Geodesic motion in cosmic string space-times

Betti Hartmann

School of Engineering and Science Jacobs University Bremen, Germany

"The higher-genus sigma function and applications" Workshop ICMS Edinburgh 13th October 2010

Collaborations and References

Work done in collaboration with:

Eva Hackmann - ZARM University Bremen, Germany Claus Lämmerzahl - ZARM University Bremen, Germany Parinya Sirimachan - Jacobs University Bremen, Germany

References:

B. Hartmann and P. Sirimachan, JHEP (2010) [arXiv:1007.0863 [gr-qc]].
E. Hackmann, B. Hartmann, C. Lämmerzahl and P. Sirimachan, Phys. Rev. D 82 (2010) 044024 [arXiv:1006.1761 [gr-qc]].
E. Hackmann, B. Hartmann, C. Lämmerzahl and P. Sirimachan, Phys. Rev. D 81 (2010) 064016 [arXiv:0912.2327 [gr-qc]].

Project funded by the German Research Foundation (DFG)

Outline

- The Geodesic equation
- Geodesics in analytically given space-times
 - Schwarzschild black hole pierced by cosmic string
 - Kerr black hole pierced by cosmic string
- 4 Geodesics in numerically given space-times
 - Abelian-Higgs strings
- 5 Summary and Outlook
 - Summary and Outlook

Cosmic strings

- Cosmic strings form when axial symmetry gets spontaneously broken during phase transitions in the early universe
- Iine-like defects

 $(\rightarrow \text{ compare to vortices in superfluids})$

energy per unit length

$$m_{(3)} \sim T_c^2$$

 T_c : temperature of phase transition

• can be as heavy as $m_{(3)} \approx 10^{12} kg/m$

→ E → < E →</p>

Fundamental strings (of String theory)

- Fundamental (F-) strings ...
 - have zero width
 - have tension close to the Planck scale
 - end on D-branes
 - D1-brane = D-string

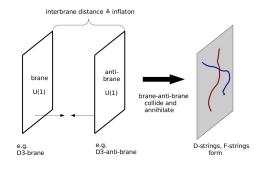
Connection between cosmic strings and fundamental strings ???

• NO: perturbative strings as cosmic strings ruled out (Witten, 1985)

ヘロト ヘ戸ト ヘヨト ヘヨト

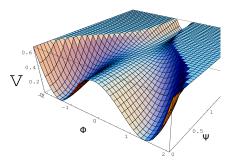
- YES: cosmic strings are formed in inflationary models originating from string theory
 - D-, F- and bound states of p F-strings and q D-strings (p-q-strings) are formed in brane inflation
 (longs, Stoica, Tra (2002); Sarangi, Tra (2002))

(Jones, Stoica, Tye (2002); Sarangi, Tye (2002))



Betti Hartmann Geodesic motion in cosmic string space-times

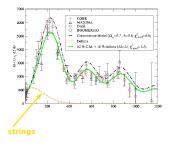
• ... and also: Hybrid inflation (Linde (1994))



- two scalar fields
- inflation ends due to spontaneous symmetry breaking
- cosmic strings form generically at the end of hybrid inflation in Supersymmetric Grand Unified Theories (Jeannerot, Rocher, Sakellariadou (2003))

Detection of cosmic strings

 Cosmic Microwave background data can't be explained by cosmic strings only....

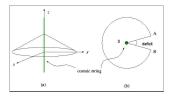


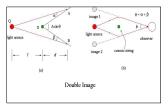
... but maybe important contribution

(e.g. Bouchet, Peter, Riazuelo, Sakellariadou (2002)) d

Detection of cosmic strings

Gravitational lensing





important to understand geodesic motion of massive and massless test particles

∃ > < ∃ >

The Geodesic equation

$$rac{d^2 x^\mu}{d au^2} + \Gamma^\mu_{
ho\sigma} rac{dx^
ho}{d au} rac{dx^\sigma}{d au} = 0$$

 $\Gamma^{\mu}_{\rho\sigma}$ Christoffel symbol:

$$\Gamma^{\mu}_{
ho\sigma}=rac{1}{2}g^{\mu
u}\left(\partial_{
ho}g_{\sigma
u}+\partial_{\sigma}g_{
ho
u}-\partial_{
u}g_{
ho\sigma}
ight)$$

 τ : *affine parameter* (proper time for time-like geodesics) $g_{\mu\nu}$: metric tensor

Two approaches when describing cosmic string space-times

macroscopic description: Nambu-Goto action → infinitely thin strings

- Advantages: simple to treat; analytic results possible
- Disadvantages: no connection to underlying field theory

inicroscopic description: field theoretical models inite core width

- Advantages: "proper" description
- Disadvantages: solutions only available numerically

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Schwarzschild black hole pierced by cosmic string

Ansatz for the metric in spherical coordinates (t, r, θ, φ)

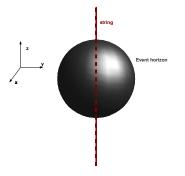
$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \beta^{2}\sin^{2}\theta d\varphi^{2}\right)$$

