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Inversion of elliptic integral Pn, n ≤ 4:

t+ 2nω + 2mω′ =

∫ x

∞

dx√
4x3 − g2x− g3

,

where x = ℘(t) = ℘(t+2nω+2mω′) is an elliptic function. Inversion possible!
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Figure: Homology basis on the Riemann surface of the curve y2 =
∏

4
i=1

(x − ei) with real branch points
e1 < e2 < . . . < e4 = ∞ (upper sheet). The cuts are drawn from e2i−1 to e2i, i = 1, 2. The
b–cycles are completed on the lower sheet (dotted lines).
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Figure: Elliptic function does not depend on the way of integration!
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Inversion of hyperelliptic integral Pn, n > 4:

does not work. Reason: infinitely small periods appear

2ω11

2ω12

p
∞

Figure: For hyperelliptic curve of genus 2 a combination of periods is possible such that 2ω11n+2ω12m ∝ 0.

Jacobi: 2g-periodic functions of one complex variable do not exist for g > 1.
Jacobi’s solution for g = 2, y2 =

∏5
i=1(x− ai):

correct formulation of inversion problem for genus 2

∫ x1

x0

dx

y
+

∫ x2

x0

dx

y
= u1 ,

∫ x1

x0

xdx

y
+

∫ x2

x0

xdx

y
= u2 ,

with holomorphic diferentials

2ω =
( ∮

ak

dui

)
i,k=1,...,g

2ω′ =
( ∮

bk

dui

)
i,k=1,...,g
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Inversion of hyperelliptic integral Pn, n > 4:

Only symmetric functions of upper bounds (x1, x2) make sence (exchange of x1

and x2 changes nothing)

x1 + x2 = F (u1, u2)

x1x2 = G(u1, u2) ,

with F (~u+ 2n1~ω1 + 2n2~ω2 + 2m1~ω
′
1 + 2m2~ω

′
2) = F (~u) where F is a 4-periodic

Abelian function (function of g complex variables with 2g periods being the
columns of the period matrix).

Kagramanova (Uni Oldenburg) Arbitrary genera curves in geodesic equations Edinburgh 11-15 Oct 2010 4 / 36



Applications in physics

The goal 1 is using the theory of Abelian functions and Jacobi inversion problem
to describe the multivalued functions which appear in the inversion of a
hyperelliptic integral. That will be achieved by restriction of the θ-divisor in the
Jacobi variety.
Motion of neutral or charged test particles in

spherically symmetric space-times:

Schwarzschild space-time: mass
Schwarzschild-de Sitter: mass, cosmological constant
Reissner-Nordström space-time: mass, electric and magnetic charges
Reissner-Nordström-de Sitter space-time: mass, electric and magnetic charges,
cosmological constant

axial symmetric space-times

Taub-NUT space-time: mass (gravitoelectric charge), NUT parameter
(gravitomagnetic charge)
Kerr space-time: mass, rotation (Kerr) parametter
Myers-Perry space-times (higher dimensional Kerr space-times): mass,
rotation parameters
Plebański and Demiański space-time: mass, electric and magnetic charges,
rotation parameter, NUT parameter, cosmological constant
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Physical applications in tables

spherically symmetric space-times:

(
(
(

(
(
(

(
(
(
(

(
(
(

(
((

Space–time

Dimension
4 5 6 7 8 9 10 11 ≥ 12

Schwarzschild + + + + * + * + *
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Necessary calculations

The goal 2 is to provide effective calculation of hyperelliptic functions using
maple routines (package alcurves).

calculation of the matrix of periods of holomorphic differentials

calculation of the matrix of periods of meromorphic differentials

calculation of characteristics of abelian images of branch points in a given
basis

Ak =

∫ ek

∞

du = ωεk + ω′ε′k, k = 1, . . . , 2g + 2 ,

calculation of the vector of Riemann constant in a given basis
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Hyperelliptic functions

Hyperelliptic curve Xg of genus g is given by the equation

w2 = P2g+1(z) =

2g+1∑

i=0

λiz
i = 4

2g+1∏

k=1

(z − ek) .

