Geodesic motion in cosmic string space-times

Betti Hartmann

School of Engineering and Science
Jacobs University Bremen, Germany
"The higher-genus sigma function and applications" Workshop ICMS Edinburgh $13^{\text {th }}$ October 2010

Collaborations and References

Work done in collaboration with:
Eva Hackmann - ZARM University Bremen, Germany
Claus Lämmerzahl - ZARM University Bremen, Germany
Parinya Sirimachan - Jacobs University Bremen, Germany

References:
B. Hartmann and P. Sirimachan, JHEP (2010) [arXiv:1007.0863 [gr-qc]].
E. Hackmann, B. Hartmann, C. Lämmerzahl and P. Sirimachan, Phys. Rev. D 82 (2010) 044024 [arXiv:1006.1761 [gr-qc]].
E. Hackmann, B. Hartmann, C. Lämmerzahl and P. Sirimachan, Phys. Rev. D 81 (2010) 064016 [arXiv:0912.2327 [gr-qc]].

Project funded by the German Research Foundation (DFG)

Outline

(9) Introduction

2 The Geodesic equation
(3) Geodesics in analytically given space-times

- Schwarzschild black hole pierced by cosmic string
- Kerr black hole pierced by cosmic string

4. Geodesics in numerically given space-times

- Abelian-Higgs strings
(5) Summary and Outlook

6 Summary and Outlook

Cosmic strings

- Cosmic strings form when axial symmetry gets spontaneously broken during phase transitions in the early universe
- line-like defects
(\rightarrow compare to vortices in superfluids)
- energy per unit length

$$
m_{(3)} \sim T_{c}^{2}
$$

T_{c} : temperature of phase transition

- can be as heavy as $m_{(3)} \approx 10^{12} \mathrm{~kg} / \mathrm{m}$

Fundamental strings (of String theory)

- Fundamental (F-) strings ...
- have zero width
- have tension close to the Planck scale
- end on D-branes
- D1-brane = D-string

Connection between cosmic strings and fundamental strings ???

- NO: perturbative strings as cosmic strings ruled out (Witten, 1985)
- YES: cosmic strings are formed in inflationary models originating from string theory
- D-, F- and bound states of p F-strings and q D-strings ($p-q$-strings) are formed in brane inflation (Jones, Stoica, Tye (2002); Sarangi, Tye (2002))

- ... and also: Hybrid inflation (Linde (1994))

- two scalar fields
- inflation ends due to spontaneous symmetry breaking
- cosmic strings form generically at the end of hybrid inflation in Supersymmetric Grand Unified Theories (Jeannerot, Rocher, Sakellariadou (2003))

Detection of cosmic strings

- Cosmic Microwave background data can't be explained by cosmic strings only....

... but maybe important contribution
(e.g. Bouchet, Peter, Riazuelo, Sakellariadou (2002))

Detection of cosmic strings

- Gravitational lensing

> important to understand geodesic motion of massive and massless test particles

The Geodesic equation

$$
\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\rho \sigma}^{\mu} \frac{d x^{\rho}}{d \tau} \frac{d x^{\sigma}}{d \tau}=0
$$

$\Gamma_{\rho \sigma}^{\mu}$ Christoffel symbol:

$$
\Gamma_{\rho \sigma}^{\mu}=\frac{1}{2} g^{\mu \nu}\left(\partial_{\rho} g_{\sigma \nu}+\partial_{\sigma} g_{\rho \nu}-\partial_{\nu} g_{\rho \sigma}\right)
$$

τ : affine parameter (proper time for time-like geodesics)
$g_{\mu \nu}$: metric tensor

Two approaches when describing cosmic string space-times
(1) macroscopic description: Nambu-Goto action \rightarrow infinitely thin strings

- Advantages: simple to treat; analytic results possible
- Disadvantages: no connection to underlying field theory
(2) microscopic description: field theoretical models \rightarrow finite core width
- Advantages: "proper" description
- Disadvantages: solutions only available numerically

Schwarzschild black hole pierced by cosmic string

Ansatz for the metric in spherical coordinates (t, r, θ, φ)

$$
\begin{aligned}
d s^{2} & =-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2} \\
& +r^{2}\left(d \theta^{2}+\beta^{2} \sin ^{2} \theta d \varphi^{2}\right)
\end{aligned}
$$

$M_{\text {phys }}=\beta M$ physical mass of black hole
$\delta=2 \pi(1-\beta)=8 \pi G m_{(3)} \sim 8 \pi\left(\eta / M_{\mathrm{PI}}\right)^{2}$: deficit angle
$m_{(3)}$: energy per unit length of the string
η : symmetry breaking scale at which string forms
$M_{\mathrm{Pl}}=G^{-1 / 2}$: Planck mass

