To the Existence of Non-Abelian Monopole: The Algebro-Geometric Approach

Victor Enolski
Institute of Magnetism, Kiev
\&
ZARM, Bremen University

ICMS Workshop

Higher genus sigma function and applications
October 11-15, 2010
Edinburgh

Publications

- Enolski Victor and Braden Harry. On the tetrahedrally symmetric monopole, Commun. Math. Phys., 2010, 299, no. 1, 255-282. arXiv: math-ph/0908.3449.
- Enolski Victor and Braden Harry. Finite-gap integration of the SU(2) Bogomolny equations, Glasgow Math.J. 2009, 51 , Issue A, 25-41; arXiv: math-ph/ 0806.1807.

What is the monopole?

Yang-Mills-Higgs Lagrangian density L in Minkowski space of the Georgi-Glashow Model, also Standard Model

$$
L=-\frac{1}{4} \operatorname{Tr} F_{i j} F^{i j}+\frac{1}{2} \operatorname{Tr} D_{i} \Phi D^{i} \Phi+V
$$

Here $F_{i j}$ Yang-Mills field strength

$$
F_{i j}=\partial_{i} a_{j}-\partial_{j} a_{i}+\left[a_{i}, a_{j}\right]
$$

a_{i} gauge field, D_{i} covariant derivative acting on the Higgs field Φ by

$$
D_{i} \Phi=\partial_{i} \Phi+\left[a_{i}, \Phi\right]
$$

and V-potential. The gauges and Higgs field take value in Lie algebra of the gauge group.

Static solution

Gauges $a_{i}(\mathbf{x})$ and Higgs field $\Phi(\mathbf{x})$ are time-independent.

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}
$$

The boundary conditions are supposed

$$
\begin{gathered}
\left.\sqrt{-\frac{1}{2} \operatorname{Tr} \Phi(r)^{2}}\right|_{r \rightarrow \infty} \sim 1-\frac{n}{2 r}+O\left(r^{-2}\right) \\
r=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}
\end{gathered}
$$

The positive integer $n \in \mathbb{N}$ is the first Chern number of the charge Such static solution is called non-abelian monopole of the charge n with $n \in \mathbb{N}$.

Bogomolny equation

Suppose that (i) solution is static and (ii) potential $V=0$ (BPS -Bogomolny-Prasad-Sommerfeld limit) but the above boundary condition remains unchanged.
Configurations that minimizing the energy of the system solve Bogomolny equations

$$
D_{i} \Phi= \pm \sum_{j, k=1}^{3} \epsilon_{i j k} F_{j k}
$$

Moreover (iii) fix the gauge group as $S U(2)$
Our development deals with:

static $S U(2)$ monopole in BPS limit \sim solutions of $S U(2)$ Bogomony equations

In particular, Bogomolny equation for the gauge group $U(1)$ is Dirac equation \equiv Abelian monopole.

$$
U(1): \quad \mathbf{B}=\nabla \Phi, \quad \Phi=\frac{n}{2 r}
$$

ADMHN theorem

The charge n monopole solution is given

$$
\begin{aligned}
& \Phi(\mathbf{x})_{\mu \nu}=\imath \int_{0}^{2} s \mathbf{v}_{\mu}^{\dagger}(\mathbf{x}, s) \mathbf{v}_{\nu}(\mathbf{x}, s) \mathrm{d} s, \\
& a_{i}(\mathbf{x})_{\mu \nu}=\imath \int_{0}^{2} \mathbf{v}_{\mu}^{\dagger}(\mathbf{x}, s) \frac{\partial}{\partial x_{i}} \mathbf{v}_{\nu}(\mathbf{x}, s) \mathrm{d} s, \quad i=1,2,3,
\end{aligned}
$$