Equip the curve with a canonical homology basis

(a1, . . . , ag; b1, . . . , bg), ai ◦ bj = −bi ◦ aj = δi,j , ai ◦ aj = bi ◦ bj = 0

e1 e2

�

�

�

�a1

e3 e4

�
�

�
�a2

p p p p p
e2g−1e2g

�
�

�
�

ag

p p
e2g+1 e2g+2 = ∞

b1
b2

bg

Figure: A homology basis on a Riemann surface of the hyperelliptic curve of genus g with real branch points
e1, . . . , e2g+2 = ∞ (upper sheet). The cuts are drawn from e2i−1 to e2i for i = 1, . . . , g + 1.
The b-cycles are completed on the lower sheet (the picture on lower sheet is just flipped horizontally).
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Canonical differentials
Choose canonical holomorphic differentials (first kind) dut = (du1, . . . , dug) and
associated meromorphic differentials (second kind) drt = (dr1, . . . , drg) in such a
way that their periods

2ω =
( ∮

ak

dui

)
i,k=1,...,g

2ω′ =
( ∮

bk

dui

)
i,k=1,...,g

2η =
(
−
∮

ak

dri

)
i,k=1,...,g

2η′ =
(
−
∮

bk

dri

)
i,k=1,...,g

satisfy the generalized Legendre relation
( ω ω′

η η′

)( 0 −1g
1g 0

)( ω ω′

η η′

)t

= −1

2
πi
( 0 −1g

1g 0

)
.

Such a basis of differentials can be realized as follows (see Baker (1897), p. 195):

du(z, w) =
U(z)dz

w
, Ui(z) = xi−1, i = 1 . . . , g,

dr(z, w) =
R(z)dz

4w
, Ri(z) =

2g+1−i∑

k=i

(k + 1− i)λk+1+iz
k, i = 1 . . . , g.

Jacobi variety Jac(Xg) = C
g/2ω ⊕ 2ω′, J̃ac(Xg) = C

g/1g ⊕ τ .
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θ-functions

The hyperelliptic θ–function, θ : J̃ac(Xg)×Hg → C
g, with characteristics [ε] is

defined as the Fourier series

θ[ε](v|τ) =
∑

m∈Zg

exp πi
{
(m+ ε′)tτ(m+ ε′) + 2(v + ε)t(m+ ε′)

}

In the following, the values εk, ε
′
k will either be 0 or 1

2 . The equation

θ[ε](−v|τ) = e−4πiεt
ε
′

θ[ε](v|τ),

implies that the function θ[ε](v|τ) with characteristics [ε] of only half-integers is
even if 4εtε′ is an even integer, and odd otherwise. Correspondingly, [ε] is called
even or odd, and among the 4g half-integer characteristics there are 1

2 (4
g + 2g)

even and 1
2 (4

g − 2g) odd characteristics.
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Characteristics

Every abelian image of a branch point is given by its characteristic

Ak =

∫ ek

∞

du = ωεk + ω′ε′k, k = 1, . . . , 2g + 2 ,

or

[Ai] =

[∫ ei

∞

du

]
=

[
ε′

T
i

εi

]
=

[
ε′i,1 ε′i,2
εi,1 εi,2

]
,

The 2g + 2 characteristics [Ai] serve as a basis for the construction of all 4g

possible half integer characteristics [ε]. There is a one-to-one correspondence
between these [ε] and partitions of the set G = {1, . . . , 2g + 2} of indices of the
branch points (Fay (1973), p. 13, Baker (1897) p. 271).
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Characteristics

The partitions of interest are

Im = {i1, . . . , ig+1−2m}, Jm = {j1, . . . , jg+1+2m},

where m is any integer between 0 and
[
g+1
2

]
. The corresponding characteristic

[εm] is defined by the vector

Em = (2ω)
−1

g+1−2m∑

k=1

Aik +K∞ =: εm + τε′m.

