Hyperelliptic curve of arbitrary genus in geodesic equations of higher dimensional space-times

Valeria Kagramanova ${ }^{1}$

V. Z. Enolski ${ }^{3}$, E. Hackmann ${ }^{2}$, J. Kunz ${ }^{1}$, C. Lämmerzahl ${ }^{2}$

${ }^{1}$ Oldenburg University, Germany
${ }^{2}$ ZARM, Bremen University, Germany
${ }^{3}$ Institute of Magnetism, Kiev

The higher-genus sigma functions and applications, Edinburgh 2010

Inversion of elliptic integral $P_{n}, n \leq 4$:

$$
t+2 n \omega+2 m \omega^{\prime}=\int_{\infty}^{x} \frac{d x}{\sqrt{4 x^{3}-g_{2} x-g_{3}}}
$$

where $x=\wp(t)=\wp\left(t+2 n \omega+2 m \omega^{\prime}\right)$ is an elliptic function. Inversion possible!

Homology basis on the Riemann surface of the curve $y^{2}=\prod_{i=1}^{4}\left(x-e_{i}\right)$ with real branch points $e_{1}<e_{2}<\ldots<e_{4}=\infty$ (upper sheet). The cuts are drawn from $e_{2 i-1}$ to $e_{2 i}, i=1,2$. The $b-$ cycles are completed on the lower sheet (dotted lines).

Elliptic function does not depend on the way of integration!

Inversion of hyperelliptic integral $P_{n}, n>4$:

does not work. Reason: infinitely small periods appear

For hyperelliptic curve of genus 2 a combination of periods is possible such that $2 \omega_{11} n+2 \omega_{12} m \propto 0$.
Jacobi: $2 g$-periodic functions of one complex variable do not exist for $g>1$. Jacobi's solution for $g=2, y^{2}=\prod_{i=1}^{5}\left(x-a_{i}\right)$: correct formulation of inversion problem for genus 2

$$
\int_{x_{0}}^{x_{1}} \frac{d x}{y}+\int_{x_{0}}^{x_{2}} \frac{d x}{y}=u_{1}, \quad \int_{x_{0}}^{x_{1}} \frac{x d x}{y}+\int_{x_{0}}^{x_{2}} \frac{x d x}{y}=u_{2}
$$

with holomorphic diferentials

$$
2 \omega=\left(\oint_{\mathfrak{a}_{k}} \mathrm{~d} u_{i}\right)_{i, k=1, \ldots, g} \quad 2 \omega^{\prime}=\left(\oint_{\mathfrak{b}_{k}} \mathrm{~d} u_{i}\right)_{i, k=1, \text {,umberestuan }}
$$

Inversion of hyperelliptic integral $P_{n}, n>4$:

Only symmetric functions of upper bounds $\left(x_{1}, x_{2}\right)$ make sence (exchange of x_{1} and x_{2} changes nothing)

$$
\begin{aligned}
& x_{1}+x_{2}=F\left(u_{1}, u_{2}\right) \\
& x_{1} x_{2}=G\left(u_{1}, u_{2}\right)
\end{aligned}
$$

with $F\left(\vec{u}+2 n_{1} \vec{\omega}_{1}+2 n_{2} \vec{\omega}_{2}+2 m_{1} \vec{\omega}_{1}^{\prime}+2 m_{2} \vec{\omega}_{2}^{\prime}\right)=F(\vec{u})$ where F is a 4-periodic Abelian function (function of g complex variables with $2 g$ periods being the columns of the period matrix).

Applications in physics

The goal 1 is using the theory of Abelian functions and Jacobi inversion problem to describe the multivalued functions which appear in the inversion of a hyperelliptic integral. That will be achieved by restriction of the θ-divisor in the Jacobi variety.

Motion of neutral or charged test particles in

- spherically symmetric space-times:
- Schwarzschild space-time: mass
- Schwarzschild-de Sitter: mass, cosmological constant
- Reissner-Nordström space-time: mass, electric and magnetic charges
- Reissner-Nordström-de Sitter space-time: mass, electric and magnetic charges, cosmological constant
- axial symmetric space-times
- Taub-NUT space-time: mass (gravitoelectric charge), NUT parameter (gravitomagnetic charge)
- Kerr space-time: mass, rotation (Kerr) parametter
- Myers-Perry space-times (higher dimensional Kerr space-times): mass, rotation parameters
- Plebański and Demiański space-time: mass, electric and magnetic charges, rotation parameter, NUT parameter, cosmological constant

Applications in physics

The goal 1 is using the theory of Abelian functions and Jacobi inversion problem to describe the multivalued functions which appear in the inversion of a hyperelliptic integral. That will be achieved by restriction of the θ-divisor in the Jacobi variety.