$\mathbf{v}_{\mu}(\mathbf{x}, \mathrm{s})$ - two orthonormalizable solutions to the Weyl equation

$$
\left(-\imath 1_{2 n} \frac{\mathrm{~d}}{\mathrm{~d} s}+\sum_{j=1}^{3}\left(T_{j}(s)+\imath x_{j} 1_{n}\right) \otimes \sigma_{j}\right) \mathbf{v}(\mathbf{x}, s)=0
$$

$n \times n$ matrices $T_{j}(s), s \in(0,2)$ satisfy to the $\mathbf{N a h m}$ equations

$$
\frac{\mathrm{d} T_{i}(s)}{\mathrm{d} s}=\frac{1}{2} \sum_{j, k=1}^{3} \epsilon_{i j k}\left[T_{j}(s), T_{k}(s)\right]
$$

$\operatorname{Res}_{s=0} T_{i}(s)$: irreducible n-dimensional representation of $s u(2)$; $T_{i}(s)=-T_{i}^{\dagger}(s), T_{i}(s)=T_{i}^{\dagger}(2-s)$.

Hitchin construction $(1982,1983)$

Nahm equations admit the Lax form:

$$
\begin{aligned}
& \frac{\mathrm{d} A(s, \zeta)}{\mathrm{d} s}=[A(s, \zeta), M(s, \zeta)] \\
& A(s, \zeta)=A_{-1}(s) \zeta^{-1}+A_{0}(s)+A_{+1}(s) \zeta \\
& M(s, \zeta)=\frac{1}{2} A_{0}(s)+\zeta A_{+1}(s) \\
& A_{ \pm 1}(s)=T_{1}(s) \pm \imath T_{2}(s), \quad A_{0}(s)=2 \imath T_{3}(s) .
\end{aligned}
$$

Condition

$$
\operatorname{det}\left(A(s, \zeta)-\eta 1_{n}\right)=0
$$

yields the curve $\hat{\mathcal{C}}=(\eta, \zeta)$ of genus

$$
g_{\widehat{\mathcal{C}}}=(n-1)^{2}
$$

is the spectral curve of the n-charge of monopole

$$
\eta^{n}+\alpha_{1}(\zeta) \eta^{n-1}+\ldots+\alpha_{n}(\zeta)=0
$$

$a_{k}(\zeta)$ - polynomials in ζ of degree $2 k$

Hitchin constraints

The curve $\hat{\mathcal{C}}$ is subjected to the constraints H1. $\hat{\mathcal{C}}$ admits the involution

$$
(\zeta, \eta) \rightarrow\left(-1 / \bar{\zeta},-\bar{\eta} / \bar{\zeta}^{2}\right)
$$

H2. \mathfrak{b}-periods of the second kind normalized differentials are half-integer

$$
\begin{aligned}
& \gamma_{\infty}(P)_{P \rightarrow \infty_{i}}=\left(\frac{\rho_{i}}{\xi^{2}}+O(1)\right) \mathrm{d} \xi, \quad \oint_{\mathfrak{a}_{k}} \gamma_{\infty}=0, \\
& \mathbf{U}=\frac{1}{2 \pi \imath}\left(\oint_{\mathfrak{b}_{1}} \gamma_{\infty}, \ldots, \oint_{\mathfrak{b}_{n}} \gamma_{\infty}\right)^{T}=\frac{1}{2} \mathbf{n}+\frac{1}{2} \tau \mathbf{m}
\end{aligned}
$$

$\mathbf{n}, \mathbf{m} \in \mathbb{Z}^{g}$ - Ercolani-Sinha vectors [Ercolani-Sinha (1989)]. H3. Us $+\mathbf{K}, \mathbf{K}$ - vector of Riemann constants, does not intersect theta-divisor, Θ, i.e.:

$$
\theta(\mathbf{U} s+\mathbf{K} ; \tau) \neq 0, \quad s \in(0,2)
$$

Result I: A charge 3 monopole curve

The most general charge 3 monopole curve, that respects C_{3} symmetry,

$$
\begin{aligned}
& (\eta, \zeta) \longrightarrow(\rho \eta, \rho \zeta), \quad \rho=\mathrm{e}^{22 \pi / 3} \\
& \eta^{3}+\alpha \eta \zeta^{2}+\beta \zeta^{6}+\gamma \zeta^{3}-\beta=0
\end{aligned}
$$