Characteristics with even m are even, and with odd m odd. There are 1
2

(
2g+2
g+1

)

different partitions with m = 0,
(
2g+2
g−1

)
different with m = 1, and so on, down to(

2g+2
1

)
= 2g + 2 if g is even and m = g/2, or

(
2g+2

0

)
= 1 if g is odd and

m = (g + 1)/2. According to the Riemann theorem on the zeros of θ-functions,
θ(Em + v) vanishes to order m at v = 0.
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Sigma functions

The fundamental σ-function of the curve Xg is defined as

σ(u) = C(τ)θ[K∞]((2ω)−1u; τ)exp
{
uT

κu
}
.

Here τ = ω−1ω′, κ = η(2ω)−1 and C(τ) is given by the formula

C(τ) =

√
πg

det(2ω)


 ∏

1≤i<j≤2g+1

(ei − ej)




−1/4

.

That’s natural generalization of the Weierstrass σ-function

σ(u) =

√
π

2ω

ǫ
4
√
(ei − e2)(e1 − e3)(e2 − e3)

ϑ1

( u

2ω

)
exp

{
ηu2

2ω

}
, ǫ8 = 1.
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Properties of sigma functions

it is an entire function on Jac(Xg),

it satisfies the two sets of functional equations

σ(u+ 2ωk + 2ω′k;M) = exp{2(ηk + η′k′)(u+ ωk + ω′k′)}σ(u;M)

σ(u; γM) = σ(u;M), γ ∈ Sp(2g,Z)

the first of these equations displays the periodicity property, while the second
one the modular property.

Here M-modules, i.e. matrices of periods 2ω, 2ω′, 2η, 2η′.

γ =
(

A B
C D

)
, det(γ) = 1 , A,B,C,D ∈ Z

g

Action of γ on period matrix is defined as

γ ◦ ω = Aω +Bω′

γ ◦ ω′ = Cω +Dω′
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Jacobi inversion problem in general case

Jacobi’s inversion problem in coordinate notation is

∫ P1

P0

dx

y
+ . . .+

∫ Pg

P0

dx

y
= u1 ,

∫ P1

P0

xdx

y
+ . . .+

∫ Pg

P0

xdx

y
= u2 ,

...
...

...
∫ P1

P0

xg−1dx

y
+ . . .+

∫ Pg

P0

xg−1dx

y
= ug ,

and solved in terms of Kleinian ℘-functions as follows

xg − ℘g,g(u)x
g−1 − . . .− ℘g,1(u) = 0 ,

yk = −℘g,g,g(u)x
g−1
k − . . .− ℘g,g,1(u) ,

where Pk = (xk, yk).
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Relation between the matrices of holomorphic and

meromorphic differentials

Proposition

Let P(Ω) denote g × g- symmetric matrix whose elements are symmetric functions of

(ei1 , . . . , eig )

P(Ω) = (℘i,j(Ω))
i,j=1,...,g

,Ω =

∫ ei1

∞

du+ . . .+

∫ eig

∞

du ,

let (2ω)−1
Ω+K∞ be an arbitrary non-singular even half-period, and T(Ω) the g × g

matrix

T(Ω) =

(

−

∂2

∂zi∂zj
log θ[K∞]((2ω)−1

Ω; τ)

)

i,j=1,...,g

.

Then the κ-matrix is given by the formula

κ = −

1

2
P(Ω)−

1

2
(2ω)−1T

T(Ω)(2ω)−1

and the half-periods of the meromorphic differentials η and η′ are given as

η = 2κω, η
′ = 2κω′

−

iπ

2
(ω−1)T .
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Relation between the matrices of holomorphic and

meromorphic differentials

To calculate missing ℘i,j use the following differential cubic relation

℘ggi℘ggk = 4℘gg℘gi℘gk − 2(℘gi℘g−1,k + ℘gk℘g−1,i) + 4(℘gk℘g,i−1 + ℘gi℘g,k−1)

+ 4℘k−1,i−1 − 2(℘k,i−2 + ℘i,k−2) + λ2g℘gk℘gi +
λ2g−1

2
(δig℘gk + δkg℘gi)