Motion of neutral or charged test particles in

- spherically symmetric space-times:
- Schwarzschild space-time: mass
- Schwarzschild-de Sitter: mass, cosmological constant
- Reissner-Nordström space-time: mass, electric and magnetic charges
- Reissner-Nordström-de Sitter space-time: mass, electric and magnetic charges, cosmological constant
- axial symmetric space-times
- Taub-NUT-de Sitter space-time: mass (gravitoelectric charge), NUT parameter (gravitomagnetic charge), cosmological constant
- Kerr-de Sitter space-time: mass, rotation (Kerr) parameter, cosmological constant
- Myers-Perry space-times (higher dimensional Kerr space-times): mass, rotation parameters
- Plebański and Demiański space-time: mass, electric and magnetic charges, rotation parameter, NUT parameter, cosmological constant

Physical applications in tables

- spherically symmetric space-times:

| Space-time | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Physical applications in tables

- spherically symmetric space-times:

Space-time	Dimension	4	5	6	7	8	9	10	11	≥ 12
Schwarzschild		+	+	+	+	$*$	+	$*$	+	$*$

Physical applications in tables

- spherically symmetric space-times:

Physical applications in tables

- spherically symmetric space-times:

Physical applications in tables

- spherically symmetric space-times:

Space-time Dimension	4	5	6	7	8	9	10	11		
Schwarzschild	$+$	+	+	+	*	+	*	+		
Schwarzschild-de Sitter	+	+	*	+	*	+	*	+		
Reissner-Nordström	+	+	*	+	*	*	*	*		
Reissner-Nordström-de Sitte										

+ integration by elliptic functions
+ integration by hyperelliptic functions
- axial symmetric space-times

Physical applications in tables

- spherically symmetric space-times:

Space-time	Dimension		$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0} \mathbf{1 0}$
		$\mathbf{1 1}$	≥ 12						
Schwarzschild	+	+	+	+	$*$	+	$*$	+	$*$
Schwarzschild-de Sitter	+	+	$*$	+	$*$	+	$*$	+	$*$
Reissner-Nordström	+	+	$*$	+	$*$	$*$	$*$	$*$	$*$
Reissner-Nordström-de Sitter	+	+	$*$	+	$*$	$*$	$*$	$*$	$*$

+ integration by elliptic functions
+ integration by hyperelliptic functions
- axial symmetric space-times

Space-time	Dimension	5	6	7	8	9	10	11
Myers-Perry	+	$*$	+	$*$	+	$*$	$*$	

Necessary calculations

The goal 2 is to provide effective calculation of hyperelliptic functions using maple routines (package alcurves).

- calculation of the matrix of periods of holomorphic differentials
- calculation of the matrix of periods of meromorphic differentials
- calculation of characteristics of abelian images of branch points in a given basis

$$
\mathfrak{A}_{k}=\int_{\infty}^{e_{k}} \mathrm{~d} \boldsymbol{u}=\omega \varepsilon_{k}+\omega^{\prime} \varepsilon_{k}^{\prime}, \quad k=1, \ldots, 2 g+2,
$$

- calculation of the vector of Riemann constant in a given basis

Hyperelliptic functions

Hyperelliptic curve X_{g} of genus g is given by the equation

$$
w^{2}=P_{2 g+1}(z)=\sum_{i=0}^{2 g+1} \lambda_{i} z^{i}=4 \prod_{k=1}^{2 g+1}\left(z-e_{k}\right)
$$

Equip the curve with a canonical homology basis

$$
\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{g} ; \mathfrak{b}_{1}, \ldots, \mathfrak{b}_{g}\right), \quad \mathfrak{a}_{\mathfrak{i}} \circ \mathfrak{b}_{\mathfrak{j}}=-\mathfrak{b}_{\mathfrak{i}} \circ \mathfrak{a}_{\mathfrak{j}}=\delta_{i, j}, \mathfrak{a}_{\mathfrak{i}} \circ \mathfrak{a}_{\mathfrak{j}}=\mathfrak{b}_{\mathfrak{i}} \circ \mathfrak{b}_{\mathfrak{j}}=0
$$

A homology basis on a Riemann surface of the hyperelliptic curve of genus g with real branch points $e_{1}, \ldots, e_{2 g+2}=\infty$ (upper sheet). The cuts are drawn from $e_{2 i-1}$ to $e_{2 i}$ for $i=1, \ldots, g+1$. The \mathfrak{b}-cycles are completed on the lower sheet (the picture on lower sheet is just flipped horizontally).

Canonical differentials

Choose canonical holomorphic differentials (first kind) $\mathrm{d} \boldsymbol{u}^{t}=\left(\mathrm{d} u_{1}, \ldots, \mathrm{~d} u_{g}\right)$ and associated meromorphic differentials (second kind) $\mathrm{d} \boldsymbol{r}^{t}=\left(\mathrm{d} r_{1}, \ldots, \mathrm{~d} r_{g}\right)$ in such a way that their periods

$$
\begin{array}{ll}
2 \omega=\left(\oint_{\mathfrak{a}_{k}} \mathrm{~d} u_{i}\right)_{i, k=1, \ldots, g} & 2 \omega^{\prime}=\left(\oint_{\mathfrak{b}_{k}} \mathrm{~d} u_{i}\right)_{i, k=1, \ldots, g} \\
2 \eta=\left(-\oint_{\mathfrak{a}_{k}} \mathrm{~d} r_{i}\right)_{i, k=1, \ldots, g} & 2 \eta^{\prime}=\left(-\oint_{\mathfrak{b}_{k}} \mathrm{~d} r_{i}\right)_{i, k=1, \ldots, g}
\end{array}
$$

satisfy the generalized Legendre relation

$$
\left(\begin{array}{cc}
\omega & \omega^{\prime} \\
\eta & \eta^{\prime}
\end{array}\right)\left(\begin{array}{cc}
0 & -1_{g} \\
1_{g} & 0
\end{array}\right)\left(\begin{array}{cc}
\omega & \omega^{\prime} \\
\eta & \eta^{\prime}
\end{array}\right)^{t}=-\frac{1}{2} \pi \mathrm{i}\left(\begin{array}{cc}
0 & -1_{g} \\
1_{g} & 0
\end{array}\right) .
$$