where α, β, γ - real.
Theorem [Braden \& E, 2009] The class of the monopole curves

$$
\eta^{3}+\chi\left(\zeta^{6}+b \zeta^{3}-1\right)=0
$$

consists only two representatives,

$$
b= \pm 5 \sqrt{2}, \quad \chi=-\frac{1}{6} \frac{\Gamma(1 / 6) \Gamma(1 / 3)}{2^{1 / 6} \pi^{1 / 2}}
$$

In other words there are no monopoles beyond tetrahedral symmetry.

Wellstein (1899), Matsumoto (2000)

The curve

$$
w^{3}=\left(z-\lambda_{1}\right) \ldots\left(z-\lambda_{6}\right)
$$

Holomorphic differentials

$$
\frac{\mathrm{d} z}{w}, \quad \frac{\mathrm{~d} z}{w^{2}}, \quad \frac{z \mathrm{~d} z}{w^{2}}, \quad \frac{z^{2} \mathrm{~d} z}{w^{2}} .
$$

Homology: $\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{4} ; \mathfrak{b}_{1}, \ldots, \mathfrak{b}_{4}\right\}$. Denote

$$
\mathbf{X}=\left(\oint_{\mathfrak{a}_{1}} \frac{\mathrm{~d} z}{w}, \ldots, \oint_{\mathfrak{a}_{4}} \frac{\mathrm{~d} z}{w}\right) .
$$

Then the period matrix is of the form

$$
\tau=\rho^{2}\left(H+\left(\rho^{2}-1\right) \frac{\mathbf{X} \mathbf{X}^{T}}{\mathbf{X}^{T} H \mathbf{X}}\right)
$$

where $\rho=\exp (2 \imath \pi / 3), H=\operatorname{diag}(1,1,1,-1)$.

Implementation of Wellstein's result

$$
\eta^{3}+\chi\left(\zeta^{6}+b \zeta^{3}-1\right)=0
$$

For a pair of relatively prime integers (m, n) obtain a solution to H 1 and H2: First solve for t

$$
\frac{2 n-m}{m+n}=\frac{{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1, t\right)}{{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1,1-t\right)}
$$

Then

$$
b=\frac{1-2 t}{\sqrt{t(1-t)}}
$$

Ercolani-Sinha vectors and Riemann period matrix are

$$
\begin{gathered}
\mathbf{n}=\left(\begin{array}{c}
n \\
m-n \\
-m \\
2 n-m
\end{array}\right), \quad \mathbf{m}=\left(\begin{array}{c}
-m \\
n \\
m-n \\
3 n
\end{array}\right) \\
\widehat{\tau}=\rho^{2} H-\left(\rho-\rho^{2}\right) \frac{\left(\mathbf{n}+\rho^{2} H \mathbf{m}\right)\left(\mathbf{n}+\rho^{2} H \mathbf{m}\right)^{T}}{\left(\mathbf{n}+\rho^{2} H \mathbf{m}\right)^{T} H\left(\mathbf{n}+\rho^{2} H \mathbf{m}\right)} .
\end{gathered}
$$

Strange equation

Compare our parametrization with Hitchin-Manton-Murray (1995) tetrahedral solution we conclude that at $n=1$ and $m=0$ should be:

$$
\begin{gathered}
\frac{{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; 1-t\right)}{{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; t\right)}=2, \\
t=\frac{1}{2}-\frac{5 \sqrt{3}}{18}, \quad b=5 \sqrt{2}
\end{gathered}
$$

In general: Do other algebraic numbers t exist such that

$$
\frac{{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; 1-t\right)}{{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; t\right)}=\frac{p}{q} \in \mathbb{Q}, \quad t \text { - algebraic }
$$

Ramanujan (1914)