+ λ2i−2δik +
1

2
(λ2i−1δk,i+1 + λ2k−1δi,k+1) ,

with δi,j =

{
1 i = j

0 i 6= j
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Relation between the matrices of holomorphic and

meromorphic differentials

The Proposition represents the natural generalization of the Weierstrass formulae,
see e.g. the Weierstrass-Schwarz lectures, p. 44

2ηω = −2e1ω
2 − 1

2

ϑ′′
2(0)

ϑ2(0)
, 2ηω = −2e2ω

2 − 1

2

ϑ′′
3(0)

ϑ3(0)
, 2ηω = −2e3ω

2 − 1

2

ϑ′′
4(0)

ϑ4(0)

Therefore the Proposition allows to reduce the variety of modules necessary for
calculations of σ and ℘-functions to the first period matrix.
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Strata of theta-divisor

The subset Θ̃k ⊂ Θ̃ k ≥ 1 is called k-th stratum if each point v ∈ Θ̃ admits a
parametrization

Θ̃k : v =

k∑

j=1

∫ Pj

∞

dv +K∞, 0 < k < g .

Orders m(Θk) of vanishing of θ(Θk + v) along stratum Θk for small genera are
given in the Table

g m(Θ0) m(Θ1) m(Θ2) m(Θ3) m(Θ4) m(Θ5) m(Θ6)
1 1 0 - - - - -
2 1 1 0 - - - -
3 2 1 1 0 - - -
4 2 2 1 1 0 - -
5 3 2 2 1 1 0 -
6 3 3 2 2 1 1 0

Table: Orders m(Θk) of zeros θ(Θk + v) at v = 0 on strata Θk
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Solution for genus 2

The Jacobi inversion problem can be reduced to the quadratic equation

x2 − ℘22x− ℘12 = 0

with the solution

x1 + x2 = ℘22

x1x2 = −℘12

Now choose x2 = ∞: x1 = − limx2→∞
℘12

℘22
. We take away one point and this

allows us to use the Riemann theorem θ

(∑N
k=1

∫ Pk

P0

dx√
P (x)

+K∞

)
≡ 0 if

N < g. K∞ is a Riemann constant.

With ℘ij(~u) = −∂2 lnσ(~u)
∂~ui∂~uj

, i, j = 1, . . . , g the final solution is

x1 = −σ12

σ22
.

This is Grant-Jorgenson formula.
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Solution for genus 2

In the homology basis with e6 = +∞ the characteristics are:

[A1] =
1

2

[
1 0
0 0

]
, [A2] =

1

2

[
1 0
1 0

]
, [A3] =

1

2

[
0 1
1 0

]
,

[A4] =
1

2

[
0 1
1 1

]
, [A5] =

1

2

[
0 0
1 1

]
, [A6] =

1

2

[
0 0
0 0

]
.

and the characteristic of the vector of Riemann constants K∞ is

[K∞] = [A2] + [A4] =
1

2

[
1 1
0 1

]
.

e1 e2

�
�

�
�a1

e3 e4

�
�

�
�

a2

p p
e5 e6 = ∞

b1

b2

Figure: A homology basis on a Riemann surface of the hyperelliptic curve of genus 2 with real branch points
e1, . . . , e6 = ∞ (upper sheet). The cuts are drawn from e2i−1 to e2i for i = 1, . . . , 3. The
b-cycles are completed on the lower sheet (the picture on lower sheet is just flipped horizontally).
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Solution for genus 2

The expression for the matrix κ is

κ = −1

2

(
e1e2(e3 + e4 + e5) + e3e4e5 −e1e2

−e1e2 e1 + e2

)
− 1

2
(2ω)−1TT(Ω1,2)(2ω)

−1 ,

where T is the 2× 2-matrix and 10 half-periods for i 6= j = 1, . . . , 5 that are
images of two branch points are

Ωi,j = ω(εi + εj) + ω′(ε′i + ε′j), i = 1, . . . , 6 .