Such a basis of differentials can be realized as follows (see Baker (1897), p. 195):

$$
\mathrm{d} \boldsymbol{u}(z, w)=\frac{\mathcal{U}(z) \mathrm{d} z}{w}, \quad \mathcal{U}_{i}(z)=x^{i-1}, \quad i=1 \ldots, g
$$

$$
\mathrm{d} \boldsymbol{r}(z, w)=\frac{\boldsymbol{\mathcal { R }}(z) \mathrm{d} z}{4 w}, \quad \mathcal{R}_{i}(z)=\sum_{k=i}^{2 g+1-i}(k+1-i) \lambda_{k+1+i} z^{k}, \quad i=1 \ldots, g .
$$

Jacobi variety $\operatorname{Jac}\left(X_{g}\right)=\mathbb{C}^{g} / 2 \omega \oplus 2 \omega^{\prime}, \widetilde{\operatorname{Jac}}\left(X_{g}\right)=\mathbb{C}^{g} / 1_{g} \oplus \tau$.

θ-functions

The hyperelliptic θ-function, $\theta: \widetilde{\operatorname{Jac}}\left(X_{g}\right) \times \mathcal{H}_{g} \rightarrow \mathbb{C}^{g}$, with characteristics $[\varepsilon]$ is defined as the Fourier series

$$
\theta[\varepsilon](\boldsymbol{v} \mid \tau)=\sum_{\boldsymbol{m} \in \mathbb{Z}^{g}} \exp \pi \mathrm{i}\left\{\left(\boldsymbol{m}+\boldsymbol{\varepsilon}^{\prime}\right)^{t} \tau\left(\boldsymbol{m}+\boldsymbol{\varepsilon}^{\prime}\right)+2(\boldsymbol{v}+\boldsymbol{\varepsilon})^{t}\left(\boldsymbol{m}+\boldsymbol{\varepsilon}^{\prime}\right)\right\}
$$

In the following, the values $\varepsilon_{k}, \varepsilon_{k}^{\prime}$ will either be 0 or $\frac{1}{2}$. The equation

$$
\theta[\varepsilon](-\boldsymbol{v} \mid \tau)=\mathrm{e}^{-4 \pi \mathrm{i} \varepsilon^{t} \varepsilon^{\prime}} \theta[\varepsilon](\boldsymbol{v} \mid \tau),
$$

implies that the function $\theta[\varepsilon](\boldsymbol{v} \mid \tau)$ with characteristics $[\varepsilon]$ of only half-integers is even if $4 \varepsilon^{t} \varepsilon^{\prime}$ is an even integer, and odd otherwise. Correspondingly, $[\varepsilon]$ is called even or odd, and among the 4^{g} half-integer characteristics there are $\frac{1}{2}\left(4^{g}+2^{g}\right)$ even and $\frac{1}{2}\left(4^{g}-2^{g}\right)$ odd characteristics.

Characteristics

Every abelian image of a branch point is given by its characteristic

$$
\mathfrak{A}_{k}=\int_{\infty}^{e_{k}} \mathrm{~d} \boldsymbol{u}=\omega \varepsilon_{k}+\omega^{\prime} \varepsilon_{k}^{\prime}, \quad k=1, \ldots, 2 g+2,
$$

or

$$
\left[\boldsymbol{A}_{i}\right]=\left[\int_{\infty}^{e_{i}} \mathrm{~d} \boldsymbol{u}\right]=\left[\begin{array}{c}
\boldsymbol{\varepsilon}_{i}^{\prime T} \\
\boldsymbol{\varepsilon}_{i}
\end{array}\right]=\left[\begin{array}{ll}
\varepsilon_{i, 1}^{\prime} & \varepsilon_{i, 2}^{\prime} \\
\varepsilon_{i, 1} & \varepsilon_{i, 2}
\end{array}\right],
$$

The $2 g+2$ characteristics $\left[\mathfrak{A}_{i}\right]$ serve as a basis for the construction of all 4^{g} possible half integer characteristics $[\varepsilon]$. There is a one-to-one correspondence between these $[\varepsilon]$ and partitions of the set $\mathcal{G}=\{1, \ldots, 2 g+2\}$ of indices of the branch points (Fay (1973), p. 13, Baker (1897) p. 271).

Characteristics

The partitions of interest are

$$
\mathcal{I}_{m}=\left\{i_{1}, \ldots, i_{g+1-2 m}\right\}, \quad \mathcal{J}_{m}=\left\{j_{1}, \ldots, j_{g+1+2 m}\right\},
$$

where m is any integer between 0 and $\left[\frac{g+1}{2}\right]$. The corresponding characteristic $\left[\varepsilon_{m}\right]$ is defined by the vector

$$
\boldsymbol{E}_{m}=(2 \omega)^{-1} \sum_{k=1}^{g+1-2 m} \boldsymbol{A}_{i_{k}}+\boldsymbol{K}_{\infty}=: \boldsymbol{\varepsilon}_{m}+\tau \boldsymbol{\varepsilon}_{m}^{\prime}
$$

Characteristics with even m are even, and with odd m odd. There are $\frac{1}{2}\binom{2 g+2}{g+1}$ different partitions with $m=0,\binom{2 g+2}{g-1}$ different with $m=1$, and so on, down to $\binom{2 g+2}{1}=2 g+2$ if g is even and $m=g / 2$, or $\binom{2 g+2}{0}=1$ if g is odd and $m=(g+1) / 2$. According to the Riemann theorem on the zeros of θ-functions, $\theta\left(\boldsymbol{E}_{m}+\boldsymbol{v}\right)$ vanishes to order m at $\boldsymbol{v}=0$.