Schwarzschild black holes pierced by cosmic strings

Static black hole pierced by infinitely thin cosmic string

$\beta<1$: cosmic string is long-range hair
$r=2 M$: event horizon

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Symmetries

- Globally axially symmetric
- locally four Killing vectors

$$
\begin{aligned}
\xi & =\frac{\partial}{\partial t} \\
\chi_{(1)} & =\sin (\beta \varphi) \frac{\partial}{\partial \theta}+\frac{1}{\beta} \cos (\beta \varphi) \cot \theta \frac{\partial}{\partial \varphi} \\
\chi_{(2)} & =-\cos (\beta \varphi) \frac{\partial}{\partial \theta}+\frac{1}{\beta} \sin (\beta \varphi) \cot \theta \frac{\partial}{\partial \varphi} \\
\chi_{(3)} & =\frac{1}{\beta} \frac{\partial}{\partial \varphi}
\end{aligned}
$$

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Constants of motion

- Energy E

$$
\xi^{\mu} \frac{d x^{\nu}}{d \tau} g_{\mu \nu}=\left(1-\frac{2 M}{r}\right) \frac{d t}{d \tau}=: E
$$

- angular momenta L_{3} and L^{2}

$$
\chi_{(i)}^{\mu} \frac{d x^{\nu}}{d \tau} g_{\mu \nu}=: L_{i}, i=1,2,3
$$

with

$$
\begin{gathered}
L_{3}=r^{2} \beta \sin ^{2} \theta \frac{d \varphi}{d \tau} \\
|\vec{L}|^{2} \equiv L^{2}=L_{1}^{2}+L_{2}^{2}+L_{3}^{2}=r^{4}\left(\frac{d \theta}{d \tau}\right)^{2}+\frac{L_{3}^{2}}{\sin ^{2} \theta}
\end{gathered}
$$

and L_{1} and L_{2} are trivial

$$
\varepsilon=\frac{d s^{2}}{d \tau^{2}}= \begin{cases}-1 & \text { for massive test particles } \\ 0 & \text { for massless test particles }\end{cases}
$$

Components of Geodesic equation

$$
\begin{aligned}
& \left(\frac{d t}{d \tau}\right)^{2}=E^{2}\left(1-\frac{2 M}{r}\right)^{-2} \\
& \left(\frac{d r}{d \tau}\right)^{2}=E^{2}-\left(\frac{L^{2}}{r^{2}}+\varepsilon\right)\left(1-\frac{2 M}{r}\right) \\
& \left(\frac{d \theta}{d \tau}\right)^{2}=\frac{L^{2}}{r^{4}}-\frac{L_{3}^{2}}{r^{4} \sin ^{2} \theta} \\
& \left(\frac{d \varphi}{d \tau}\right)^{2}
\end{aligned}=\frac{L_{3}^{2}}{\beta^{2} r^{4} \sin ^{4} \theta} .
$$

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Angular motion $\theta(\varphi)$

From the θ and φ-component

$$
\cot ^{2} \theta=\left(k^{2}-1\right) \sin ^{2}(\beta \varphi) \quad, \quad k^{2}=\frac{L^{2}}{L_{3}^{2}}
$$

Turning points of θ

$$
\frac{d \theta}{d \tau}=0 \Rightarrow \sin ^{2} \theta=\frac{1}{k^{2}} \Rightarrow \beta \varphi=\frac{\pi}{2}+n \pi, \quad n= \pm 0, \pm 1, \ldots
$$

For $\beta \neq 1$:
Geodesic motion in precessing plane with \vec{L} as normal
\Rightarrow Geodesics with $\theta \neq \frac{\pi}{2}$ are not flat

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Radial motion $r(\theta)$ and $r(\varphi)$

New coordinate $z=\frac{2 M}{r}-\frac{1}{3}, z \in\left[-\frac{1}{3}: \infty\right)$

$$
\begin{aligned}
& \frac{d z}{\sqrt{P(z)}}=\frac{1}{2}\left(1-\frac{1}{k^{2} \sin ^{2} \theta}\right)^{-1 / 2} d \theta \\
& \frac{d z}{\sqrt{P(z)}}=\frac{1}{2} \beta k \frac{1}{\left(k^{2}-1\right) \sin ^{2}(\beta \varphi)+1} d \varphi
\end{aligned}
$$

with

$$
\begin{aligned}
P(z) & =4 z^{3}-4\left[\frac{1}{3}-\left(\frac{4 M^{2}}{L^{2}}\right) \varepsilon\right] z-4\left[\frac{2}{27}+\frac{2}{3}\left(\frac{4 M^{2}}{L^{2}}\right) \varepsilon-\frac{4 G^{2} M^{2}}{L^{2}} E^{2}\right] \\
& =4 z^{3}-g_{2} z-g_{3}
\end{aligned}
$$

