 example: n = 3

$$\mathcal{R}(z) = \frac{\sqrt{3}az^2 - 1}{z(z^2 - \sqrt{3}a)}$$

a = 0: torus

a = 1: tetrahedron

$\lambda \neq 0$: Kleihaus, Kunz 2003

Monopoles in Flat Space Multimonopoles Multimonopoles and Rational Maps

Donaldson 1984 classification of multimonopoles with rational maps between spheres

Braden, Enolski, 2010

Outline

Monopoles in Flat Space

- Non-Abelian Monopoles
- Multimonopoles

Monopole-Antimonopole Pairs

- Monopole-Antimonopole Systems
- Dyons and Rotation

Gravitating Monopoles and Black Holes

- Monopoles in Curved Space
- Black Holes within Monopoles

Monopole-Antimonopole Pairs

Taubes 1982

BPS-limit: in each topological sector exist an infinite number of solutions with

$$E > 4\pi\eta \, \frac{|n|}{g}$$

Nahm, Rüber 1985 vacuum sector n = 0

$$\begin{split} \Phi &= 0 \text{ at } z_0 \quad \Leftrightarrow \quad \Phi &= 0 \text{ at } -z_0 \\ \text{monopole at } z_0 \quad \Leftrightarrow \quad \text{antimonopole at } z_0 \end{split}$$

 $\begin{array}{l} \mbox{sphere } S^2 \mbox{ of radius } r_0 \mbox{ centered at } z_0 \\ n = -\frac{i}{8\pi r_0^2} \int_{S_2} {\rm Tr}(\hat{\Phi} d\hat{\Phi} \wedge d\hat{\Phi}) = \pm 1 \end{array}$

magnetic dipole field

$$A_i^3 dx^i \rightarrow \frac{C_m}{r^3} (\vec{e}_z \times \vec{r})_i dx^i$$

Nahm, Rüber 1985 Kleihaus, Kunz 2000

$$A_{\mu}dx^{\mu} = \frac{1}{2gr} \left[\tau_{\varphi} \left(H_{1}dr + 2\left(1 - H_{2}\right)rd\theta \right) \right. \\ \left. -2\left(\bar{\tau}_{r}^{2}H_{3} + \bar{\tau}_{\theta}^{2}\left(1 - H_{4}\right) \right)r\sin\theta d\varphi \right] \\ \Phi = \Phi_{1}(r,\theta)\bar{\tau}_{r}^{(2)} + \Phi_{2}(r,\theta)\bar{\tau}_{\theta}^{(2)} \\ \tau_{\rho} = \cos\varphi\tau_{1} + \sin\varphi\tau_{2} , \quad \tau_{\varphi} = -\sin\varphi\tau_{1} + \cos\varphi\tau_{2} \\ \bar{\tau}_{r}^{2} = \sin2\theta\tau_{\rho} + \cos2\theta\tau_{3} , \quad \bar{\tau}_{\theta}^{2} = \cos2\theta\tau_{\rho} - \sin2\theta\tau_{3}$$

boundary conditions $(r \longrightarrow \infty)$

$$\begin{array}{ccc} H_1 \to 0 \ , & H_2 \to 0 \ , & H_3 \to \sin \theta \ , & 1 - H_4 \to \cos \theta \\ & \Phi_1 \to \eta \ , & \Phi_2 \to 0 \end{array}$$

no net magnetic charge

Jutta Kunz (Universität Oldenburg)

イロト イポト イヨト イヨト

Kleihaus, Kunz 2000 monopol-antimonopole pairs: MAPs

Higgs field modulus

Kleihaus, Kunz 2000 monopol-antimonopole pairs: MAPs

λ	$E \frac{g}{4\pi\eta}$	$E_{\infty}\frac{g}{4\pi\eta}$	d	$ \Phi(0) $	$C_{\rm m}$
0	1.697	2.000	4.23	0.328	2.36
0.01	2.015	2.204	3.34	0.489	1.84
0.1	2.330	2.498	3.26	0.791	1.71
1.0	2.713	2.900	3.0	0.986	1.57
10.0	3.042	3.241	3.0	0.9996	1.55