Second Notebook: Let r (signature) and $n \in \mathbb{N}$

$$
\frac{{ }_{2} F_{1}\left(\frac{1}{r}, \frac{r-1}{r} ; 1 ; 1-x\right)}{{ }_{2} F_{1}\left(\frac{1}{r}, \frac{r-1}{r} ; 1 ; x\right)}=n \frac{{ }_{2} F_{1}\left(\frac{1}{r}, \frac{r-1}{r} ; 1 ; 1-y\right)}{{ }_{2} F_{1}\left(\frac{1}{r}, \frac{r-1}{r} ; 1 ; y\right)} .
$$

Then $\mathcal{P}(x, y)=0$ is algebraic equation, find it!
Ramanujan theory for signature 3, $r=3, n=2$

$$
(x y)^{\frac{1}{3}}+(1-x)^{\frac{1}{3}}(1-y)^{\frac{1}{3}}=1
$$

Set $y=\frac{1}{2}$ to obtain $b=5 \sqrt{2}$.
Other signatures: [Berndt \& Bhargava \& Garvan, 1995]

Tetrahedral monopole exists

Value $b=5 \sqrt{2}$ corresponds to $n=1, m=0$

Plot of the real and imaginary parts of the function $\theta(\mathbf{U} s+\mathbf{K})$,

$$
s \in[0,2]
$$

The case $b=-5 \sqrt{2}$ is given by $n=m=1, b=-5 \sqrt{2}$

Conjecture: No monopoles at other (m,n)

Here $n=4, m=-1$

Plot of $|\theta(\mathbf{U} s+\mathbf{K})|$ and $s \in[0,2]$. There are 6 additional zeros.
To make infinite number of plots at $(m, n) \in \mathbb{Z}^{2}$?

Unramified cover

[Schottky \& Jung 1909, Fay 1973]
Our genus 4 curve $\widehat{\mathcal{C}}$ covers 3 -sheetedly genus 2 curve \mathcal{C}.

$$
\begin{gathered}
\pi: \widehat{\mathcal{C}} \rightarrow \mathcal{C} \\
\widehat{\mathcal{C}}: \eta^{3}+\chi\left(\zeta^{6}+b \zeta^{3}-1\right)=0 \\
\mathcal{C}:=\nu^{2}=\left(\mu^{3}+b\right)^{2}+4
\end{gathered}
$$

with $\nu=\zeta^{3}+1 / \zeta^{3}, \mu=-\eta / \zeta$.
$\widehat{\mathcal{C}}$ admits automorphism: $\sigma:(\zeta, \eta) \rightarrow(\rho \zeta, \rho \eta)$
Riemann-Hurwitz formula,

$$
2-2 \widehat{g}=B+N(2-g)
$$

tells that the cover is unramified, $B=0$.

Schottky-Jung proportionality

In the case of unramified cover

$$
\pi: \hat{\mathcal{C}}(\eta, \zeta) \longrightarrow \mathcal{C}(x, y)
$$

exists a basis in homology group

$$
H(\hat{\mathcal{C}}, \mathbb{Z}), \quad\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{4} ; \mathfrak{b}_{1}, \ldots, \mathfrak{b}_{4}\right)
$$

admitting automorphism σ,

$$
\begin{aligned}
\sigma \circ \mathfrak{a}_{k} & =\mathfrak{a}_{k+1}, \quad \sigma \circ \mathfrak{b}_{k}=\mathfrak{b}_{k+1}, \quad k=1,2,3 \\
\sigma \circ \mathfrak{b}_{0} & =\mathfrak{b}_{0} .
\end{aligned}
$$

Associated period matrices

$$
\hat{\tau}=\left(\begin{array}{llll}
a & b & b & b \\
b & c & d & d \\
b & d & c & d \\
b & d & d & c
\end{array}\right) \quad \tau=\left(\begin{array}{cc}
\frac{1}{3} a & b \\
b & c+2 d
\end{array}\right) .
$$