Sigma functions

The fundamental σ-function of the curve X_{g} is defined as

$$
\sigma(\boldsymbol{u})=C(\tau) \theta\left[\boldsymbol{K}_{\infty}\right]\left((2 \omega)^{-1} \boldsymbol{u} ; \tau\right) \exp \left\{\boldsymbol{u}^{T} \varkappa \boldsymbol{u}\right\} .
$$

Here $\tau=\omega^{-1} \omega^{\prime}, \varkappa=\eta(2 \omega)^{-1}$ and $C(\tau)$ is given by the formula

$$
C(\tau)=\sqrt{\frac{\pi^{g}}{\operatorname{det}(2 \omega)}}\left(\prod_{1 \leq i<j \leq 2 g+1}\left(e_{i}-e_{j}\right)\right)^{-1 / 4} .
$$

That's natural generalization of the Weierstrass σ-function

$$
\sigma(u)=\sqrt{\frac{\pi}{2 \omega}} \frac{\epsilon}{\sqrt[4]{\left(e_{i}-e_{2}\right)\left(e_{1}-e_{3}\right)\left(e_{2}-e_{3}\right)}} \vartheta_{1}\left(\frac{u}{2 \omega}\right) \exp \left\{\frac{\eta u^{2}}{2 \omega}\right\}, \quad \epsilon^{8}=1 .
$$

Properties of sigma functions

- it is an entire function on $\operatorname{Jac}\left(X_{g}\right)$,
- it satisfies the two sets of functional equations

$$
\begin{aligned}
\sigma\left(\boldsymbol{u}+2 \omega \boldsymbol{k}+2 \omega^{\prime} \boldsymbol{k} ; \mathfrak{M}\right) & =\exp \left\{2\left(\eta \boldsymbol{k}+\eta^{\prime} \boldsymbol{k}^{\prime}\right)\left(\boldsymbol{u}+\omega \boldsymbol{k}+\omega^{\prime} \boldsymbol{k}^{\prime}\right)\right\} \sigma(\boldsymbol{u} ; \mathfrak{M}) \\
\sigma(\boldsymbol{u} ; \gamma \mathfrak{M}) & =\sigma(\boldsymbol{u} ; \mathfrak{M}), \gamma \in \operatorname{Sp}(2 g, \mathbb{Z})
\end{aligned}
$$

the first of these equations displays the periodicity property, while the second one the modular property.

Here \mathfrak{M}-modules, i.e. matrices of periods $2 \omega, 2 \omega^{\prime}, 2 \eta, 2 \eta^{\prime}$.

$$
\gamma=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right), \quad \operatorname{det}(\gamma)=1, \quad A, B, C, D \in \mathbb{Z}^{g}
$$

Action of γ on period matrix is defined as

$$
\begin{aligned}
\gamma \circ \omega & =A \omega+B \omega^{\prime} \\
\gamma \circ \omega^{\prime} & =C \omega+D \omega^{\prime}
\end{aligned}
$$

Jacobi inversion problem in general case

Jacobi's inversion problem in coordinate notation is

$$
\begin{aligned}
& \int_{P_{0}}^{P_{1}} \frac{\mathrm{~d} x}{y}+\ldots+\int_{P_{0}}^{P_{g}} \frac{\mathrm{~d} x}{y}=u_{1} \\
& \int_{P_{0}}^{P_{1}} \frac{x \mathrm{~d} x}{y}+\ldots+\int_{P_{0}}^{P_{g}} \frac{x \mathrm{~d} x}{y}=u_{2} \\
& \vdots \\
& \vdots \\
& \int_{P_{0}}^{P_{1}} \frac{x^{g-1} \mathrm{~d} x}{y}+\ldots+\int_{P_{0}}^{P_{g}} \frac{x^{g-1} \mathrm{~d} x}{y}=u_{g}
\end{aligned}
$$

and solved in terms of Kleinian \wp-functions as follows

$$
\begin{aligned}
& x^{g}-\wp_{g, g}(\boldsymbol{u}) x^{g-1}-\ldots-\wp_{g, 1}(\boldsymbol{u})=0 \\
& y_{k}=-\wp_{g, g, g}(\boldsymbol{u}) x_{k}^{g-1}-\ldots-\wp_{g, g, 1}(\boldsymbol{u})
\end{aligned}
$$

where $P_{k}=\left(x_{k}, y_{k}\right)$.