・ロッ ・ロッ ・ ロッ・

Outline

Monopoles in Flat Space

- Non-Abelian Monopoles
- Multimonopoles
- Monopole-Antimonopole Pairs

Monopole-Antimonopole Systems

Oyons and Rotation

Gravitating Monopoles and Black Holes

- Monopoles in Curved Space
- Black Holes within Monopoles

Kleihaus, Kunz, Shnir 2003 monopol-antimonopole chains: MACs

Kleihaus, Kunz, Shnir 2003 monopol-antimonopole chains: MACs

energy versus number of (anti)monopoles

Kleihaus, Kunz, Shnir 2003 monopol-antimonopole chains: MACs

energy versus number of (anti)monopoles

Kleihaus, Kunz, Shnir 2003 monopol-antimonopole chains: MACs

Kleihaus, Kunz, Shnir 2003 monopol-antimonopole chains: MACs

Big MACs

Monopole-Antimonopole Chains with Higher Charge?

Kleihaus, Kunz, Shnir 2003

Monopole-Antimonopole Vortex Rings

Kleihaus, Kunz, Shnir 2003 monopol-antimonopole vortex rings

m=2, n=3 configuration: |Φ| at λ=0.5

Higgs field modulus: m = 2, n = 4, $\lambda = 0.5$

Monopole-Antimonopole Vortex Rings

Kleihaus, Kunz, Shnir 2003 monopol-antimonopole vortex rings

evolution of the nodes of the Higgs field: m = 2, n

Monopole-Antimonopole Vortex Rings

Kleihaus, Kunz, Shnir 2003 monopol-antimonopole vortex rings

Jutta Kunz (Universität Oldenburg)

Monopoles and monopole-antimonopole systems

Outline

Monopoles in Flat Space

- Non-Abelian Monopoles
- Multimonopoles
- Monopole-Antimonopole Pairs
- Monopole-Antimonopole Systems
- Dyons and Rotation

Gravitating Monopoles and Black Holes

- Monopoles in Curved Space
- Black Holes within Monopoles

Electrically Charged Solutions

Julia and Zee, 1975

BPS limit

solution of the field equations with $||\tilde{\Phi}^a|| \stackrel{r \to \infty}{\longrightarrow} \tilde{\eta}$

$$\left(A^a_i \ , \ A^a_0 = 0 \ , \ \tilde{\Phi}^a\right)$$

solution with $||\Phi^a|| \stackrel{r \to \infty}{\longrightarrow} \tilde{\eta} \sqrt{1+Q^2} = \eta$ and electric charge Q

$$\left(A^a_i \ , \ \ A^a_0 = Q \tilde{\Phi}^a \ , \ \ \Phi^a = \sqrt{1+Q^2} \tilde{\Phi}^a \right)$$

• monopoles \longrightarrow dyons

$$E(Q) = \frac{4\pi |n|}{g} \eta \sqrt{1+Q^2}$$

ullet monopole-antimonopole systems \longrightarrow electrically charged systems

同下 イヨト イヨト

van der Bij and Radu, 2001 axially symmetric solutions generically angular momentum density $T_{i\alpha}^t$

$$J = \int T_{\varphi}^{t} \sqrt{-g} d^{3}x = \int 2 \operatorname{Tr} \{ F_{r\varphi} F^{rt} + F_{\theta\varphi} F^{\theta t} + D_{\varphi} \Phi D^{t} \Phi \} \sqrt{-g} d^{3}x$$

angular momentum J?