 $M_{\rm phys} = \beta M$ physical mass of black hole $\delta = 2\pi(1 - \beta) = 8\pi G m_{(3)} \sim 8\pi (\eta / M_{\rm Pl})^2$: deficit angle $m_{(3)}$: energy per unit length of the string η : symmetry breaking scale at which string forms $M_{\rm Pl} = G^{-1/2}$: Planck mass

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Schwarzschild black holes pierced by cosmic strings

Static black hole pierced by infinitely thin cosmic string



 $\beta < 1$: cosmic string is long-range *hair* r = 2M: event horizon

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Symmetries

- Globally axially symmetric
- locally four Killing vectors

$$\xi = \frac{\partial}{\partial t}$$

$$\chi_{(1)} = \sin(\beta\varphi)\frac{\partial}{\partial\theta} + \frac{1}{\beta}\cos(\beta\varphi)\cot\theta\frac{\partial}{\partial\varphi}$$

$$\chi_{(2)} = -\cos(\beta\varphi)\frac{\partial}{\partial\theta} + \frac{1}{\beta}\sin(\beta\varphi)\cot\theta\frac{\partial}{\partial\varphi}$$

$$\chi_{(3)} = \frac{1}{\beta}\frac{\partial}{\partial\varphi}$$

→ E → < E →</p>

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Constants of motion

Energy E

$$\xi^{\mu} \frac{dx^{
u}}{d au} g_{\mu
u} = \left(1 - \frac{2M}{r}\right) \frac{dt}{d au} =: E$$

angular momenta L₃ and L²

$$\chi^{\mu}_{(i)} rac{dx^{
u}}{d au} g_{\mu
u} =: L_i \ , i = 1, 2, 3$$

with

$$L_{3} = r^{2}\beta\sin^{2}\theta\frac{d\varphi}{d\tau}$$
$$|\vec{L}|^{2} \equiv L^{2} = L_{1}^{2} + L_{2}^{2} + L_{3}^{2} = r^{4}\left(\frac{d\theta}{d\tau}\right)^{2} + \frac{L_{3}^{2}}{\sin^{2}\theta}$$

and L_1 and L_2 are trivial

 $\varepsilon = \frac{ds^2}{d\tau^2} = \begin{cases} -1 & \text{for massive test particles} \\ 0 & \text{for massless test particles}, \end{cases}$

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Components of Geodesic equation

$$\left(\frac{dt}{d\tau}\right)^2 = E^2 \left(1 - \frac{2M}{r}\right)^{-2}$$

$$\left(\frac{dr}{d\tau}\right)^2 = E^2 - \left(\frac{L^2}{r^2} + \varepsilon\right) \left(1 - \frac{2M}{r}\right)$$

$$\left(\frac{d\theta}{d\tau}\right)^2 = \frac{L^2}{r^4} - \frac{L_3^2}{r^4 \sin^2 \theta}$$

$$\left(\frac{d\varphi}{d\tau}\right)^2 = \frac{L_3^2}{\beta^2 r^4 \sin^4 \theta}$$

ヘロト ヘワト ヘビト ヘビト

э

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

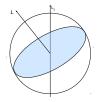
Angular motion $\theta(\varphi)$

From the θ and φ -component

$$\cot^2 \theta = (\mathbf{k}^2 - 1)\sin^2(\beta\varphi) \quad , \quad \mathbf{k}^2 = \frac{L^2}{L_2^2}$$

Turning points of θ

$$\frac{d\theta}{d\tau} = 0 \Rightarrow \sin^2 \theta = \frac{1}{k^2} \Rightarrow \beta \varphi = \frac{\pi}{2} + n\pi \ , \ n = \pm 0, \pm 1, \dots$$



For $\beta \neq 1$: Geodesic motion in precessing plane with \vec{L} as normal \Rightarrow Geodesics with $\theta \neq \frac{\pi}{2}$ are not flat

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Radial motion $r(\theta)$ and $r(\varphi)$

New coordinate $z = \frac{2M}{r} - \frac{1}{3}, z \in [-\frac{1}{3} : \infty)$

$$\frac{dz}{\sqrt{P(z)}} = \frac{1}{2} \left(1 - \frac{1}{k^2 \sin^2 \theta} \right)^{-1/2} d\theta$$
$$\frac{dz}{\sqrt{P(z)}} = \frac{1}{2} \beta \frac{k}{k^2 - 1} \frac{1}{\sin^2(\beta \varphi) + 1} d\varphi$$

with

$$P(z) = 4z^{3} - 4\left[\frac{1}{3} - \left(\frac{4M^{2}}{L^{2}}\right)\varepsilon\right]z - 4\left[\frac{2}{27} + \frac{2}{3}\left(\frac{4M^{2}}{L^{2}}\right)\varepsilon - \frac{4G^{2}M^{2}}{L^{2}}E^{2}\right]$$