Relation between the matrices of holomorphic and meromorphic differentials

Proposition

Let $\mathfrak{P}(\boldsymbol{\Omega})$ denote $g \times g$-symmetric matrix whose elements are symmetric functions of $\left(e_{i_{1}}, \ldots, e_{i_{g}}\right)$

$$
\mathfrak{P}(\boldsymbol{\Omega})=\left(\wp_{i, j}(\boldsymbol{\Omega})\right)_{i, j=1, \ldots, g}, \boldsymbol{\Omega}=\int_{\infty}^{e_{i_{1}}} d \boldsymbol{u}+\ldots+\int_{\infty}^{e_{i_{g}}} d \boldsymbol{u}
$$

let $(2 \omega)^{-1} \boldsymbol{\Omega}+\boldsymbol{K}_{\infty}$ be an arbitrary non-singular even half-period, and $\mathfrak{T}(\boldsymbol{\Omega})$ the $g \times g$ matrix

$$
\mathfrak{T}(\boldsymbol{\Omega})=\left(-\frac{\partial^{2}}{\partial z_{i} \partial z_{j}} \log \theta\left[\boldsymbol{K}_{\infty}\right]\left((2 \omega)^{-1} \boldsymbol{\Omega} ; \tau\right)\right)_{i, j=1, \ldots, g}
$$

Then the \varkappa-matrix is given by the formula

$$
\varkappa=-\frac{1}{2} \mathfrak{P}(\boldsymbol{\Omega})-\frac{1}{2}(2 \omega)^{-1 T} \mathfrak{T}(\boldsymbol{\Omega})(2 \omega)^{-1}
$$

and the half-periods of the meromorphic differentials η and η^{\prime} are given as

$$
\eta=2 \varkappa \omega, \quad \eta^{\prime}=2 \varkappa \omega^{\prime}-\frac{\mathrm{i} \pi}{2}\left(\omega^{-1}\right)^{T}
$$

Relation between the matrices of holomorphic and meromorphic differentials

To calculate missing $\wp_{i, j}$ use the following differential cubic relation

$$
\begin{aligned}
\wp_{g g i} \wp_{g g k} & =4 \wp_{g g} \wp_{g i} \wp_{g k}-2\left(\wp_{g i} \wp_{g-1, k}+\wp_{g k} \wp_{g-1, i}\right)+4\left(\wp_{g k} \wp_{g, i-1}+\wp_{g i} \wp_{g, k-1}\right) \\
& +4 \wp_{k-1, i-1}-2\left(\wp_{k, i-2}+\wp_{i, k-2}\right)+\lambda_{2 g} \wp_{g k} \wp_{g i}+\frac{\lambda_{2 g-1}}{2}\left(\delta_{i g} \wp_{g k}+\delta_{k g} \wp_{g i}\right) \\
& +\lambda_{2 i-2} \delta_{i k}+\frac{1}{2}\left(\lambda_{2 i-1} \delta_{k, i+1}+\lambda_{2 k-1} \delta_{i, k+1}\right),
\end{aligned}
$$

with $\delta_{i, j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}$

Relation between the matrices of holomorphic and meromorphic differentials

The Proposition represents the natural generalization of the Weierstrass formulae, see e.g. the Weierstrass-Schwarz lectures, p. 44
$2 \eta \omega=-2 e_{1} \omega^{2}-\frac{1}{2} \frac{\vartheta_{2}^{\prime \prime}(0)}{\vartheta_{2}(0)}, \quad 2 \eta \omega=-2 e_{2} \omega^{2}-\frac{1}{2} \frac{\vartheta_{3}^{\prime \prime}(0)}{\vartheta_{3}(0)}, \quad 2 \eta \omega=-2 e_{3} \omega^{2}-\frac{1}{2} \frac{\vartheta_{4}^{\prime \prime}(0)}{\vartheta_{4}(0)}$
Therefore the Proposition allows to reduce the variety of modules necessary for calculations of σ and \wp-functions to the first period matrix.

Strata of theta-divisor

The subset $\widetilde{\Theta}_{k} \subset \widetilde{\Theta} k \geq 1$ is called k-th stratum if each point $\boldsymbol{v} \in \widetilde{\Theta}$ admits a parametrization

$$
\widetilde{\Theta}_{k}: \quad \boldsymbol{v}=\sum_{j=1}^{k} \int_{\infty}^{P_{j}} \mathrm{~d} \boldsymbol{v}+\boldsymbol{K}_{\infty}, \quad 0<k<g .
$$

Orders $m\left(\Theta_{k}\right)$ of vanishing of $\theta\left(\Theta_{k}+\boldsymbol{v}\right)$ along stratum Θ_{k} for small genera are given in the Table

g	$m\left(\Theta_{0}\right)$	$m\left(\Theta_{1}\right)$	$m\left(\Theta_{2}\right)$	$m\left(\Theta_{3}\right)$	$m\left(\Theta_{4}\right)$	$m\left(\Theta_{5}\right)$	$m\left(\Theta_{6}\right)$
1	1	0	-	-	-	-	-
2	1	1	0	-	-	-	-
3	2	1	1	0	-	-	-
4	2	2	1	1	0	-	-
5	3	2	2	1	1	0	-
6	3	3	2	2	1	1	0

Orders $m\left(\Theta_{k}\right)$ of zeros $\theta\left(\Theta_{k}+\boldsymbol{v}\right)$ at $\boldsymbol{v}=0$ on strata Θ_{k}

Solution for genus 2

The Jacobi inversion problem can be reduced to the quadratic equation

$$
x^{2}-\wp_{22} x-\wp_{12}=0
$$

with the solution

$$
\begin{aligned}
& x_{1}+x_{2}=\wp_{22} \\
& x_{1} x_{2}=-\wp_{12}
\end{aligned}
$$

Now choose $x_{2}=\infty: x_{1}=-\lim _{x_{2} \rightarrow \infty} \frac{\wp_{12}}{\beta_{22}}$. We take away one point and this
allows us to use the Riemann theorem $\theta\left(\sum_{k=1}^{N} \int_{P_{0}}^{P_{k}} \frac{d x}{\sqrt{P(x)}}+K_{\infty}\right) \equiv 0$ if $N<g . K_{\infty}$ is a Riemann constant.
With $\wp_{i j}(\vec{u})=-\frac{\partial^{2} \ln \sigma(\vec{u})}{\partial \vec{u}_{i} \partial \vec{u}_{j}}, i, j=1, \ldots, g$ the final solution is

$$
x_{1}=-\frac{\sigma_{12}}{\sigma_{22}}
$$

This is Grant-Jorgenson formula.