• solutions with magnetic charge $(P \neq 0)$

J = 0

• solutions without magnetic charge (P = 0)

$$J \sim Q$$

$$J \sim n Q (1-\sigma) \ , \quad P = n \sigma \ , \quad \sigma = \frac{1}{2} \left[1 - (-1)^m \right]$$

Kleihaus, Kunz, Neemann 2005 multimonopoles: $P \neq 0 \Longrightarrow J = 0$

energy density: m = 1, n = 2

angular momentum density: m = 1, n = 2

Kleihaus, Kunz, Neemann 2005 monopole-antimonopole pairs: $P = 0 \Longrightarrow J \neq 0$

energy density: m = 2, n = 2

angular momentum density: m = 2, n = 2

Kleihaus, Kunz, Neemann 2005 vortex rings: $P = 0 \Longrightarrow J \neq 0$

energy density: m = 2, n = 3

angular momentum density: m = 2, n = 3

Outline

Monopoles in Flat Space

- Non-Abelian Monopoles
- Multimonopoles
- Monopole-Antimonopole Pairs
- Monopole-Antimonopole Systems
- Oyons and Rotation

Gravitating Monopoles and Black Holes

- Monopoles in Curved Space
- Black Holes within Monopoles

Outline

1) Monopoles in Flat Space

- Non-Abelian Monopoles
- Multimonopoles
- Monopole-Antimonopole Pairs
- Monopole-Antimonopole Systems
- Dyons and Rotation

Gravitating Monopoles and Black Holes

- Monopoles in Curved Space
- Black Holes within Monopoles

Flat Space–Time

• metric of Minkowski space-time

$$ds^2 = -dt^2 + dx^2 + dy^2 + dz^2$$

Jutta Kunz (Universität Oldenburg)

Curved Space–Time

• metric of curved space-time

$$ds^2 = g_{\mu\nu} \, dx^\mu dx^\nu$$

Jutta Kunz (Universität Oldenburg) Mor

Einstein Equations

• metric

$$ds^2 = g_{\mu\nu} \ dx^{\mu} dx^{\nu}$$

 $g_{\mu\nu}$: metric tensor

• Einstein equations

matter tells space how to curve

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

 $G_{\mu\nu}$: Einstein tensor $T_{\mu\nu}$: energy-momentum tensor

Coupling Monopoles to Gravity

$$n = 2, \ \alpha = 1.0, \ \beta = 0, \ x_{\Delta} = 1.0$$

Regular solutions:

- formation of horizons
- attraction between like monopoles
- solutions with no flat space limit

Black holes:

- counterexamples to the no-hair conjecture
- non-spherical static black holes
- systems of non-abelian black holes?

Einstein-Yang-Mills-Higgs Theory

Einstein-Yang-Mills-Higgs action

Einstein equations

Einstein tensor $\longrightarrow \quad G_{\mu\nu} = 8\pi G T_{\mu\nu} \quad \longleftarrow \text{ stress-energy tensor}$

matter field equations

$$D_{\mu}F^{\mu\nu} = \frac{1}{4}ie\left[\Phi, D^{\nu}\Phi\right]$$
$$D_{\mu}D^{\mu}\Phi = \lambda \mathrm{Tr}\left(\Phi^{2} - v^{2}\right)\Phi$$

with gauge covariant derivative $D_{\mu} = \nabla_{\mu} + ie \left[A_{\mu}, \cdot \right]$

イロト イポト イヨト イヨト

Monopoles in Curved Space

Static Spherically Symmetric EYMH Monopoles

Nieuwenhuizen, Wilkinson, Perry 1976; Breitenlohner, Forgacs, Maison 1992; Lee, Nair, Weinberg 1992

metric:
$$ds^2 = -A^2(r)N(r)dt^2 + \frac{1}{N(r)}dr^2 + r^2d\Omega^2$$

49

Static Axially Symmetric EYMH Monpoles

Hartmann, Kleihaus, Kunz 2001

metric:

$$ds^{2} = -f(r,\theta)dt^{2} + \frac{m(r,\theta)}{f(r,\theta)}\left(dr^{2} + r^{2}d\theta^{2}\right) + \frac{l(r,\theta)}{f(r,\theta)}r^{2}\sin^{2}\theta d\varphi^{2}$$