= $4z^{3} - g_{2}z - g_{3}$

イロン 不同 とくほ とくほ とう

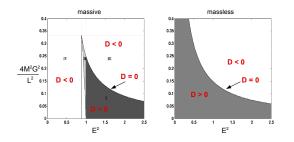
Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Classification of solutions

- Need P(z) > 0 to have solutions \Rightarrow study roots of P(z)
- Discriminant D with

$$D = g_2^3 - 27g_3^2 \begin{cases} > 0 \\ < 0 \\ = 0 \end{cases}$$

 $0 \quad three \ real \ roots \ e_1 > e_2 > e_3 \\ 0 \quad one \ real \ root \\ 0 \quad either \ one \ or \ two \ real \ roots$



Betti Hartmann Geodesic motion in cosmic string space-times

▶ < ∃ >

э

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Classification of solutions

Effective potential

$$\frac{1}{2}\left(\frac{dr}{d\tau}\right)^2 + V_{\rm eff}(r) = \frac{E^2 - \varepsilon}{2}$$

with

$$V_{\rm eff}(r) = -\varepsilon \frac{M}{r} + \frac{L^2}{2r^2} - \frac{L^2 M}{r^3}$$

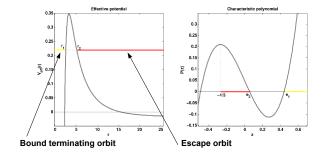
• Turning points of *r* correspond to P(z) = 0

$$\frac{L^2}{32M^2}P(z(r))=\frac{E^2-\varepsilon}{2}-V_{\rm eff}(r)$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Example for D > 0

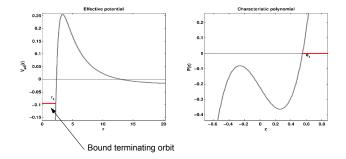
Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string



(A) (E) (A) (E)

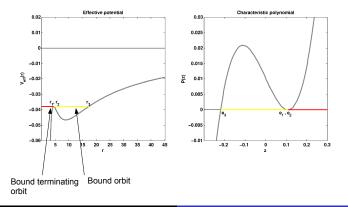
Example for D < 0

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string



Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Example for D = 0



Betti Hartmann Geodesic motion in cosmic string space-times

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Solutions to the geodesic equation

In terms of Weierstrass p-function

$$r(\theta) = \frac{2M}{\wp(g(\theta) - c) + \frac{1}{3}}$$

$$r(\varphi) = \frac{2M}{\wp(f(\varphi) - c) + \frac{1}{3}}$$

with

$$g(\theta) \equiv \frac{1}{2} \left[\arccos\left(\frac{\cos\theta}{\sqrt{1-k^{-2}}}\right) - \arcsin\left(\frac{\cos\theta_0}{\sqrt{1-k^{-2}}}\right) \right]$$
$$f(\varphi) \equiv -\frac{1}{2} \arctan\left[k \tan(\beta(\varphi - \varphi_0))\right]$$

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Solutions to the geodesic equation

Value of constant c:

$$c=\int\limits_{z_0}^{\infty}\frac{dz}{\sqrt{4z^3-g_2z-g_3}}$$

•
$$Z_0 = \infty \Rightarrow c = 0$$

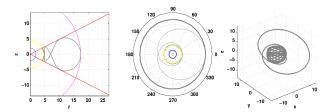
• $Z_0 = e_1 \Rightarrow c = \frac{K(\mathcal{K})}{\sqrt{e_1 - e_3}}$
• $Z_0 = e_2 \Rightarrow c = \frac{K(\mathcal{K})}{\sqrt{e_1 - e_3}} + i \frac{K(\mathcal{K}')}{\sqrt{e_1 - e_3}}$
• $Z_0 = e_3 \Rightarrow c = i \frac{K(\mathcal{K}')}{\sqrt{e_1 - e_3}}$

with K: complete elliptic integral of 1.kind with modulus

$$\mathcal{K} = \sqrt{\frac{\boldsymbol{e}_2 - \boldsymbol{e}_3}{\boldsymbol{e}_1 - \boldsymbol{e}_3}} \ , \ \mathcal{K}' = \sqrt{1 - \mathcal{K}^2}$$

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

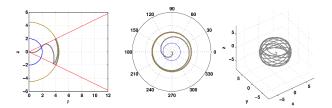
Example of geodesic: bound orbit



3

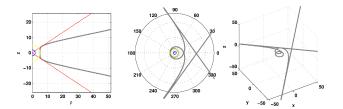
Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Example of geodesic: bound terminating orbit



Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Example of geodesic: escape orbit



э

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Light deflection

For k = 1 and **massless** test particles deflection angle

$$\Delta \varphi = \frac{1}{\beta} \left[\frac{4}{\sqrt{e_1 - e_3}} \int_0^{\varphi_c} \frac{d\varphi}{\sqrt{1 - \mathcal{K}^2 \sin^2(\varphi)}} + 2\omega_1 \right] + \pi \left(\frac{1}{\beta} - 1 \right)$$