Solution for genus 2

In the homology basis with $e_{6}=+\infty$ the characteristics are:

$$
\begin{array}{lll}
{\left[\boldsymbol{\mathfrak { A }}_{1}\right]=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],} & {\left[\boldsymbol{\mathfrak { A }}_{2}\right]=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],} & {\left[\boldsymbol{\mathfrak { A }}_{3}\right]=\frac{1}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],} \\
{\left[\boldsymbol{\mathfrak { A }}_{4}\right]=\frac{1}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right],} & {\left[\boldsymbol{\mathfrak { A }}_{5}\right]=\frac{1}{2}\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right],} & {\left[\boldsymbol{\mathfrak { A }}_{6}\right]=\frac{1}{2}\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .}
\end{array}
$$

and the characteristic of the vector of Riemann constants \boldsymbol{K}_{∞} is

A homology basis on a Riemann surface of the hyperelliptic curve of genus 2 with real branch points $e_{1}, \ldots, e_{6}=\infty$ (upper sheet). The cuts are drawn from $e_{2 i-1}$ to $e_{2 i}$ for $i=1, \ldots, 3$. The \mathfrak{b}-cycles are completed on the lower sheet (the picture on lower sheet is just flipped horizontally).

Solution for genus 2

The expression for the matrix \varkappa is
$\varkappa=-\frac{1}{2}\left(\begin{array}{cc}e_{1} e_{2}\left(e_{3}+e_{4}+e_{5}\right)+e_{3} e_{4} e_{5} & -e_{1} e_{2} \\ -e_{1} e_{2} & e_{1}+e_{2}\end{array}\right)-\frac{1}{2}(2 \omega)^{-1^{T}} \mathfrak{T}\left(\boldsymbol{\Omega}_{\mathbf{1 , 2}}\right)(2 \omega)^{-1}$,
where \mathfrak{T} is the 2×2-matrix and 10 half-periods for $i \neq j=1, \ldots, 5$ that are images of two branch points are

$$
\boldsymbol{\Omega}_{i, j}=\omega\left(\varepsilon_{i}+\varepsilon_{j}\right)+\omega^{\prime}\left(\varepsilon_{i}^{\prime}+\boldsymbol{\varepsilon}_{j}^{\prime}\right), \quad i=1, \ldots, 6 .
$$

and the characteristics of the 10 half-periods

$$
\left[\varepsilon_{i, j}\right]=\left[(2 \omega)^{-1} \boldsymbol{\Omega}_{i, j}+\boldsymbol{K}_{\infty}\right], \quad 1 \leq i<j \leq 5
$$

are non-singular and even

Examples 2D

(1) Schwarzschild-de Sitter, 9D

(3) Reissner-Nordström, 7D

Kagramanova (Uni Oldenburg)

(2) Reissner-Nordström, 7D

(4) Reissner-Nordström-de Sitter, 4D (5) Reissner-Nordström-de Sitter, 4D Arbitrary genera curves in geodesic equations

Examples 3D

NUT-de Sitter bound orbit

NUT-de Sitter, escape orbit

NUT, escape orbit
Kagramanova (Uni Oldenburg)

Reissner-Nordström, bound orbit
Arbitrary genera curves in geodesic equations

NUT, crossover bound orbit

and many-world bound orbit
Edinburgh 11-15 Oct 2010

Solution for genus 3

Solution in this case is (Onishi formula)

$$
x_{1}=-\left.\frac{\sigma_{13}}{\sigma_{23}}\right|_{\sigma(\vec{u})=0, \sigma_{3}(\vec{u})=0}
$$

Characteristics for genus 3
Let \mathfrak{A}_{k} be the Abelian image of the k-th branch point, namely

$$
\mathfrak{A}_{k}=\int_{\infty}^{e_{k}} \mathrm{~d} \boldsymbol{u}=\omega \varepsilon_{k}+\omega^{\prime} \varepsilon_{k}^{\prime}, \quad k=1, \ldots, 8
$$

where ε_{k} and ε_{k}^{\prime} are column vectors whose entries $\varepsilon_{k, j}, \varepsilon_{k, j}^{\prime}$, are 1 or zero for all $k=1, \ldots, 8, j=1,2,3$.
The correspondence between branch points and characteristics in the fixed homology basis is given as

$$
\begin{gathered}
{\left[\mathfrak{A}_{1}\right]=\frac{1}{2}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\mathfrak{A}_{2}\right]=\frac{1}{2}\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\mathfrak{A}_{3}\right]=\frac{1}{2}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right],} \\
{\left[\mathfrak{A}_{4}\right]=\frac{1}{2}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right], \quad\left[\mathfrak{A}_{5}\right]=\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], \quad\left[\mathfrak{A}_{6}\right]=\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right],} \\
{\left[\mathfrak{A}_{7}\right]=\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right], \quad\left[\mathfrak{A}_{8}\right]=\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] . \quad \begin{array}{c}
\text { unvesisisian }
\end{array},}
\end{gathered}
$$