Factorization of the θ-function

At the above conditions the associated θ-function admits remarkable factorization [Fay-Accola theorem, Fay-73, Eq.67]

$$
\frac{\theta\left(3 z_{1}, z_{2}, z_{2}, z_{2} ; \widehat{\tau}\right)}{\theta\left(z_{1}, z_{2} ; \tau\right) \theta\left(z_{1}+1 / 3, z_{2} ; \tau\right) \theta\left(z_{1}-1 / 3, z_{2} ; \tau\right)}=c .
$$

Here c independent of z_{1}, z_{2}

Homology transformation

Wellstein basis

Schottky-Jung basis

Transformation between homology bases

T. Northower program http://gitorious.org/riemanncycles

Humbert variety

Krazer, Lehrbuch der Thetafunktionen, (1903), Belokolos et al., Springer (1994).
If period matrix τ of genus two curve \mathcal{C} satisfies

$$
\begin{gathered}
q_{1}+q_{2} \tau_{11}+q_{3} \tau_{12}+q_{4} \tau_{22}+q_{5}\left(\tau_{12}^{2}-\tau_{11} \tau_{22}\right)=0 \\
q_{i} \in \mathbb{Z}, \quad q_{3}^{2}-4\left(q_{1} q_{5}+q_{2} q_{4}\right)=h^{2}, \quad h \in \mathbb{N} .
\end{gathered}
$$

Then exists a symplectic transformation \mathfrak{S}

$$
\mathfrak{S}: \tau \rightarrow\left(\begin{array}{cc}
T_{1} & \frac{1}{h} \\
\frac{1}{h} & \frac{T_{2}}{2}
\end{array}\right), \quad h \in \mathbb{N}
$$

Here h - degree of the cover \mathcal{C} over elliptic curve \mathcal{E}

$$
\pi: \mathcal{C} \rightarrow \mathcal{E}
$$

Outline of theta-transformations

$$
\begin{aligned}
& \widehat{\tau}=\rho^{2} H-\left(\rho-\rho^{2}\right) \frac{\left(\mathbf{n}+\rho^{2} H \mathbf{m}\right)\left(\mathbf{n}+\rho^{2} H \mathbf{m}\right)^{T}}{\left(\mathbf{n}+\rho^{2} H \mathbf{m}\right)^{T} H\left(\mathbf{n}+\rho^{2} H \mathbf{m}\right)} . \quad \text { Wellstein } \\
& \Downarrow \\
& \left(\begin{array}{llll}
a & b & b & b \\
b & c & d & d \\
b & d & c & d \\
b & d & d & c
\end{array}\right) \\
& \Downarrow \quad \text { Fay-Accola } \\
& \left(\begin{array}{cc}
\frac{1}{3} a & b \\
b & c+2 d
\end{array}\right) \\
& \Downarrow \\
& \left(\begin{array}{cc}
T & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{12 T}
\end{array}\right) \quad \text { Bolza } D_{6}
\end{aligned}
$$

H3 condition is reduced to

Proposition [Braden \& E, 2009]

$$
\theta(\mathbf{U} s+\mathbf{K} ; \tau)=0 \quad \text { at } \quad s \in(0,2)
$$

iff one from the following 3 conditions satisfies

$$
\begin{aligned}
& \frac{\vartheta_{3}}{\vartheta_{2}}\left(\left.y \sqrt{-3}+\varepsilon \frac{T}{3} \right\rvert\, T\right)+(-1)^{\varepsilon} \frac{\vartheta_{2}}{\vartheta_{3}}\left(\left.y+\varepsilon \frac{1}{3} \right\rvert\, \frac{T}{3}\right)=0 \\
& \varepsilon=0, \pm 1, \quad y=\frac{1}{3} s(n+m), \quad T=\frac{2 \sqrt{-3}(n+m)}{2 n-m}
\end{aligned}
$$

The solution $y=y(T)$ provides the answer.
We reduced problem in $(n, m) \in \mathbb{Z}^{2}$ to one variable T