and the characteristics of the 10 half-periods

[εi,j ] =
[
(2ω)−1

Ωi,j +K∞

]
, 1 ≤ i < j ≤ 5

are non-singular and even
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Examples 2D
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Examples 3D

−10
10

00
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NUT-de Sitter bound orbit

−50

20
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−20
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50

(2)

NUT-de Sitter, escape orbit
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NUT, crossover bound orbit

(4)
NUT, escape orbit

(5)
Reissner-Nordström, bound orbit

(6)
and many-world bound orbit
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Solution for genus 3

Solution in this case is (Onishi formula)

x1 = −σ13

σ23

∣∣∣∣∣
σ(~u)=0,σ3(~u)=0

Characteristics for genus 3
Let Ak be the Abelian image of the k-th branch point, namely

Ak =

∫ ek

∞

du = ωεk + ω′ε′k, k = 1, . . . , 8 ,

where εk and ε′k are column vectors whose entries εk,j , ε
′
k,j , are 1 or zero for all

k = 1, . . . , 8, j = 1, 2, 3.
The correspondence between branch points and characteristics in the fixed
homology basis is given as

[A1] =
1

2

[

1 0 0
0 0 0

]

, [A2] =
1

2

[

1 0 0
1 0 0

]

, [A3] =
1

2

[

0 1 0
1 0 0

]

,

[A4] =
1

2

[

0 1 0
1 1 0

]

, [A5] =
1

2

[

0 0 1
1 1 0

]

, [A6] =
1

2

[

0 0 1
1 1 1

]

,

[A7] =
1

2

[

0 0 0
1 1 1

]

, [A8] =
1

2

[

0 0 0
0 0 0

]

.
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Solution for genus 3

The vector of Riemann constant K∞ with the base point at infinity is given by
the sum of even characteristics,

[K∞] = [A2] + [A4] + [A6] =
1

2

[
1 1 1
1 0 1

]
.

From the above characteristics 64 half-periods can be build:

7 odd [(2ω)−1
Ωi +K∞], where Ωi = Ai

21 odd [(2ω)−1
Ωi,j +K∞], where Ωi,j = Ai +Aj

36 even [(2ω)−1
Ωi,j,k +K∞], where Ωi,j,k = Ai +Aj +Ak and K∞

where 1 ≤ i < j < k ≤ 7 and K∞ is singular characteristic (θ(K∞) = 0).
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Analog of Thomae formula: all period systems

For the branch points e1, . . . , e8 the following formulae are valid

ei = −σ13(Ωi)

σ23(Ωi)
, i = 1, . . . , 8, whereΩi ∈ Θ1 : σ(Ωi) = 0, σ3(Ωi) = 0

For the branch points e1, . . . , e8 the following set of formulas is valid

ei + ej = −σ2(Ωi,j)

σ3(Ωi,j)
,

eiej =
σ1(Ωi,j)

σ3(Ωi,j)

i 6= j = 1, . . . , 8

where Ωi,j ∈ Θ2: σ(Ωi,j) = 0.
From the solution of the Jacobi inversion problem follows for any i 6= j = 1 . . . , 3

ei+ej+ek = ℘33(Ωi,j,k), −eiej−eiek−ejek = ℘23(Ωi,j,k), eiejek = ℘13(Ωi,j,k)
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Solution for arbitrary genus

Solution is (Matsutani, Previato)

x1 = −
∂M+1

∂u1∂uM
g
σ(~u)

∂M+1

∂u2∂uM
g
σ(~u)

∣∣∣∣∣
~u∈Θ1

, M =
(g − 2)(g − 3)

2
+ 1

with u = (u1, . . . , ug)
T and

Θ1 : σ(u) = 0,
∂j

∂uj
g

σ(u) = 0, j = 1, . . . , g − 2 .