Solution for genus 3

The vector of Riemann constant \boldsymbol{K}_{∞} with the base point at infinity is given by the sum of even characteristics,

$$
\left[\boldsymbol{K}_{\infty}\right]=\left[\boldsymbol{A}_{2}\right]+\left[\boldsymbol{\mathcal { A }}_{4}\right]+\left[\boldsymbol{A}_{6}\right]=\frac{1}{2}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] .
$$

From the above characteristics 64 half-periods can be build:

- 7 odd $\left[(2 \omega)^{-1} \boldsymbol{\Omega}_{i}+\boldsymbol{K}_{\infty}\right]$, where $\boldsymbol{\Omega}_{i}=\boldsymbol{A}_{i}$
- 21 odd $\left[(2 \omega)^{-1} \boldsymbol{\Omega}_{i, j}+\boldsymbol{K}_{\infty}\right]$, where $\boldsymbol{\Omega}_{i, j}=\boldsymbol{A}_{i}+\boldsymbol{\mathfrak { A }}_{j}$
- 36 even $\left[(2 \omega)^{-1} \boldsymbol{\Omega}_{i, j, k}+\boldsymbol{K}_{\infty}\right]$, where $\boldsymbol{\Omega}_{i, j, k}=\boldsymbol{A}_{i}+\boldsymbol{A}_{j}+\boldsymbol{\mathfrak { A }}_{k}$ and \boldsymbol{K}_{∞} where $1 \leq i<j<k \leq 7$ and \boldsymbol{K}_{∞} is singular characteristic $\left(\theta\left(\boldsymbol{K}_{\infty}\right)=0\right)$.

Analog of Thomae formula: all period systems

For the branch points e_{1}, \ldots, e_{8} the following formulae are valid

$$
e_{i}=-\frac{\sigma_{13}\left(\boldsymbol{\Omega}_{i}\right)}{\sigma_{23}\left(\boldsymbol{\Omega}_{i}\right)}, i=1, \ldots, 8, \quad \text { where } \boldsymbol{\Omega}_{i} \in \Theta_{1}: \sigma\left(\boldsymbol{\Omega}_{i}\right)=0, \sigma_{3}\left(\boldsymbol{\Omega}_{i}\right)=0
$$

For the branch points e_{1}, \ldots, e_{8} the following set of formulas is valid

$$
\begin{aligned}
e_{i}+e_{j} & =-\frac{\sigma_{2}\left(\boldsymbol{\Omega}_{i, j}\right)}{\sigma_{3}\left(\boldsymbol{\Omega}_{i, j}\right)}, \quad i \neq j=1, \ldots, 8 \\
e_{i} e_{j} & =\frac{\sigma_{1}\left(\boldsymbol{\Omega}_{i, j}\right)}{\sigma_{3}\left(\boldsymbol{\Omega}_{i, j}\right)}
\end{aligned}
$$

where $\boldsymbol{\Omega}_{i, j} \in \Theta_{2}: \sigma\left(\boldsymbol{\Omega}_{i, j}\right)=0$.
From the solution of the Jacobi inversion problem follows for any $i \neq j=1 \ldots, 3$
$e_{i}+e_{j}+e_{k}=\wp_{33}\left(\boldsymbol{\Omega}_{i, j, k}\right), \quad-e_{i} e_{j}-e_{i} e_{k}-e_{j} e_{k}=\wp_{23}\left(\boldsymbol{\Omega}_{i, j, k}\right), \quad e_{i} e_{j} e_{k}=\wp_{13}\left(\boldsymbol{\Omega}_{i, j, k}\right)$

Solution for arbitrary genus

Solution is (Matsutani, Previato)

$$
x_{1}=-\left.\frac{\frac{\partial^{M+1}}{\partial u_{1} \partial u_{g}^{M}} \sigma(\vec{u})}{\frac{\partial^{M+1}}{\partial u_{2} \partial u_{g}^{M}} \sigma(\vec{u})}\right|_{\vec{u} \in \Theta_{1}}, \quad M=\frac{(g-2)(g-3)}{2}+1
$$

with $\boldsymbol{u}=\left(u_{1}, \ldots, u_{g}\right)^{T}$ and

$$
\Theta_{1}: \quad \sigma(\boldsymbol{u})=0, \quad \frac{\partial^{j}}{\partial u_{g}^{j}} \sigma(\boldsymbol{u})=0, \quad j=1, \ldots, g-2 .
$$

Remark: the half-periods associated to branch points $e_{1}, \ldots, e_{2 g+1}$ are elements of the first stratum,

$$
\boldsymbol{\Omega}_{i}=\int_{e_{2 g+2}}^{\left(e_{i}, 0\right)} \mathrm{d} \boldsymbol{u} \quad \in \Theta_{1} ; e_{i} \neq e_{2 g+2}
$$

Solution for arbitrary genus

Proposition

Let Ω_{i} be the half-period that is the Abelian image with the base point $P_{0}=(\infty, \infty)$ of a branch point e_{i}. Then

$$
e_{i}=-\frac{\frac{\partial^{M+1}}{\partial u_{1} \partial u_{g}^{M}} \sigma\left(\boldsymbol{\Omega}_{i}\right)}{\frac{\partial^{M+1}}{\partial u_{2} \partial u_{g}^{M}} \sigma\left(\boldsymbol{\Omega}_{i}\right)}, \quad M=\frac{(g-2)(g-3)}{2}+1
$$

In the case of genus $g=2$ such a representation of branch points, which is equivalent to the Thomae formulas, was mentioned by Bolza

$$
e_{i}=-\frac{\sigma_{1}\left(\boldsymbol{\Omega}_{i}\right)}{\sigma_{2}\left(\boldsymbol{\Omega}_{i}\right)}
$$

Similar formulas can be written on other strata Θ_{k}.