A new θ-constant relation ?

$$
\begin{gathered}
\frac{\vartheta_{3}}{\vartheta_{2}}\left(\left.\frac{\tau}{3} \right\rvert\, \tau\right)=\frac{\vartheta_{2}}{\vartheta_{3}}\left(\frac{1}{3} \left\lvert\, \frac{\tau}{3}\right.\right) \\
\vartheta_{4}^{3}(0 \mid \tau) \imath \sqrt{3} \frac{\vartheta_{1}\left(\left.\frac{\tau}{3} \right\rvert\, \tau\right) \vartheta_{4}\left(\left.\frac{\tau}{3} \right\rvert\, \tau\right)}{\vartheta_{2}\left(\left.\frac{\tau}{3} \right\rvert\, \tau\right)^{2}}+\vartheta_{4}^{2}\left(0 \left\lvert\, \frac{\tau}{3}\right.\right) \frac{\vartheta_{1}\left(\frac{1}{3} \left\lvert\, \frac{\tau}{3}\right.\right) \vartheta_{4}\left(\frac{1}{3} \left\lvert\, \frac{\tau}{3}\right.\right)}{\vartheta_{3}\left(\frac{1}{3} \left\lvert\, \frac{\tau}{3}\right.\right)^{2}}=0
\end{gathered}
$$

We are able to prove that using Ramanujan third order transformation of Jacobian moduli

$$
\begin{aligned}
& k(\tau) \equiv \frac{\vartheta_{2}(0 \mid \tau)^{2}}{\vartheta_{3}(0 \mid \tau)^{2}}=\frac{(p+1)^{3}(3-p)}{16 p}, \\
& k(\tau / 3) \equiv \frac{\vartheta_{2}(0 \mid \tau / 3)^{2}}{\vartheta_{3}(0 \mid \tau / 3)^{2}}=\frac{(p+1)(3-p)^{3}}{16 p^{3}}
\end{aligned}
$$

No charge 3 monopoles beside tetrahedral

Three branches of the function y plotted against $(n+m) /(2 n-m)$
Only two cases $(n+m) /(2 n-m)=2$ and $(n+m) /(2 n-m)=1 / 2$ satisfy H3

Result II: Explicit integration of the Weyl equation in the ADHMN construction

Let $\widehat{\mathcal{C}}$ - monopole curve of genus $g=(n-1)^{2}$

$$
\eta^{n}+a_{1}(\zeta) \eta^{n-1}+\ldots+a_{n}(\zeta)=0
$$

satisfying Hitchin constraint H1, H2, H3. Then monopole fields $\Phi(\mathbf{x})$ and $a_{j}(\mathbf{x})$ are expressible in terms of values of
Baker-Akhiezer function

$$
\boldsymbol{\Psi}(\zeta, z)=\boldsymbol{\Psi}\left(P_{k}(\mathbf{x}), \pm 1\right)
$$

at the boundaries of the interval $z= \pm 1$ and algebraic functions of $\mathbf{x}, P_{k}(\mathbf{x})$ that are solutions of $2 n$ algebraic equation, so called Atiyah-Ward constraint.

Nahm Ansatz

Weyl equation:

$$
\left(\imath 1_{2 n} \frac{\mathrm{~d}}{\mathrm{~d} z}-\sum_{j=1}^{3}\left(T_{j}(z)+\imath x_{j} 1_{n}\right) \otimes \sigma_{j}\right) \mathbf{v}(\mathbf{x}, z)=0
$$

Construction equation:

$$
\left(\imath 1_{2 n} \frac{\mathrm{~d}}{\mathrm{~d} z}+\sum_{j=1}^{3}\left(T_{j}(z)+\imath x_{j} 1_{n}\right) \otimes \sigma_{j}\right) \mathbf{V}(\mathbf{x}, z)=0
$$