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Classification of solutions

- Need $P(z)>0$ to have solutions \Rightarrow study roots of $P(z)$
- Discriminant D with

$$
D=g_{2}^{3}-27 g_{3}^{2} \begin{cases}>0 & \text { three real roots } e_{1}>e_{2}>e_{3} \\ <0 & \text { one real root } \\ =0 & \text { either one or two real roots }\end{cases}
$$

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Classification of solutions

- Effective potential

$$
\frac{1}{2}\left(\frac{d r}{d \tau}\right)^{2}+V_{\mathrm{eff}}(r)=\frac{E^{2}-\varepsilon}{2}
$$

with

$$
V_{\mathrm{eff}}(r)=-\varepsilon \frac{M}{r}+\frac{L^{2}}{2 r^{2}}-\frac{L^{2} M}{r^{3}}
$$

- Turning points of r correspond to $P(z)=0$

$$
\frac{L^{2}}{32 M^{2}} P(z(r))=\frac{E^{2}-\varepsilon}{2}-V_{\mathrm{eff}}(r)
$$

Geodesics in analytically given space-times Geodesics in numerically given space-times Summary and Outlook Summary and Outlook

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Example for $D>0$

Geodesics in analytically given space-times Geodesics in numerically given space-times

Summary and Outlook
Summary and Outlook

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Example for $D<0$

Bound terminating orbit

Geodesics in analytically given space-times Geodesics in numerically given space-times

Summary and Outlook
Summary and Outlook

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Example for $D=0$

Bound terminating Bound orbit orbit

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Solutions to the geodesic equation

In terms of Weierstrass \wp-function

$$
\begin{aligned}
r(\theta) & =\frac{2 M}{\wp(g(\theta)-c)+\frac{1}{3}} \\
r(\varphi) & =\frac{2 M}{\wp(f(\varphi)-c)+\frac{1}{3}}
\end{aligned}
$$

with

$$
\begin{gathered}
g(\theta) \equiv \frac{1}{2}\left[\arcsin \left(\frac{\cos \theta}{\sqrt{1-k^{-2}}}\right)-\arcsin \left(\frac{\cos \theta_{0}}{\sqrt{1-k^{-2}}}\right)\right] \\
f(\varphi) \equiv-\frac{1}{2} \arctan \left[k \tan \left(\beta\left(\varphi-\varphi_{0}\right)\right)\right]
\end{gathered}
$$

Solutions to the geodesic equation

Value of constant c :

$$
c=\int_{z_{0}}^{\infty} \frac{d z}{\sqrt{4 z^{3}-g_{2} z-g_{3}}}
$$

- $z_{0}=\infty \Rightarrow c=0$
- $z_{0}=e_{1} \Rightarrow c=\frac{K(\mathcal{K})}{\sqrt{e_{1}-e_{3}}}$
- $z_{0}=e_{2} \Rightarrow c=\frac{K(\mathcal{K})}{\sqrt{e_{1}-e_{3}}}+i \frac{K\left(\mathcal{K}^{\prime}\right)}{\sqrt{e_{1}-e_{3}}}$
- $z_{0}=e_{3} \Rightarrow c=i \frac{K\left(\mathcal{K}^{\prime}\right)}{\sqrt{e_{1}-e_{3}}}$
with K : complete elliptic integral of 1 .kind with modulus

$$
\mathcal{K}=\sqrt{\frac{e_{2}-e_{3}}{e_{1}-e_{3}}}, \quad \mathcal{K}^{\prime}=\sqrt{1-\mathcal{K}^{2}}
$$

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Example of geodesic: bound orbit

Example of geodesic: bound terminating orbit

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Example of geodesic: escape orbit

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Light deflection

For $k=1$ and massless test particles deflection angle

$$
\Delta \varphi=\frac{1}{\beta}\left[\frac{4}{\sqrt{e_{1}-e_{3}}} \int_{0}^{\varphi_{c}} \frac{d \varphi}{\sqrt{1-\mathcal{K}^{2} \sin ^{2}(\varphi)}}+2 \omega_{1}\right]+\pi\left(\frac{1}{\beta}-1\right)
$$