Remark: the half-periods associated to branch points e1, . . . , e2g+1 are elements
of the first stratum,

Ωi =

∫ (ei,0)

e2g+2

du ∈ Θ1; ei 6= e2g+2
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Solution for arbitrary genus

Proposition

Let Ωi be the half-period that is the Abelian image with the base point

P0 = (∞,∞) of a branch point ei. Then

ei = −
∂M+1

∂u1∂uM
g
σ(Ωi)

∂M+1

∂u2∂uM
g
σ(Ωi)

, M =
(g − 2)(g − 3)

2
+ 1 .

In the case of genus g = 2 such a representation of branch points, which is
equivalent to the Thomae formulas, was mentioned by Bolza

ei = −σ1(Ωi)

σ2(Ωi)
.

Similar formulas can be written on other strata Θk.
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Solution for arbitrary genus

Proposition

Let Xg be a hyperelliptic curve of genus g and consider a partition

I1 ∪ J1 = {i1, . . . , ig−1} ∪ {j1, . . . , jg+2}

of branch points such that the half-periods

(2ω)−1
ΩI1

+K∞ ∈ Θg−1 ∪Θg−2

are non-singular odd half-periods. Denote by sk(I1) the elementary symmetric

function of order k built by the branch points ei1 , . . . , eig−1
. Then the following

formula are valid

sk(I1) = (−1)k+1σg−k(ΩI1
)

σg(ΩI1
)

.
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Possibility I: Tim Northover’s routine

aim: calculate the transition matrix from the period matrix
in Tretkoff basis to the period matrix in the basis of your choice

Kagramanova (Uni Oldenburg) Arbitrary genera curves in geodesic equations Edinburgh 11-15 Oct 2010 31 / 36



Tim Northover’s routine

> with(LinearAlgebra):
> march(’open’,"D:/My Maple/CyclePainter/extcurves.mla");
> with(extcurves);
> f:=y^2-4*(mul( x-zeros[i], i=1..2*g+1 ))); curve := Record(’f’=f,
’x’=x, ’y’=y):

> hom:=all_extpaths_from_homology(curve):

> PI:=periodmatrix(curve,hom);

> A:=PI[1..g,1..g]; B:=PI[1..g,g+1..2*g]; tau:=A^(-1).B;
> curve, homDrawn, names := read_pic("D:/My Maple/CyclePainter/drawn.pic"):
> T1:=from_algcurves_homology(curve, homDrawn);

> tau_basis:=PI.Transpose(T1);

> A_basis:=tau_basis[1..g,1..g]; B_basis:=tau_basis[1..g,g+1..2*g];
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Possibility II: Correspondence between branch points and

half-periods in Tretkoff basis

Step 1. For the given curve compute first period of matrices (2ω, 2ω′) and
τ = ω−1ω′ by means of Maple/algcurves code. Compute then winding vectors,
i.e. columns of the inverse matrix

(2ω)−1 = (U1, . . . ,Ug).

Step 2. There are two sets of non-singular odd characteristics:

∫ ei1

∞

dv + . . .+

∫ eig−1

∞

dv +K∞ ⊂ Θg−1, i1, . . . , ig−1 6= 2g + 2

and
∫ ei1

∞

dv + . . .+

∫ eig−2

∞

dv +K∞ ⊂ Θg−2
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Correspondence between branch points and half-periods in

Tretkoff basis

Find the correspondence between sets of branch points

{ei1 , . . . , eig−1
}, {ei1 , . . . , eig−2

}

and non-singular odd characteristics [δi1,...,ig−1
], [δi1,...,ig−2

] one can add
[δi1,...,ig−1

] + [δi1,...,ig−2
] and find correspondence,

∫ eig−1

∞

dv ⇆ [εig−1
], i = 1, . . . , 2g + 2

Step 3. Among 2g + 2 characteristics should be precisely g odd and g + 2 even
characteristics. Sum of all odd characteristic gives the vector of Riemann
constants with base point at the infinity. Check that this characteristic is singular
of order

[
g+1
2

]

Step 4. Calculate symmetric matrix κ and then second period matrices 2η, 2η′

following to the Proposition 1.
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Outlook

effective one body problem

test particles with spin

test particles with multipole moments

. . .
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