Fundamental solutions of the Weyl and Construction equations

$$
\begin{array}{r}
v=\left(\mathbf{v}^{(1)}(\mathbf{x}, z), \ldots, \mathbf{v}^{(2 n)}(\mathbf{x}, z)\right) \\
V=\left(\mathbf{V}^{(1)}(\mathbf{x}, z), \ldots, \mathbf{V}^{(2 n)}(\mathbf{x}, z)\right)
\end{array}
$$

are related as

$$
v(\mathbf{x}, z)=V(\mathbf{x}, z)^{-1 \dagger}
$$

Reduction to n-the order ODE

Any column vector of the fundamental solution V is presented in the form - Nahm Ansatz

$$
\mathbf{V}=\left[1_{2}+\sum_{k=1}^{3} u_{k}(\zeta) \sigma_{k}\right] \mid s>\otimes \boldsymbol{\Psi}(z, \zeta)
$$

where ζ - is certain parameter and the real vector,

$$
\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right), \quad u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=1
$$

is constructed in terms of the vector \mathbf{y},

$$
\begin{gathered}
\mathbf{y}=\left(\frac{1+\zeta^{2}}{2 \imath}, \frac{1-\zeta^{2}}{2},-\zeta\right), \quad \mathbf{y} \cdot \mathbf{y}=0 \\
\mathbf{u}=\imath \frac{\mathbf{y} \times \mathbf{y}}{\mathbf{y} \cdot \overline{\mathbf{y}}}
\end{gathered}
$$

Substitution to the Construction equation leads

$$
\begin{aligned}
& (A(\zeta)-\eta) \boldsymbol{\Psi}(z, \zeta)=0 \\
& \left(\frac{\mathrm{~d}}{\mathrm{~d} z}+M(\zeta)\right) \boldsymbol{\Psi}(z, \zeta)=0
\end{aligned}
$$

where $A(\zeta)$ and $M(\zeta)$ are precisely Hitchin operators in the Lax representation of Nahm equations

$$
\begin{aligned}
& A(z, \zeta)=A_{-1}(z) \zeta^{-1}+A_{0}(z)+A_{+1}(z) \zeta \\
& M(z, \zeta)=\frac{1}{2} A_{0}(z)+\zeta A_{+1}(z) \\
& A_{ \pm 1}(z)=T_{1}(z) \pm \imath T_{2}(z), \quad A_{0}(z)=2 \imath T_{3}(z)
\end{aligned}
$$

with the constraint: - Atiyah-Ward constraint:

$$
\eta=2 \mathbf{y} \cdot \mathbf{x}
$$

that is $2 n$-th order algebraic equation

$$
\operatorname{det}(L(\zeta)-2 \mathbf{y} \cdot \mathbf{x})=0
$$

The vector function $\boldsymbol{\Psi}(z, \zeta)$ is the Baker-Akhiezer function appearing at the integration of the Nahm equation.

Spectral problem

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} z}+Q(z)\right) \boldsymbol{\Psi}=-\zeta \operatorname{diag}\left(\rho_{1}, \ldots, \rho_{n}\right) \boldsymbol{\Psi}
$$

is solved in θ-functions of the curve $\widehat{\mathcal{C}}$
Dubrovin (1977): N-dimensional Euler top,
Ercolani-Sinha (1989): Krichever method:

$$
\begin{aligned}
& \Psi_{j}(z, P)=G(P) \exp \left\{z \int_{P_{0}}^{P} \gamma_{\infty}-\nu_{j} z\right\} \\
& \quad \times \frac{\theta\left(\phi(P)-\phi\left(\infty_{j}\right)+\mathbf{U}(z+1)+\mathbf{K} ; \tau\right) \theta(\mathbf{U}+\mathbf{K} ; \tau)}{\theta(\mathbf{U}(z+1)+\mathbf{K} ; \tau) \theta(\mathbf{U}(z+1)+\mathbf{K} ; \tau)} \\
& Q(z)_{j, I}=q_{j, l} \exp \left\{z\left(\nu_{l}-\nu_{j}\right)\right\} \\
& \quad \times \frac{\theta\left(\phi\left(\infty_{l}\right)-\phi\left(\infty_{j}\right)+\mathbf{U}(z+1)+\mathbf{K} ; \tau\right)}{\theta((z+1) \mathbf{U}+\mathbf{K} ; \tau)}
\end{aligned}
$$

where $G(P)$ is a given function and $\nu_{j}, q_{j, l}, \mathbf{K}$ are given constants.