 ω_1 : first half period

Observational constraints with $(\Delta \varphi)_S$ Schwarzschild value

$$rac{\Delta arphi - (\Delta arphi)_{\mathcal{S}}}{(\Delta arphi)_{\mathcal{S}}} \lesssim 10^{-5}$$

$$\Rightarrow$$
 $(1-eta)\lesssim 10^{-11}$ \Rightarrow $m_{(3)}\lesssim 10^{16}rac{\mathrm{kg}}{\mathrm{m}}$

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Perihelion shift

For k = 1 and **massive** test particles perihelion shift

$$\Delta arphi = rac{4}{eta} rac{\mathcal{K}(\mathcal{K})}{\sqrt{e_1 - e_3}} - 2\pi$$

Observational constraints with $(\Delta \varphi)_S$ Schwarzschild value

$$\begin{split} \frac{\Delta \varphi - (\Delta \varphi)_S}{(\Delta \varphi)_S} \lesssim 10^{-4} \\ \Rightarrow \ (1 - \beta) \lesssim 10^{-10} \ \Rightarrow \ m_{(3)} \lesssim 10^{17} \frac{\text{kg}}{\text{m}} \end{split}$$

ヘロア ヘビア ヘビア・

æ

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Kerr black hole pierced by cosmic string

Ansatz for the metric in Boyer-Lindquist coordinates (t, r, θ, φ)

$$ds^{2} = -\left(1 - \frac{2Mr}{\rho^{2}}\right) dt^{2} + \frac{\rho^{2}}{\Delta} dr^{2} + \rho^{2} d\theta^{2}$$
$$+ \beta^{2} \left(r^{2} + a^{2} + \frac{2Mra^{2}\sin^{2}\theta}{\rho^{2}}\right) \sin^{2}\theta d\varphi^{2} - \beta \frac{4Mra\sin^{2}\theta}{\rho^{2}} dt d\varphi$$

with

$$\rho^2 = r^2 + a^2 \cos^2 \theta$$
 , $\Delta = r^2 - 2Mr + a^2$

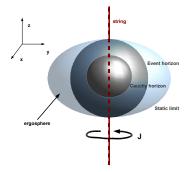
a = J/M: angular momentum *J* per mass *M* $\delta = 2\pi(1 - \beta) = 8\pi Gm_{(3)} \sim 8\pi(\eta/M_{\rm Pl})^2$: deficit angle $m_{(3)}$: energy per unit length of the string η : symmetry breaking scale at which string forms $M_{\rm Pl}$: Planck mass

→ Ξ → < Ξ →</p>

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Kerr black hole pierced by cosmic string

Rotating black hole pierced by infinitely thin cosmic string



 $\beta < 0$: cosmic string is long-range *hair* $r_{+} = M + \sqrt{M^{2} - a^{2}}$: event horizon, $r_{-} = M - \sqrt{M^{2} - a^{2}}$: Cauchy horizon $2Mr = \rho^{2}$: static limit

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Boyer-Lindquist coordinates

Relation to cartesian coordinates

$$x = \sqrt{r^2 + a^2} \sin \theta \cos(\beta \varphi)$$

$$y = \sqrt{r^2 + a^2} \sin \theta \sin(\beta \varphi)$$

$$z = r \cos \theta$$

- $r = 0 \Rightarrow$ disc with deficit angle $\delta = 2\pi(1 \beta)$
- Physical singularity at r = 0, θ = π/2 ⇒ ring with deficit angle δ = 2π(1 − β)
- *r* < 0: another conical space-time without horizons

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Constants of motion

• Killing vectors $\frac{\partial}{\partial t}$ and $\frac{\partial}{\partial \varphi} \Rightarrow$ conserved quantities

$$\left(1 - \frac{2Mr}{\rho^2}\right)\frac{dt}{d\tau} + \beta \frac{2Mar}{\rho^2}\sin^2\theta \frac{d\varphi}{\tau} =: E$$

$$-\frac{2Mar}{\rho^2}\sin^2\theta\frac{dt}{d\tau} + \beta\frac{(r^2+a^2)^2 - \Delta a^2\sin^2\theta}{\rho^2}\sin^2\theta\frac{d\varphi}{d\tau} =: L_z$$

- Carter constant K: separability of Hamilton-Jacobi equations
- ٠

$$\varepsilon = \frac{ds^2}{d\tau^2} = \begin{cases} -1 & \text{massive particles} \\ 0 & \text{massless particles} \end{cases}$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Hamilton-Jacobi equations

Hamilton–Jacobi equations

$$rac{\partial m{S}}{\partial au} = rac{1}{2} m{g}^{\mu
u} \left(\partial_\mu m{S}
ight) \left(\partial_
u m{S}
ight)$$

S: Hamilton function with Ansatz

$$S = \frac{1}{2} \varepsilon \tau - \mathbf{E}t + \beta \mathbf{L}_{z} \varphi + S_{r}(r) + S_{\theta}(\theta)$$