Solution for arbitrary genus

Proposition

Let X_{g} be a hyperelliptic curve of genus g and consider a partition

$$
\mathcal{I}_{1} \cup \mathcal{J}_{1}=\left\{i_{1}, \ldots, i_{g-1}\right\} \cup\left\{j_{1}, \ldots, j_{g+2}\right\}
$$

of branch points such that the half-periods

$$
(2 \omega)^{-1} \boldsymbol{\Omega}_{\mathcal{I}_{1}}+\boldsymbol{K}_{\infty} \in \Theta_{g-1} \cup \Theta_{g-2}
$$

are non-singular odd half-periods. Denote by $s_{k}\left(\mathcal{I}_{1}\right)$ the elementary symmetric function of order k built by the branch points $e_{i_{1}}, \ldots, e_{i_{g-1}}$. Then the following formula are valid

$$
s_{k}\left(\mathcal{I}_{1}\right)=(-1)^{k+1} \frac{\sigma_{g-k}\left(\boldsymbol{\Omega}_{\mathcal{I}_{1}}\right)}{\sigma_{g}\left(\boldsymbol{\Omega}_{\mathcal{I}_{1}}\right)}
$$

Possibility I: Tim Northover's routine

⿹ㅢㅇ Riemann surface cycle painter - drawn_genus3_try2.pic

aim: calculate the transition matrix from the period matrix
in Tretkoff basis to the period matrix in the basis of your choice
\qquad

Tim Northover's routine

> with(LinearAlgebra):
> march('open', "D:/My Maple/CyclePainter/extcurves.mla");
$>$ with(extcurves);
$\left.>f:=y^{\wedge} 2-4 *(m u l(x-z e r o s[i], i=1 . .2 * g+1))\right)$; curve $:=\operatorname{Record}\left({ }^{\prime} f\right.$ ' $=f$,
' x ' $=x, \quad$ ' y ' $=y$):
> hom:=all_extpaths_from_homology(curve):
$>$ PI:=periodmatrix(curve,hom);
$>A:=P I[1 . . g, 1 \ldots g] ; B:=P I[1 . . g, g+1 . .2 * g] ;$ tau: $=A^{\wedge}(-1) . B ;$
$>$ curve, homDrawn, names := read_pic("D:/My Maple/CyclePainter/drawn.pic"):
> T1:=from_algcurves_homology(curve, homDrawn);
$>$ tau_basis:=PI.Transpose(T1);
$>$ A_basis:=tau_basis[1..g,1..g]; B_basis:=tau_basis[1..g,g+1..2*g];

Possibility II: Correspondence between branch points and half-periods in Tretkoff basis

Step 1. For the given curve compute first period of matrices $\left(2 \omega, 2 \omega^{\prime}\right)$ and $\tau=\omega^{-1} \omega^{\prime}$ by means of Maple/algcurves code. Compute then winding vectors, i.e. columns of the inverse matrix

$$
(2 \omega)^{-1}=\left(\boldsymbol{U}_{1}, \ldots, \boldsymbol{U}_{g}\right)
$$

Step 2. There are two sets of non-singular odd characteristics:

$$
\int_{\infty}^{e_{i_{1}}} \mathrm{~d} \boldsymbol{v}+\ldots+\int_{\infty}^{e_{i_{g-1}}} \mathrm{~d} \boldsymbol{v}+\boldsymbol{K}_{\infty} \subset \Theta_{g-1}, \quad i_{1}, \ldots, i_{g-1} \neq 2 g+2
$$

and

$$
\int_{\infty}^{e_{i_{1}}} \mathrm{~d} \boldsymbol{v}+\ldots+\int_{\infty}^{e_{i_{g-2}}} \mathrm{~d} \boldsymbol{v}+\boldsymbol{K}_{\infty} \subset \Theta_{g-2}
$$

Correspondence between branch points and half-periods in Tretkoff basis

Find the correspondence between sets of branch points

$$
\left\{e_{i_{1}}, \ldots, e_{i_{g-1}}\right\}, \quad\left\{e_{i_{1}}, \ldots, e_{i_{g-2}}\right\}
$$

and non-singular odd characteristics $\left[\delta_{i_{1}, \ldots, i_{g-1}}\right],\left[\delta_{i_{1}, \ldots, i_{g-2}}\right]$ one can add $\left[\delta_{i_{1}, \ldots, i_{g-1}}\right]+\left[\delta_{i_{1}, \ldots, i_{g-2}}\right]$ and find correspondence,

$$
\int_{\infty}^{e_{i_{g-1}}} \mathrm{~d} \boldsymbol{v} \leftrightarrows\left[\varepsilon_{i_{g-1}}\right], \quad i=1, \ldots, 2 g+2
$$

Step 3. Among $2 g+2$ characteristics should be precisely g odd and $g+2$ even characteristics. Sum of all odd characteristic gives the vector of Riemann constants with base point at the infinity. Check that this characteristic is singular of order $\left[\frac{g+1}{2}\right]$
Step 4. Calculate symmetric matrix \varkappa and then second period matrices $2 \eta, 2 \eta^{\prime}$ following to the Proposition 1.

Outlook

- effective one body problem
- test particles with spin
- test particles with multipole moments