Monopole fields

$$
\begin{aligned}
& \Phi(\mathbf{x})_{\mu \nu}=\imath \int_{-1}^{1} z \mathbf{v}_{\mu}^{\dagger}(\mathbf{x}, z) \mathbf{v}_{\nu}(\mathbf{x}, z) \mathrm{d} z, \\
& a_{i}(\mathbf{x})_{\mu \nu}=\imath \int_{-1}^{1} \mathbf{v}_{\mu}^{\dagger}(\mathbf{x}, z) \frac{\partial}{\partial x_{i}} \mathbf{v}_{\nu}(\mathbf{x}, z) \mathrm{d} z, \quad i=1,2,3
\end{aligned}
$$

Antiderivatives in these expressions are computed in closed form by Panagopoulos (1983):

$$
\begin{gathered}
\int \mathbf{v}_{\mu}^{\dagger}(\mathbf{x}, z) \mathbf{v}_{\nu}(\mathbf{x}, z) \mathrm{d} z=\mathbf{v}_{\mu}^{\dagger}(\mathbf{x}, z) \mathcal{F}^{-1}(\mathbf{x}, z) \mathbf{v}_{\nu}(\mathbf{x}, z) . \\
\mathcal{F}(\mathbf{x}, z)=\frac{1}{r^{2}} \mathcal{H}(\mathbf{x}) \mathcal{T}(z) \mathcal{H}(\mathbf{x})-\mathcal{T}(z), \\
\mathcal{T}(z)=\sum_{i=1}^{3} \sigma_{i} \otimes T_{i}(z), \quad \mathcal{H}=\sum_{i=1}^{3} x_{i} \sigma_{i} \otimes 1_{n} .
\end{gathered}
$$

Also

$$
\begin{gathered}
\int z \mathbf{v}_{\mu}^{\dagger}(\mathbf{x}, z) \mathbf{v}_{\nu}(\mathbf{x}, z) \mathrm{d} z=\mathbf{v}_{\mu}^{\dagger}(\mathbf{x}, z) \mathcal{F}^{-1}(\mathbf{x}, z)\left[z+2 \mathcal{H}(\mathbf{x}) \frac{\mathrm{d}}{\mathrm{~d} r^{2}}\right] \mathbf{v}_{\nu}(\mathbf{x}, z) \\
\int \mathbf{v}_{\mu}^{\dagger}(\mathbf{x}, z) \frac{\partial}{\partial x_{i}} \mathbf{v}_{\nu}(\mathbf{x}, z) \mathrm{d} z=\mathbf{v}_{\mu}^{\dagger}(\mathbf{x}, z) \mathcal{F}^{-1}(\mathbf{x}, z) \\
\times\left[\frac{\partial}{\partial x_{i}}+\frac{1}{r^{2}} \mathcal{H}(\mathbf{x})\left(z x_{i}+\imath(\mathbf{x} \times \nabla)_{i}\right)\right] \mathbf{v}_{\nu}(\mathbf{x}, z)
\end{gathered}
$$

Conclusion: Monopole fields are expressible in terms of

$$
\left.\operatorname{Res}\right|_{z= \pm 1} \frac{\theta\left(\phi\left(P_{i}\right)-\phi\left(\infty_{j}\right)+\mathbf{U}(z+1)+\mathbf{K} ; \tau\right)}{\theta(\mathbf{U}(z+1)+\mathbf{K} ; \tau)}
$$

with P_{j} solutions of the algebraic equation - Atiyah-Ward constraint. Realization of the construction in particular cases $n=2, n=3$ - in progress