 $S_r(r)$: function of r only

 $S_{\theta}(\theta)$: function of θ only

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ E → < E →</p>

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Components of geodesic equation

Introduce **Mino time** $d\lambda = \frac{d\tau}{\rho^2}$

$$\begin{array}{lll} \frac{dr}{d\lambda} &=& \pm\sqrt{R(r)} \\ \frac{d\theta}{d\lambda} &=& \pm\sqrt{\Theta(\theta)} \\ \frac{d\varphi}{d\lambda} &=& \frac{1}{\beta} \left(\frac{L_z \csc^2 \theta - aE}{\sqrt{\Theta(\theta)}} \frac{d\theta}{d\lambda} + \frac{aP(r)}{\Delta(r)\sqrt{R(r)}} \frac{dr}{d\lambda} \right) \\ \frac{dt}{d\lambda} &=& \frac{a(L_z - aE \sin^2 \theta)}{\sqrt{\Theta(\theta)}} \frac{d\theta}{d\lambda} + \frac{(r^2 + a^2)P(r)}{\Delta(r)\sqrt{R(r)}} \frac{dr}{d\lambda} \end{array}$$

with

$$\Theta(\theta) = K - (L_z - aE)^2 - \cos^2 \theta \left(L_z^2 \csc^2 \theta - a^2 (E^2 + \varepsilon) \right)$$

$$P(r) = E(r^2 + a^2) - L_z a$$

$$R(r) = P(r)^2 - \Delta(r) \left(K - \varepsilon r^2 \right)$$

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

$r(\lambda)$ motion

- Need R(r) > 0 to have solutions with R(r) = 0 turning points of r(λ) motion
- $R(r) = 0 \Rightarrow$ (a) 4 real, (b) 2 real & 2 complex, (c) 4 complex roots
- new coordinate

$$z=\frac{1}{c_2}\left(\frac{1}{r-r_1}-c_1\right)$$

where r_1 largest real root and c_1 and c_2 depend on K, L_z , E, ε

$$\Rightarrow d\lambda = \frac{dr}{\sqrt{R(r)}} = -\frac{dz}{\sqrt{4z^3 - g_2 z - g_3}}$$

where g_2 and g_3 depend on K, L_z , E, ε

イロト 不得 とくほと くほとう

1

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

$r(\lambda)$ motion

Solution in terms of Weierstrass p-function

$$r(\lambda) = \left(\frac{1}{c_2 \wp\left(\frac{1}{c_2}(\lambda-\lambda_0)+C;g_2,g_3\right)+c_1}+r_1\right)$$

with

$$C = \int_{z_0}^{\infty} \frac{dz}{\sqrt{4z^3 - g_2 z - g_3}}$$

•
$$z_0 = \infty \Rightarrow C = 0$$

• $z_0 = e_1 \Rightarrow C = K(\mathcal{K})/\sqrt{e_1 - e_3}$
• $z_0 = e_2 \Rightarrow C = K(\mathcal{K})/\sqrt{e_1 - e_3} + iK(\mathcal{K}')/\sqrt{e_1 - e_3}$

ヘロト ヘワト ヘビト ヘビト

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

$\theta(\lambda)$ motion

- Need Θ(θ) > 0 to have solutions with Θ(θ) = 0 turning points of θ(λ) motion
- new coordinate

$$ilde{z} = rac{1}{c_3} \left(\sec^2 heta - c_4
ight)$$

where c_3 and c_4 depend on K, L_z , E, ε

$$\Rightarrow d\lambda = \frac{d\theta}{\sqrt{\Theta(\theta)}} = \frac{d\tilde{z}}{\sqrt{4\tilde{z}^3 - \tilde{g}_2\tilde{z} - \tilde{g}_3}}$$

where \tilde{g}_2 and \tilde{g}_3 depend on K, L_z , E, ε

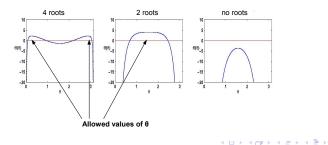
イロト イポト イヨト イヨト

э.

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

$\theta(\lambda)$ motion

- Discriminant $D = \tilde{g}_2^3 27\tilde{g}_3^2 > 0 \Rightarrow 3$ real roots $\tilde{e}_i, i = 1, 2, 3$
- BUT: roots might not fulfill $(c_3\tilde{z} + c_4)^{-1} = \cos^2\theta \le 1$
- AND: for one root \Rightarrow two values of θ with $\cos \theta = \pm (c_3 \tilde{z} + c_4)^{-1/2}$
- $\Theta(\theta) = 0 \Rightarrow$ (a) 4 real, (b) 2 real, (c) no real roots



Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

$\theta(\lambda)$ motion

Solution in terms of Weierstrass p-function

$$heta(\lambda) = \arccos\left[\pmrac{1}{\sqrt{c_3\wp\left(rac{1}{c_3}(\lambda-\lambda_0)+ ilde{C}; ilde{g}_2, ilde{g}_3
ight)+c_4}}
ight]$$

with

$$ilde{C} = \int_{ ilde{z}_0}^\infty rac{d ilde{z}}{\sqrt{4 ilde{z}^3 - ilde{g}_2 ilde{z} - ilde{g}_3}}$$