Static Axially Symmetric EYMH Monpoles

Hartmann, Kleihaus, Kunz 2001

metric:

$$ds^{2} = -f(r,\theta)dt^{2} + \frac{m(r,\theta)}{f(r,\theta)}\left(dr^{2} + r^{2}d\theta^{2}\right) + \frac{l(r,\theta)}{f(r,\theta)}r^{2}\sin^{2}\theta d\varphi^{2}$$

Static Axially Symmetric EYMH Monpoles

Hartmann, Kleihaus, Kunz 2001

metric:

$$ds^{2} = -f(r,\theta)dt^{2} + \frac{m(r,\theta)}{f(r,\theta)}\left(dr^{2} + r^{2}d\theta^{2}\right) + \frac{l(r,\theta)}{f(r,\theta)}r^{2}\sin^{2}\theta d\varphi^{2}$$

Gravitating Monopoles and Black Holes Monopoles in Curved Space

Regular Solutions with Platonic Symmetries

Kleihaus, Kunz, Myklevoll 2006

• approximate solutions

Gravitating Monopoles and Black Holes Monopoles in Curved Space

Regular Solutions with Platonic Symmetries

Kleihaus, Kunz, Myklevoll 2006

• approximate solutions

Outline

1) Monopoles in Flat Space

- Non-Abelian Monopoles
- Multimonopoles
- Monopole-Antimonopole Pairs
- Monopole-Antimonopole Systems
- Dyons and Rotation

Gravitating Monopoles and Black Holes

- Monopoles in Curved Space
- Black Holes within Monopoles

Einstein-Maxwell Black Holes

	static	rotating
spherically symmetric	Schwarzschild (M) Reissner-Nordström (M, Q, P)	_
axially symmetric	-	Kerr (M, J) Kerr–Newman (M, Q, \mathbf{P}, J)

• Uniqueness theorem

black holes are uniquely determined by their mass $M,\, {\rm angular}$ momentum $J,\, {\rm charges}\; Q$ and P

Israel's theorem

static black holes are spherically symmetric

Staticity theorem

stationary black holes with non-rotating horizon are static

• ...

Static Black Holes within Monopoles

Breitenlohner, Forgacs, Maison 1992; Lee, Nair, Weinberg 1992 black holes within monopoles: spherical symmetry Hartmann, Kleihaus, Kunz 2002 black holes within multimonopoles: axial symmetry

no uniqueness

Static Black Holes within Monopoles

Breitenlohner, Forgacs, Maison 1992; Lee, Nair, Weinberg 1992 black holes within monopoles: spherical symmetry Hartmann, Kleihaus, Kunz 2002 black holes within multimonopoles: axial symmetry

Static Black Holes within Monopoles

Breitenlohner, Forgacs, Maison 1992; Lee, Nair, Weinberg 1992 black holes within monopoles: spherical symmetry Hartmann, Kleihaus, Kunz 2002 black holes within multimonopoles: axial symmetry

no Israel's theorem

Platonic Black Holes?

Black holes with only discrete symmetries?

- perturbative solutions Ridgway, Weinberg 1995
- non-perturbative solutions work to be done

Platonic black holes?

Systems of Black Holes?

MA diholes? work in progress

Rotating EYMH Black Holes

Kleihaus, Kunz, Navarro-Lérida 2004

z = 0.0009

 $\varepsilon ~= 0.00\,11$

z = 0.00004

c = 0.00005

z = 0.00009

slow rotation

fast rotation

Jutta Kunz (Universität Oldenburg)

Thanks Yves Brihaye

Betti Hartmann

Rustam Ibadov

Burkhard Kleihaus

Michael Leissner

Kari Myklevoll

Francisco Navarro-Lérida

Ulrike Neemann

Abha Sood

Tigran Tchrakian

Marion Wirschins

(Universität Oldenburg) Jutta Kunz

Edinburgh, Oct 12 2010

49 / 48