ω_{1} : first half period
Observational constraints with $(\Delta \varphi)_{S}$ Schwarzschild value

$$
\begin{gathered}
\frac{\Delta \varphi-(\Delta \varphi)_{s}}{(\Delta \varphi)_{s}} \lesssim 10^{-5} \\
\Rightarrow \quad(1-\beta) \lesssim 10^{-11} \Rightarrow m_{(3)} \lesssim 10^{16} \frac{\mathrm{~kg}}{\mathrm{~m}}
\end{gathered}
$$

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Perihelion shift

For $k=1$ and massive test particles perihelion shift

$$
\Delta \varphi=\frac{4}{\beta} \frac{K(\mathcal{K})}{\sqrt{e_{1}-e_{3}}}-2 \pi
$$

Observational constraints with $(\Delta \varphi)_{S}$ Schwarzschild value

$$
\begin{gathered}
\frac{\Delta \varphi-(\Delta \varphi)_{s}}{(\Delta \varphi)_{s}} \lesssim 10^{-4} \\
\Rightarrow \quad(1-\beta) \lesssim 10^{-10} \Rightarrow m_{(3)} \lesssim 10^{17} \frac{\mathrm{~kg}}{\mathrm{~m}}
\end{gathered}
$$

Kerr black hole pierced by cosmic string

Ansatz for the metric in Boyer-Lindquist coordinates (t, r, θ, φ)

$$
\begin{aligned}
d s^{2} & =-\left(1-\frac{2 M r}{\rho^{2}}\right) d t^{2}+\frac{\rho^{2}}{\Delta} d r^{2}+\rho^{2} d \theta^{2} \\
& +\beta^{2}\left(r^{2}+a^{2}+\frac{2 M r a^{2} \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta d \varphi^{2}-\beta \frac{4 M r a \sin ^{2} \theta}{\rho^{2}} d t d \varphi
\end{aligned}
$$

with

$$
\rho^{2}=r^{2}+a^{2} \cos ^{2} \theta, \Delta=r^{2}-2 M r+a^{2}
$$

$a=J / M$: angular momentum J per mass M
$\delta=2 \pi(1-\beta)=8 \pi G m_{(3)} \sim 8 \pi\left(\eta / M_{\mathrm{Pl}}\right)^{2}$: deficit angle
$m_{(3)}$: energy per unit length of the string
η : symmetry breaking scale at which string forms
M_{Pl} : Planck mass

Kerr black hole pierced by cosmic string

Rotating black hole pierced by infinitely thin cosmic string

$\beta<0$: cosmic string is long-range hair
$r_{+}=M+\sqrt{M^{2}-a^{2}}$: event horizon, $r_{-}=M-\sqrt{M^{2}-a^{2}}$: Cauchy horizon $2 M r=\rho^{2}$: static limit

Boyer-Lindquist coordinates

Relation to cartesian coordinates

$$
\begin{aligned}
& x=\sqrt{r^{2}+a^{2}} \sin \theta \cos (\beta \varphi) \\
& y=\sqrt{r^{2}+a^{2}} \sin \theta \sin (\beta \varphi) \\
& z=r \cos \theta
\end{aligned}
$$

- $r=0 \Rightarrow$ disc with deficit angle $\delta=2 \pi(1-\beta)$
- Physical singularity at $r=0, \theta=\pi / 2$ \Rightarrow ring with deficit angle $\delta=2 \pi(1-\beta)$
- $r<0$: another conical space-time without horizons

Constants of motion

- Killing vectors $\frac{\partial}{\partial t}$ and $\frac{\partial}{\partial \varphi} \Rightarrow$ conserved quantities

$$
\left(1-\frac{2 M r}{\rho^{2}}\right) \frac{d t}{d \tau}+\beta \frac{2 M a r}{\rho^{2}} \sin ^{2} \theta \frac{d \varphi}{\tau}=: E
$$

$$
-\frac{2 M a r}{\rho^{2}} \sin ^{2} \theta \frac{d t}{d \tau}+\beta \frac{\left(r^{2}+a^{2}\right)^{2}-\Delta a^{2} \sin ^{2} \theta}{\rho^{2}} \sin ^{2} \theta \frac{d \varphi}{d \tau}=: L_{z}
$$

- Carter constant K : separability of Hamilton-Jacobi equations

$$
\varepsilon=\frac{d s^{2}}{d \tau^{2}}= \begin{cases}-1 & \text { massive particles } \\ 0 & \text { massless particles }\end{cases}
$$

Hamilton-Jacobi equations

Hamilton-Jacobi equations

$$
\frac{\partial S}{\partial \tau}=\frac{1}{2} g^{\mu \nu}\left(\partial_{\mu} S\right)\left(\partial_{\nu} S\right)
$$

S: Hamilton function with Ansatz

$$
S=\frac{1}{2} \varepsilon \tau-E t+\beta L_{z} \varphi+S_{r}(r)+S_{\theta}(\theta)
$$

$S_{r}(r)$: function of r only
$S_{\theta}(\theta)$: function of θ only

Components of geodesic equation

Introduce Mino time $d \lambda=\frac{d \tau}{\rho^{2}}$

$$
\begin{aligned}
\frac{d r}{d \lambda} & = \pm \sqrt{R(r)} \\
\frac{d \theta}{d \lambda} & = \pm \sqrt{\Theta(\theta)} \\
\frac{d \varphi}{d \lambda} & =\frac{1}{\beta}\left(\frac{L_{z} \csc ^{2} \theta-a E}{\sqrt{\Theta(\theta)}} \frac{d \theta}{d \lambda}+\frac{a P(r)}{\Delta(r) \sqrt{R(r)}} \frac{d r}{d \lambda}\right) \\
\frac{d t}{d \lambda} & =\frac{a\left(L_{z}-a E \sin ^{2} \theta\right)}{\sqrt{\Theta(\theta)}} \frac{d \theta}{d \lambda}+\frac{\left(r^{2}+a^{2}\right) P(r)}{\Delta(r) \sqrt{R(r)}} \frac{d r}{d \lambda}
\end{aligned}
$$

with

$$
\begin{aligned}
& \Theta(\theta)=K-\left(L_{z}-a E\right)^{2}-\cos ^{2} \theta\left(L_{z}^{2} \csc ^{2} \theta-a^{2}\left(E^{2}+\varepsilon\right)\right) \\
& P(r)=E\left(r^{2}+a^{2}\right)-L_{z} a \\
& R(r)=P(r)^{2}-\Delta(r)\left(K-\varepsilon r^{2}\right)
\end{aligned}
$$

$r(\lambda)$ motion

- Need $R(r)>0$ to have solutions with $R(r)=0$ turning points of $r(\lambda)$ motion
- $R(r)=0 \Rightarrow$ (a) 4 real, (b) 2 real \& 2 complex, (c) 4 complex roots
- new coordinate

$$
z=\frac{1}{c_{2}}\left(\frac{1}{r-r_{1}}-c_{1}\right)
$$

where r_{1} largest real root and c_{1} and c_{2} depend on K, L_{2}, E, ε

$$
\Rightarrow d \lambda=\frac{d r}{\sqrt{R(r)}}=-\frac{d z}{\sqrt{4 z^{3}-g_{2} z-g_{3}}}
$$

where g_{2} and g_{3} depend on K, L_{z}, E, ε

$r(\lambda)$ motion

Solution in terms of Weierstrass \wp-function

$$
r(\lambda)=\left(\frac{1}{c_{2} \wp\left(\frac{1}{c_{2}}\left(\lambda-\lambda_{0}\right)+C_{;} g_{2}, g_{3}\right)+c_{1}}+r_{1}\right)
$$

with

$$
C=\int_{z_{0}}^{\infty} \frac{d z}{\sqrt{4 z^{3}-g_{2} z-g_{3}}}
$$

- $z_{0}=\infty \Rightarrow C=0$
- $z_{0}=e_{1} \Rightarrow C=K(\mathcal{K}) / \sqrt{e_{1}-e_{3}}$
- $z_{0}=e_{2} \Rightarrow C=K(\mathcal{K}) / \sqrt{e_{1}-e_{3}}+i K\left(\mathcal{K}^{\prime}\right) / \sqrt{e_{1}-e_{3}}$

$\theta(\lambda)$ motion

- Need $\Theta(\theta)>0$ to have solutions with $\Theta(\theta)=0$ turning points of $\theta(\lambda)$ motion
- new coordinate

$$
\tilde{z}=\frac{1}{c_{3}}\left(\sec ^{2} \theta-c_{4}\right)
$$

where c_{3} and c_{4} depend on K, L_{z}, E, ε

$$
\Rightarrow d \lambda=\frac{d \theta}{\sqrt{\Theta(\theta)}}=\frac{d \tilde{z}}{\sqrt{4 \tilde{z}^{3}-\tilde{g}_{2} \tilde{z}-\tilde{g}_{3}}}
$$

where \tilde{g}_{2} and \tilde{g}_{3} depend on K, L_{z}, E, ε

$\theta(\lambda)$ motion

- Discriminant $D=\tilde{g}_{2}^{3}-27 \tilde{g}_{3}^{2}>0 \Rightarrow 3$ real roots $\tilde{e}_{i}, i=1,2,3$
- BUT: roots might not fulfill $\left(c_{3} \tilde{z}+c_{4}\right)^{-1}=\cos ^{2} \theta \leq 1$
- AND: for one root \Rightarrow two values of θ with $\cos \theta= \pm\left(c_{3} \tilde{z}+c_{4}\right)^{-1 / 2}$
- $\Theta(\theta)=0 \Rightarrow$ (a) 4 real, (b) 2 real, (c) no real roots

Allowed values of θ

$\theta(\lambda)$ motion

Solution in terms of Weierstrass \wp-function

$$
\theta(\lambda)=\arccos \left[\pm \frac{1}{\sqrt{c_{3} \wp\left(\frac{1}{c_{3}}\left(\lambda-\lambda_{0}\right)+\tilde{C} ; \tilde{g}_{2}, \tilde{g}_{3}\right)+c_{4}}}\right]
$$

with

$$
\tilde{\boldsymbol{C}}=\int_{\tilde{z}_{0}}^{\infty} \frac{d \tilde{z}}{\sqrt{4 \tilde{z}^{3}-\tilde{g}_{2} \tilde{z}-\tilde{g}_{3}}}
$$

- $\tilde{z}_{0}=\tilde{e}_{1} \Rightarrow \tilde{C}=K(\mathcal{K}) / \sqrt{\tilde{e}_{1}-\tilde{e}_{3}}$
- $\tilde{z}_{0}=\tilde{e}_{3} \Rightarrow \tilde{C}=i K\left(\mathcal{K}^{\prime}\right) / \sqrt{\tilde{e}_{1}-\tilde{e}_{3}}$

$\varphi(\lambda)$ and $t(\lambda)$ motion

Rewrite

$$
\begin{gathered}
\beta d \varphi=\frac{L_{z} \csc ^{2} \theta-a E}{\sqrt{\Theta(\theta)}} d \theta+\frac{a \Delta^{-1} P(r)}{\sqrt{R(r)}} d r=: d l_{\theta}+d l_{r} \\
d t=a\left(L_{z}-a E \sin ^{2} \theta\right) \frac{d \theta}{\sqrt{\Theta(\theta)}}+\left(r^{2}+a^{2}\right) \Delta(r)^{-1} P(r) \frac{d r}{\sqrt{R(r)}}=: d \bar{l}_{\theta}+d \bar{l}_{r}
\end{gathered}
$$

solutions for $I_{\theta}, I_{\Gamma}, \bar{I}_{\theta}, \bar{I}_{r}$ in terms of Weierstrass ζ - and σ-functions

Example: Solution for I_{θ}

With new coordinate $\tilde{z}=\left(\sec ^{2} \theta-c_{4}\right) / c_{3}$:

$$
d l_{\theta}=\frac{c_{3}\left(L_{z}-a E\right) d \tilde{z}}{\sqrt{4 \tilde{z}^{3}-\tilde{g}_{2} \tilde{z}-\tilde{g}_{3}}}+\frac{L_{2}\left(c_{4}+c_{3} c_{5}\right) d \tilde{z}}{\left(\tilde{z}-c_{5}\right) \sqrt{4 \tilde{z}^{3}-\tilde{g}_{2} \tilde{z}-\tilde{g}_{3}}}, \quad c_{5}=\left(1-c_{4}\right) / c_{3}
$$

Introducing

$$
x:=\int_{\infty}^{\tilde{z}} \frac{d \tilde{z}}{\sqrt{4 \tilde{z}^{3}-\tilde{g}_{2} \tilde{z}-\tilde{g}_{3}}} \Rightarrow \tilde{z}=\wp\left(x ; \tilde{g}_{2}, \tilde{g}_{3}\right)
$$

we have

$$
d l_{\theta}=c_{3}\left(L_{2}-a E\right) d x+\left(c_{4}+c_{3} c_{5}\right) \frac{d x}{\wp(x)-c_{5}}
$$

with $x=\lambda / c_{3}$ we find

$$
I_{\theta}=\left(L_{z}-a E\right) \lambda+\sum_{i=1}^{2} \frac{c_{4}+c_{3} c_{5}}{\wp^{\prime}\left(x_{i}\right)}\left[\frac{\lambda}{c_{3}} \zeta\left(x_{i}\right)+\ln \left(\sigma\left(x-x_{i}\right)\right)\right]
$$

where $\wp\left(x_{i}\right)=c_{5}, i=1,2$

Example of geodesic: bound orbit

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Example of geodesic: escape orbit

Lense-Thirring effect

- Frame dragging effect of rotating massive body
- LAGEOS satellites:
$\Omega_{\mathrm{LT}}(\beta=1) \approx 39 \cdot 10^{-3}$ arcseconds/year (10\% accuracy)
- If cosmic string present, i.e. $\beta \neq 1$:

$$
\Omega_{\mathrm{LT}}(\beta \neq 1)-\Omega_{\mathrm{LT}}(\beta=1) \leq 4 \cdot 10^{-3} \text { arcseconds/year }
$$

- bound on energy per unit length $m_{(3)}$ of cosmic string

$$
\frac{1}{\beta}-1 \lesssim 10^{-11} \Rightarrow m_{(3)} \lesssim 10^{16} \mathrm{~kg} / \mathrm{m}
$$

Abelian-Higgs strings

$U(1)$ Abelian-Higgs model minimally coupled to gravity:

$$
S=\int d^{4} x \sqrt{-g}\left(\frac{R}{16 \pi G}+\mathcal{L}\right)
$$

with matter Lagrangian

$$
\mathcal{L}=D_{\mu} \phi\left(D^{\mu} \phi\right)^{*}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{\lambda}{2}\left(\phi \phi^{*}-\eta^{2}\right)^{2}
$$

with

$$
D_{\mu} \phi=\nabla_{\mu} \phi-i e A_{\mu} \phi \quad, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

ϕ : complex scalar field
$A_{\mu}: ~ U(1)$ gauge field
e : gauge coupling
λ : self-interaction coupling
$\eta \neq 0$: vacuum expectation value

Ansatz for static, straight strings

- Matter fields (Nielsen \& Olesen, 1973)

$$
\phi(\rho, \varphi)=\eta h(\rho) e^{i n \varphi}, \quad A_{\mu} d x^{\mu}=\frac{1}{e}(n-P(\rho)) d \varphi
$$

n : degree of map $S^{1} \rightarrow S^{1}$, homotopy group $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$

- Metric

$$
d s^{2}=N^{2}(\rho) d t^{2}-d \rho^{2}-L^{2}(\rho) d \varphi^{2}-N^{2}(\rho) d z^{2}
$$

Four non-linear coupled 2nd order ordinary differential equations in h, P, N and $L \Rightarrow$ have to be solved numerically

Equations

$$
\begin{aligned}
\frac{\left(N^{2} L h^{\prime}\right)^{\prime}}{N^{2} L} & =\frac{P^{2} h}{L^{2}}+\frac{\alpha}{2} h\left(h^{2}-1\right) \\
\frac{L}{N^{2}}\left(\frac{N^{2} P^{\prime}}{L}\right)^{\prime} & =2 h^{2} P \\
\frac{\left(L N N^{\prime}\right)^{\prime}}{N^{2} L} & =\gamma\left[\frac{\left(P^{\prime}\right)^{2}}{2 L^{2}}-\frac{\alpha}{4}\left(h^{2}-1\right)^{2}\right] \\
\frac{\left(N^{2} L^{\prime}\right)^{\prime}}{N^{2} L} & =-\gamma\left[\frac{2 h^{2} P^{2}}{L^{2}}+\frac{\left(P^{\prime}\right)^{2}}{2 L^{2}}+\frac{\alpha}{4}\left(h^{2}-1\right)^{2}\right]
\end{aligned}
$$

with

$$
\gamma=8 \pi G \eta^{2}=8 \pi \frac{\eta^{2}}{M_{\mathrm{Pl}}^{2}}, \quad \alpha=\frac{\lambda}{e^{2}}=\frac{M_{\mathrm{H}}^{2}}{M_{\mathrm{W}}^{2}}
$$

$M_{\mathrm{H}}=\sqrt{2 \lambda} \eta$ Higgs boson mass
$M_{\mathrm{w}}=\sqrt{2} e \eta$ gauge boson mass

Boundary conditions

- Regularity at the origin

$$
\begin{aligned}
h(0) & =0, P(0)=n, N(0)=1 \\
N^{\prime}(0) & =0, L(0)=0, L^{\prime}(0)=1
\end{aligned}
$$

- Finiteness of energy

$$
h(\infty)=1, P(\infty)=0
$$

Properties of Abelian-Higgs strings

- magnetic field $\vec{B}=B_{z} \vec{e}_{z}$ and quantized magnetic flux:

$$
B_{z}=-\frac{1}{e} \frac{d P / d \rho}{\rho} \quad, \quad \Phi_{M}=-\frac{2 \pi n}{e}
$$

- scalar core width $\sim(\text { Higgs mass })^{-1}=M_{H}^{-1}=(\sqrt{2 \lambda} \eta)^{-1}$
- width of flux tubes
$\sim(\text { gauge boson mass })^{-1}=M_{W}^{-1}=(\sqrt{2} e \eta)^{-1}$
- $M_{H}=M_{W}$: saturate energy bound $m_{(3)}=2 \pi \eta^{2} n$
\Rightarrow BPS limit, but no analytic solutions

Geodesics: Constants of motion

$$
\begin{aligned}
& E:=N^{2} \frac{d t}{d \tau} \quad \text { energy } \\
& L_{z}:=L^{2} \frac{d \varphi}{d \tau} \quad \text { angular momentum } \\
& p_{z}:=N^{2} \frac{d z}{d \tau} \quad \text { momentum } \\
& \varepsilon=\frac{d s^{2}}{d \tau^{2}}= \begin{cases}1 & \text { for massive test particles } \\
0 & \text { for massless test particles }\end{cases}
\end{aligned}
$$

Geodesic equation

$$
\frac{1}{2}\left(\frac{d \rho}{d \tau}\right)^{2}=\bar{E}-V_{\mathrm{eff}}(\rho)
$$

with

$$
\bar{E}=\left(E^{2}-\varepsilon\right)
$$

and

$$
V_{\mathrm{eff}}(\rho)=\frac{1}{2}\left[E^{2}\left(1-\frac{1}{N^{2}}\right)+\frac{p_{z}^{2}}{N^{2}}+\frac{L_{z}^{2}}{L^{2}}\right]
$$

$V_{\text {eff }}$: effective potential

Massive particles: Effective potential

- infinite potential barrier for $L_{z} \neq 0$
- no bound orbits for $\alpha \geq 2$

Massive particles: Example of bound orbit

Massive particles: Example of escape orbit

Perihelion shift

For planar motion ($p_{z}=0$):

$$
\Delta \varphi=2 \int_{\rho_{\text {min }}}^{\rho_{\max }} \frac{L_{z} d \rho}{L(\rho)^{2}\left(\frac{E^{2}}{N(\rho)^{2}}-\frac{L_{z}^{2}}{L(\rho)^{2}}-1\right)^{1 / 2}}-2 \pi
$$

Massless particles: Effective potential

- infinite potential barrier for $L_{z} \neq 0$
- no bound orbits

Massless particles: no bound orbits

Compare to Gibbons, 1993:
In a general cosmic string space-time with topology $\mathbb{R}^{2} \times \Sigma$ where Σ has positive Gaussian curvature a massless test particle must move on a geodesic that escapes to infinity in both directions.

Massless particles: no bound orbits

Massless particles in x - y-plane

$$
d t^{2}=\frac{1}{N^{2}} d \rho^{2}+\frac{L^{2}}{N^{2}} d \varphi^{2}=\tilde{g}_{i j} d x^{i} d x^{j} \quad, \quad i=1,2
$$

$\tilde{g}_{i j}$ optical metric of manifold Σ with Gaussian curvature

$$
K=\frac{L^{\prime}}{L} N^{\prime} N-\frac{L^{\prime \prime}}{L} N^{2}-\left(N^{\prime}\right)^{2}+N N^{\prime \prime}
$$

Massless particles: Example of escape orbit

Light deflection

For planar motion $\left(p_{z}=0\right)$:

$$
\Delta \varphi=2 \int_{\rho_{\min }}^{\infty} \frac{L_{z} d \rho}{L(\rho)^{2}\left(\frac{E^{2}}{N(\rho)^{2}}-\frac{L_{z}^{2}}{L(\rho)^{2}}\right)^{1 / 2}}-\pi
$$

Summary

- Link between cosmic strings \leftrightarrow fundamental strings
- possible observation ...
- ... in the Cosmic Microwave background (Power- and Polarization spectrum)
- ... through motion of test particles in cosmic string space-times
- in view of this ...
- ... found the complete set of solutions to the geodesic equation in space-time of Schwarzschild- and Kerr black hole pierced by infinitely thin cosmic string
- ... found solutions to the geodesic equation in the space-time of an Abelian-Higgs string

Summary

- Applications
- computation of gravitational wave templates for extreme mass ratio inspirals
- gravitational lensing
- test particle motion in solar system if sun is not perfectly spherically symmetric
- possible explanation of the observed alignment of polarization vectors of quasars on cosmological scales via remnants of cosmic string decay

Outlook

Work in progress...

- ... solutions to the geodesic equation in other numerically given space-times (semilocal, p - q-strings, superconducting...)
- ... solutions to the geodesic equation in space-time with cosmic string and (positive or negative) cosmological constant \Rightarrow hyperelliptic integrals
\Rightarrow compare Talks by C. Lämmerzahl and V. Kagramanova