•
$$\tilde{z}_0 = \tilde{e}_1 \Rightarrow \tilde{C} = K(\mathcal{K})/\sqrt{\tilde{e}_1 - \tilde{e}_3}$$

• $\tilde{z}_0 = \tilde{e}_3 \Rightarrow \tilde{C} = iK(\mathcal{K}')/\sqrt{\tilde{e}_1 - \tilde{e}_3}$

ヘロト ヘワト ヘビト ヘビト

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

$\varphi(\lambda)$ and $t(\lambda)$ motion

Rewrite

$$\beta d\varphi = \frac{L_z \csc^2 \theta - aE}{\sqrt{\Theta(\theta)}} d\theta + \frac{a\Delta^{-1}P(r)}{\sqrt{R(r)}} dr =: dI_{\theta} + dI_r$$
$$dt = a(L_z - aE \sin^2 \theta) \frac{d\theta}{\sqrt{\Theta(\theta)}} + (r^2 + a^2)\Delta(r)^{-1}P(r) \frac{dr}{\sqrt{R(r)}} =: d\bar{I}_{\theta} + d\bar{I}_r$$

solutions for I_{θ} , I_r , \overline{I}_{θ} , \overline{I}_r in terms of Weierstrass ζ - and σ -functions

・ロト ・ ア・ ・ ヨト ・ ヨト

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Example: Solution for I_{θ}

With new coordinate $\tilde{z} = (\sec^2 \theta - c_4) / c_3$:

$$dI_{ heta} = rac{c_3(L_z - aE)d ilde{z}}{\sqrt{4 ilde{z}^3 - ilde{g}_2 ilde{z} - ilde{g}_3}} + rac{L_z(c_4 + c_3c_5)d ilde{z}}{(ilde{z} - c_5)\sqrt{4 ilde{z}^3 - ilde{g}_2 ilde{z} - ilde{g}_3}} \ , \ \ c_5 = (1 - c_4)/c_3$$

Introducing

$$x:=\int\limits_{\infty}^{\tilde{z}}rac{d ilde{z}}{\sqrt{4 ilde{z}^3- ilde{g}_2 ilde{z}- ilde{g}_3}} \ \Rightarrow ilde{z}=\wp(x; ilde{g}_2, ilde{g}_3)$$

we have

$$dI_{\theta} = c_3(L_z - aE)dx + (c_4 + c_3c_5)\frac{dx}{\wp(x) - c_5}$$

with $x = \lambda / c_3$ we find

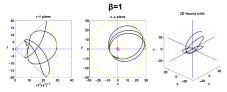
$$I_{\theta} = (\mathbf{L}_{z} - \mathbf{a}\mathbf{E})\lambda + \sum_{i=1}^{2} \frac{\mathbf{c}_{4} + \mathbf{c}_{3}\mathbf{c}_{5}}{\wp'(\mathbf{x}_{i})} \left[\frac{\lambda}{\mathbf{c}_{3}} \zeta(\mathbf{x}_{i}) + \ln\left(\sigma(\mathbf{x} - \mathbf{x}_{i})\right) \right]$$

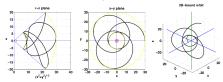
where $\wp(x_i) = c_5, i = 1, 2$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Example of geodesic: bound orbit

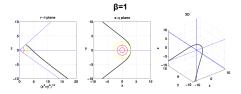


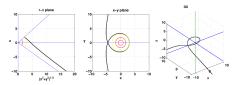


▶ ★ 臣 ▶

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Example of geodesic: escape orbit





< ∃→

э

Schwarzschild black hole pierced by cosmic string Kerr black hole pierced by cosmic string

Lense-Thirring effect

- Frame dragging effect of rotating massive body
- LAGEOS satellites: $\Omega_{\rm LT}(\beta=1)\approx 39\cdot 10^{-3}$ arcseconds/year (10% accuracy)
- If cosmic string present, i.e. $\beta \neq 1$:

$$\Omega_{\text{LT}}(\beta \neq 1) - \Omega_{\text{LT}}(\beta = 1) \leq 4 \cdot 10^{-3} \text{arcseconds/year}$$

• bound on energy per unit length $m_{(3)}$ of cosmic string

$$rac{1}{eta} - 1 \lesssim 10^{-11} \Rightarrow m_{(3)} \lesssim 10^{16} \ {
m kg/m}$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Abelian-Higgs strings

Abelian-Higgs strings

U(1) Abelian-Higgs model minimally coupled to gravity:

$$\mathcal{S} = \int d^4x \; \sqrt{-g} \left(rac{R}{16\pi G} + \mathcal{L}
ight)$$

with matter Lagrangian

$$\mathcal{L} = \mathcal{D}_\mu \phi (\mathcal{D}^\mu \phi)^* - rac{1}{4} \mathcal{F}_{\mu
u} \mathcal{F}^{\mu
u} - rac{\lambda}{2} \left(\phi \phi^* - \eta^2
ight)^2$$

with

$${\cal D}_\mu \phi =
abla_\mu \phi - {\it ie} {\cal A}_\mu \phi ~,~ {\cal F}_{\mu
u} = \partial_\mu {\cal A}_
u - \partial_
u {\cal A}_\mu$$

 ϕ : complex scalar field

 A_{μ} : U(1) gauge field

e: gauge coupling

- λ : self-interaction coupling
- $\eta \neq 0$: vacuum expectation value

→ E > < E >

< 🗇 🕨

Abelian-Higgs strings

Ansatz for static, straight strings

• Matter fields (Nielsen & Olesen, 1973)

$$\phi(
ho, arphi) = \eta h(
ho) e^{inarphi} \ , \ A_{\mu} dx^{\mu} = rac{1}{e} \left(n - P(
ho)
ight) darphi$$

n: degree of map $S^1 \to S^1$, homotopy group $\pi_1(S^1) = \mathbb{Z}$ • Metric

$$ds^2 = N^2(\rho)dt^2 - d\rho^2 - L^2(\rho)d\varphi^2 - N^2(\rho)dz^2$$

Four non-linear coupled 2nd order ordinary differential equations in *h*, *P*, *N* and $L \Rightarrow$ have to be solved *numerically*

イロト イポト イヨト イヨト

Abelian-Higgs strings

Equations

$$\frac{(N^{2}Lh')'}{N^{2}L} = \frac{P^{2}h}{L^{2}} + \frac{\alpha}{2}h(h^{2} - 1)$$

$$\frac{L}{N^{2}}\left(\frac{N^{2}P'}{L}\right)' = 2h^{2}P$$

$$\frac{(LNN')'}{N^{2}L} = \gamma \left[\frac{(P')^{2}}{2L^{2}} - \frac{\alpha}{4}(h^{2} - 1)^{2}\right]$$

$$\frac{(N^{2}L')'}{N^{2}L} = -\gamma \left[\frac{2h^{2}P^{2}}{L^{2}} + \frac{(P')^{2}}{2L^{2}} + \frac{\alpha}{4}(h^{2} - 1)^{2}\right]$$

with

$$\gamma = 8\pi G \eta^2 = 8\pi rac{\eta^2}{M_{
m Pl}^2} \ , \ lpha = rac{\lambda}{e^2} = rac{M_{
m H}^2}{M_{
m W}^2}$$

 $M_{
m H}=\sqrt{2\lambda}\eta$ Higgs boson mass $M_{
m W}=\sqrt{2}e\eta$ gauge boson mass

ヘロト ヘワト ヘビト ヘビト

э

Abelian-Higgs strings

Boundary conditions

Regularity at the origin

$$\begin{array}{rcl} h(0) & = & 0 \ , \ P(0) = n \ , \ N(0) = 1 \ , \\ N'(0) & = & 0 \ , \ L(0) = 0 \ , \ L'(0) = 1 \end{array}$$

Finiteness of energy

$$h(\infty)=1 \ , \ P(\infty)=0$$

< < >> < </>

→ E → < E →</p>

Abelian-Higgs strings

Properties of Abelian–Higgs strings

• magnetic field $\vec{B} = B_z \vec{e}_z$ and quantized magnetic flux:

$$B_z = -rac{1}{e}rac{dP/d
ho}{
ho}$$
 , $\Phi_M = -rac{2\pi n}{e}$

• scalar core width \sim (Higgs mass)⁻¹ = $M_H^{-1} = (\sqrt{2\lambda}\eta)^{-1}$

- width of flux tubes $\sim (\text{gauge boson mass})^{-1} = M_W^{-1} = (\sqrt{2}e\eta)^{-1}$
- $M_H = M_W$: saturate energy bound $m_{(3)} = 2\pi \eta^2 n$ \Rightarrow **BPS limit**, but **no** analytic solutions

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Abelian-Higgs strings

Geodesics: Constants of motion



ヘロン ヘアン ヘビン ヘビン

Abelian-Higgs strings

Geodesic equation

$$\frac{1}{2}\left(\frac{d\rho}{d\tau}\right)^2 = \bar{E} - V_{\rm eff}(\rho)$$

with

$$ar{E} = (E^2 - \varepsilon)$$

and

$$V_{\rm eff}(\rho) = \frac{1}{2} \left[\frac{E^2 \left(1 - \frac{1}{N^2} \right) + \frac{p_z^2}{N^2} + \frac{L_z^2}{L^2} \right]$$

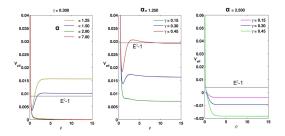
 $V_{\rm eff}$: effective potential

ヘロト ヘワト ヘビト ヘビト

Abelian-Higgs strings

Massive particles: Effective potential

- infinite potential barrier for $L_z \neq 0$
- **no** bound orbits for $\alpha \geq 2$

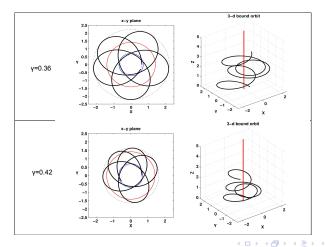


1 三 🖌 🛪 三 🕨

э

Abelian-Higgs strings

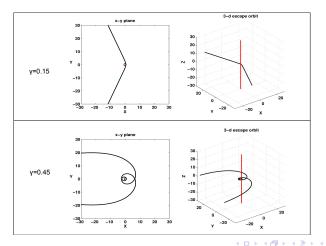
Massive particles: Example of bound orbit



Betti Hartmann Geodesic motion in cosmic string space-times

Abelian-Higgs strings

Massive particles: Example of escape orbit



Betti Hartmann Geodesic motion in cosmic string space-times

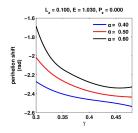
≣) ≣

Abelian-Higgs strings

Perihelion shift

For planar motion ($p_z = 0$):

$$\Delta \varphi = 2 \int_{\rho_{\min}}^{\rho_{\max}} \frac{L_z d\rho}{L(\rho)^2 \left(\frac{E^2}{N(\rho)^2} - \frac{L_z^2}{L(\rho)^2} - 1\right)^{1/2}} - 2\pi$$



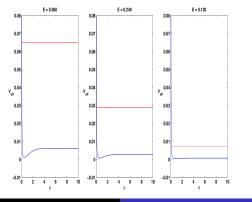
A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

★ E → ★ E →

Abelian-Higgs strings

Massless particles: Effective potential

- infinite potential barrier for $L_z \neq 0$
- no bound orbits



э

э

Abelian-Higgs strings

Massless particles: no bound orbits

Compare to Gibbons, 1993:

In a general cosmic string space-time with topology $\mathbb{R}^2 \times \Sigma$ where Σ has positive Gaussian curvature a massless test particle must move on a geodesic that escapes to infinity in both directions.

イロト イポト イヨト イヨト

Abelian-Higgs strings

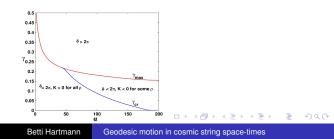
Massless particles: no bound orbits

Massless particles in x-y-plane

$$dt^2 = rac{1}{N^2} d
ho^2 + rac{L^2}{N^2} darphi^2 = ilde{g}_{ij} dx^i dx^j$$
, $i = 1, 2$

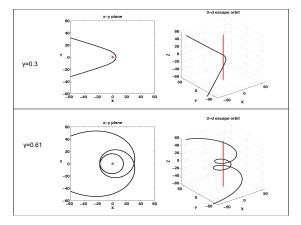
 \tilde{g}_{ij} optical metric of manifold Σ with Gaussian curvature

$$K = \frac{L'}{L}N'N - \frac{L''}{L}N^2 - (N')^2 + NN''$$



Abelian-Higgs strings

Massless particles: Example of escape orbit



Betti Hartmann Geodesic motion in cosmic string space-times

▶ < Ξ >

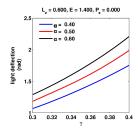
э

Abelian-Higgs strings

Light deflection

For planar motion ($p_z = 0$):

$$\Delta \varphi = 2 \int_{\rho_{\min}}^{\infty} \frac{L_z d\rho}{L(\rho)^2 \left(\frac{E^2}{N(\rho)^2} - \frac{L_z^2}{L(\rho)^2}\right)^{1/2}} - \pi$$



A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

★ E → ★ E →

Summary

- Link between cosmic strings ↔ fundamental strings
- possible observation ...
 - ... in the Cosmic Microwave background (Power- and Polarization spectrum)
 - ... through motion of test particles in cosmic string space-times
- in view of this ...
 - ... found the complete set of solutions to the geodesic equation in space-time of Schwarzschild- and Kerr black hole pierced by infinitely thin cosmic string
 - ... found solutions to the geodesic equation in the space-time of an Abelian-Higgs string

イロト イポト イヨト イヨト

Summary

- Applications
 - computation of gravitational wave templates for extreme mass ratio inspirals
 - gravitational lensing
 - test particle motion in solar system if sun is not perfectly spherically symmetric
 - possible explanation of the observed alignment of polarization vectors of quasars on cosmological scales via remnants of cosmic string decay

イロト イポト イヨト イヨト

Outlook

Work in progress...

- ... solutions to the geodesic equation in other numerically given space-times (semilocal, *p*-*q*-strings, superconducting...)
- ... solutions to the geodesic equation in space-time with cosmic string and (positive or negative) cosmological constant ⇒ hyperelliptic integrals

 \Rightarrow compare Talks by C. Lämmerzahl and V. Kagramanova

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト