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Basic idea - we associate multiply periodic functions with plane curves
of genus g. These functions satisfy interesting integrable PDEs. How
do we find these PDES, in particular what is the connection with
τ -functions? How do we find the associated Kummer varieties, and
what can we say about their structure?
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σ and ℘ functions

Associated with a curve of genus g, there is an entire function σ of g
variables which generalises the Weierstrass σ(u) function

σ(u) = σ(u1, u2, . . . , ug).

Given this function, we can define generalized ℘ functions

℘ij(u1, u2, . . . ) ≡ −
∂2

∂ui∂uj
ln σ(u1, u2, . . . ),

(Note that in this notation the genus one, ℘ function becomes℘11).
Higher derivatives are derived in a similar way

℘ij ...(u1, u2, . . . ) ≡ −
∂∂ . . .

∂ui∂uj∂ . . .
ln σ(u1, u2, . . . ),
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Hyperelliptic case, g = 2

The general hyperelliptic curve takes the form

C : y2 = xs + λs−1xs−1 + · · · + λ0, s > 4.

The simplest case, s = 5, has genus 2. It was considered in detail by
Baker (1907). σ and ℘ are now functions of g = 2 variables, i.e.

σ = σ(u1, u2) = σ(u)

There are two differentials of the first kind, dx/y and x dx/y , and we
have

u1 =

∫ (x1,y1) dx
y

+

∫ (x2,y2) dx
y

, u2 =

∫ (x1,y1) x dx
y

+

∫ (x2,y2) x dx
y

,

for two variable points (xi , yi ) on C.
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Hyperelliptic case, g = 2, PDEs

The classical method to derive the PDEs associated with a given curve
involves a mix of two techniques. The first is to expand the “Klein
formula”

g
∑

i ,j=1

℘ij

(

∫ (x,y)

P0

du −

g
∑

k=1

∫ (xk ,yk)

P0

du + K P0

)

Ui(x , y)Uj (xk , yk )

=
F(x , y ; xk , yk )

(x − xk )2 , k = 1, . . . , g.

The other is to use some of the equations following from this formula to
derive terms in the expansion of the σ-function, then use this
expansion itself in a “bootstrap” fashion to derive other equations.
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Hyperelliptic case, g = 2, PDEs

In the genus 2 case this gives the five equations expressing the
4-index ℘ functions ℘ijkℓ in terms of the ℘ij .

℘2222 − 6℘2
22 = 1

2λ3 + λ4℘22 + 4℘12,

℘1222 − 6℘22℘12 = λ4℘12 − 2℘11,

℘1122 − 2℘22℘11 − 4℘2
12 = 1

2λ3℘12,

℘1112 − 6℘11℘12 = λ2℘12 −
1
2λ1℘22 − λ0,

℘1111 − 6℘2
11 = λ1℘12 + λ2℘11 − 3λ0℘22 −

1
2λ0λ4 − 1

8λ1λ3.

These are the generalization of ℘′′ − 6℘2 = −1
2g2 in genus 1.

We can stratify all the equations in the theory by assigning a weight to
each term u1 = 3, u2 = 1, λi = −2(5 − i). So the 4-index PDEs have
homogeneous weights -4, -6, -8, -10, -12, respectively.
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Hyperelliptic case, g = 2, PDEs

In the genus 2 case we have 10 generalizations of
(℘′)2 = 4℘3 − g2℘ − g3 in genus 1. The first three are

℘2
222 = 4℘3

22 + 4℘12℘22 + 4℘11 + λ4℘
2
22 + λ2,

℘122℘222 = 4℘2
22℘12 + λ4℘22℘12 + 2℘2

12 − 2℘11℘22 + 1
2λ3℘22 + 1

2λ1,

℘2
122 = 4℘2

12℘22 + λ4℘
2
12 + λ4℘

2
12 − λ0,

. . . = . . .

There are also a set of relations which are bilinear in the 3-index and
the 2-index ℘

℘122 + ℘22℘122 − ℘12℘222 = 0,

2℘11℘222 + 2℘111 + (1
2λ3 + 2℘12)℘122 − (λ4 + 4℘22)℘112 = 0,

. . .

Many results for the hyperelliptic case for arbitrary g, but odd s, have
been developed by Buchstaber, Enolskii, and Leykin.
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Kummer variety, g = 2

We can derive the formula for “Kummer’s quadratic surface” in the
genus two case by noting that

(℘2
222) · (℘

2
122) − (℘122℘222)

2 = 0

We call such relations “Kummer Relations”. This one gives the
following quartic in three variables with weight -16.

λ2λ4Y 2 + 4Zλ4Y 2 − 2Xλ3YZ − λ1Yλ4X − 4ZYλ2 + 4λ0XY + Xλ3λ0

+ 2λ1XZ − 1
2λ1Yλ3 − 4YX 2λ1 + λ4X 2λ0 + 4λ2XY 2 + 8ZXY 2 + λ2λ0

+ 4λ0Z − 16YZ 2 − 2λ1Y 2 + 4X 3λ0 − 1
4Y 2λ2

3 − 2Y 3λ3 − 4X 2Z 2 − 1
4λ2

1

− 4Y 4 = 0, (K2)

with X = ℘22, Y = ℘12, Z = ℘11. This is not the only cross-product we
can form, but all lower weight KRs, down to

℘2
111℘

2
112 − (℘111℘112)

2 = 0,

with weight -32, can be shown by direct calculation to factor into two or
more terms, one of which being K2.
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Kummer variety, g = 2, matrix version

K2 ≡ det















2 λ0 λ1 −℘11 −℘12

λ1 2 ℘11 + 2 λ2 ℘12 + λ3 −℘22

−℘11 ℘12 + λ3 2 ℘22 + 2 λ4 1

−℘12 −℘22 1 0















= 0
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τ - and σ- functions

The ‘algebro-geometric τ -function’ AGT of a genus g curve Xg is
defined (Fay83) as a function of the ‘times’ t = (t1, . . . , tg , tg+1, . . .), a
point u ∈ Jac(Xg), as well as a point P ∈ Xg ;

τ(t ; u, P) = θ

(

∞
∑

k=1

Uk (P)tk +
1
2
ω−1u

)

exp







1
2

∑

m,n≥1

ωmn(P)tmtn







.

Here the “winding vectors” Uk (P) appear in the expansion of the
normalized holomorphic integral v , the quantities ωmn(P) define the
holomorphic part of the expansion of the fundamental differential of the
second kind ω(Q, S) near the point P.
We then introduce the τ -function by the formula:

τ(t ; u, P)

τ(0; u, P)
=

σ
(
∑∞

k=1 A
−1Uk (P)tk + u

)

σ(u)
exp







1
2

∞
∑

k ,l=0

ωalg
k ,l (P)tk tl







.
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Young tableau and PDEs in genus 2

The first non-trivial Plücker relation corresponds to the partition
λ = (2, 2), with Young diagram

In this case we obtain, after simplification, our previous result

KdV4 : ℘2222(u) = 6℘2
22(u) + 4℘12(u) + λ4℘22(u) + 1

2λ3

The weight of the tableau is 4 in this case, the same as (−) the weight
of the equation.
The tableau of weight 5 with 2 × 2 centres are

and

and both give the derivative of the result above.
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Young tableau and PDEs in genus 2

At weight 6 we have three independent Young tableaux with (2, 2)
centres

, , and .

(and transposes, which give the same results in the hyperelliptic case.)
These three independent tableaux give an overdetermined system of
three equations. After substituting for derivatives of the relation above,
we can solve for the two unknowns ℘1222 and ℘2

222 to get

KdV6 : ℘1222 = 6℘12℘22 − 2℘11 + λ4℘12

Jac6 : ℘2
222 = 4℘3

22 + λ3℘22 + λ4℘
2
22 + 4℘12℘22 + λ2 + 4℘11

each tableaux gives mix of 4-index and quadratic 3-index equations
(and Kummer Relations if appropriate).
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Hyperelliptic case, g = 3, PDEs

The genus 3 hyperelliptic curve is the (2, 7) curve

C : y2 = x7 + λ6x6 + · · · + λ0,

We can again grade the expressions by weights. These are

x y u1 u2 u3 λ6 λ5 λ4 λ3 λ2 λ1 λ0

wt. -2 -7 5 3 1 -2 -4 -6 -8 -10 -12 -14

The first few 4-index PDEs are

℘3333 − 6℘2
33 = λ6℘33 + 4℘23 + 1

2λ5,

℘2333 − 6℘23℘33 = 6℘13 − 2℘22 + λ6℘23,

. . . = . . .

℘2222 − 6℘2
22 = −12∆ − 3λ6℘11 + λ5℘12 + λ4℘22 + λ3℘23

+ 1
8λ5λ3 −

1
2λ6λ2 − 3λ2℘33 −

3
2λ1,

. . . = . . .

where ∆ = ℘11℘33 − ℘12℘23 − ℘2
13 + ℘13℘22. (Baker, Athorne).
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Hyperelliptic case, g = 3, Kummer relations

For the (2,7) curve we have 55 different quadratic 3-index relations, the
first three being

℘2
333 = 4 ℘3

33 + 4 ℘33℘23 + 4 λ5℘33 + 4 λ6℘
2
33 + 4 λ4 − 4 ℘13 + 4 ℘22,

℘233℘333 = 4 ℘2
33℘23 + 2 ℘2

23 + 2 λ5℘23 + 4 ℘33λ6℘23 + 4 ℘33℘13

− 2 ℘22℘33 + 2 ℘12 + 2 λ3,

℘2
233 = 4 ℘11 + 8 ℘23℘13 − 4 ℘22℘23 + 4 ℘33℘

2
23 + 4 λ2 + 4 λ6℘

2
23.

Defining a Kummer relation (KR) as

(℘ijk℘ℓmn) · (℘opq℘rst) − (℘ijk℘rst) · (℘opq℘ℓmn) = 0

for 1 ≤ i , . . . , t ≤ g. Each KR is at most sextic in the six variables
℘11, ℘12, ℘13, ℘22, ℘23, ℘33. We have a large number of these.

The set of KRs form the Kummer variety for this curve. How many KRs
do we need to characterise the Kummer variety?
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Hyperelliptic case, g = 3, Kummer relations

The Kummer variety as defined above contains all (?) the polynomial
relations satisfied by the 2-index ℘ij functions in the (2,7) case.
We can grade the Kummer relations (KR) by weight, from

K16 ≡ ℘2
333 · ℘

2
233 − (℘233℘333)

2 = 0

at weight -16 to

K56 ≡ ℘2
111 · ℘

2
112 − (℘111℘112)

2 = 0

at weight -56. Note we may have two or more KRs with the same
weight. How many are independent?
We can use Groebner base theory to answer this question. Start from
K16 and keep adding lower weight KRs. At each stage test the lhs of
new addition using a Groebner base of the lhs of the set of KRs
obtained previously.
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Groebner basis for the Kummer variety, (2,7) case

Algorithm: Start from K16. Check the next KR in the list against a
Groebner basis (GB) for the existing KRs in the list to see if it is
independent. If so add to the list and generate a new GB. Repeat.

In addition to K16, we find one of the weight -18 KRs is independent,
two of the weight -20 KRs, one from weight 22, and one from weight
24. All these are formed from quadratic terms of the type ℘igg℘jgg

(singled out in the BEL98 approach). All the others belong to the ideal
generated by these six relations.

The second weight 20 and the weight 22 Jac KR lie in the radical ideal
generated by the first three, but it is not clear if the weight 24 KR does
(big calculation). Is it possible to prove that the Kummer variety can be
generated by the first three KRs?.

Can we visualise the Kummer variety in any way?
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Visualisation of the (2,7) Kummer variety

Take the KRs {K16, K18, K20a}, three quartics in six variables. Take
resultants of two pairs to eliminate one variable, say ℘11. take a further
resultant with respect to another, say ℘12. We now have a single
relation in four variables - a surface in 4D. If we take one of the
variables to be “time”, we can display this as an animation in 3D space.

What should we be looking for - or are the properties of the (2,7)
Kummer variety completely understood and in no need of explicit
calculations?
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Movie of (2,7) Kummer variety

firstframe
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Matrix theory, (2,7) case

All the quadratic 3-index ℘ijk℘ℓmn relations can be derived with the aid
of a 5 × 5 matrix (BEL97, Athorne)




















4λ0 2λ1 −2℘11 −2℘12 −2℘13

2λ1 4℘11 + 4λ2 2℘12 + 2λ3 4℘13 − 2℘22 −2℘23

−2℘11 2℘12 + 2λ3 4℘22 − 4℘13 + 4λ4 2℘23 + 2λ5 −2℘33

−2℘12 4℘13 − 2℘22 2℘23 + 2λ5 4℘33 + 4λ6 2

−2℘13 −2℘23 −2℘33 2 0





















This matrix is of rank 3 and the 4 × 4 minors of this matrix can all
shown to belong to the Kummer variety.
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(3, 4) trigonal curve

The simplest trigonal curve is the strictly trigonal (3,4) curve

C : y3 = x4 + λ3x3 + · · · + λ0,

which has genus 3. Now all functions are functions of u = (u1, u2, u3).
We can again grade the expressions by weights. These are

x y u1 u2 u3 λ3 λ2 λ1 λ0

wt. -3 -4 5 2 1 -3 -6 -9 -12

There are 14 four-index relations, the first 5 are

℘3333 − 6 ℘2
33 = −3 ℘22, (Boussinesq eqn)

℘2333 − 6 ℘23℘33 = 3 λ3℘33,

℘2233 − 2 ℘33℘22 − 4 ℘2
23 = 3 λ3℘23 + 4 ℘13 + 2 λ2,

℘2223 − 6 ℘22℘23 = 3 λ3℘22,

℘2222 − 6℘2
22 = 12℘33λ2 − 3℘33λ

2
3 − 4Q1333,

. . . = . . .

Note basis requires Q1333 = ℘1333 − 6℘33℘13, as well as the six ℘ij .
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Quadratic relations for the (3,4) curve

We have calculated all the 55 quadratic 3-index relations, first few are

℘2
333 = 4℘3

33 + ℘2
23 + 4℘13 − 4℘33℘22, [−6]

℘233℘333 = 4℘23℘
2
33 − ℘22℘23 + 2℘2

33λ3 − 2℘12, [−7]

℘2
233 = 4℘33℘

2
23 + 4℘33λ3℘23 + ℘2

22 + 4℘33λ2 − 4
3Q1333, [−8]

A full list would go down to ℘2
111 of weight -30.

Again we have a large number of Kummer relations (KR) in the form

(℘ijk℘ℓmn) · (℘opq℘rst) − (℘ijk℘rst) · (℘opq℘ℓmn) = 0,

but now we have seven variables ℘11, Q1333, ℘12, ℘13, ℘22, ℘23, ℘33.

We can again grade the KRs by weight, from

K14 ≡ ℘2
333 · ℘

2
233 − (℘233℘333)

2 = 0 [−14]

to
K54 ≡ ℘2

111 · ℘
2
112 − (℘111℘112)

2 = 0 [−54]
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Kummer variety, (3,4) curve?

One difference from the (2,7) case is that the set of all KRs does not
contain all the polynomial relationships involving the seven variables
℘11, Q1333, ℘12, ℘13, ℘22, ℘23, ℘33, which we will rewrite as
X10, X8, X7, X6, X4, X3, X2.

Calculations show an extra relationship, which we will call K12. It is
quartic and of weight -12

K12 ≡ −2λ0 − 4X2X3X7 + λ2
3X 3

2 − 4λ2X 3
2 − X 2

3 λ2 − 2X6λ2 − 8X6X 3
2

− 4X6X 2
3 + 4X2X4λ2 + 6X2X4X6 − 2X 2

6 − X4X8 − X 2
2 X 2

4

+ 2X4X2X 2
3 + 3X4X2λ3X3 + X 3

4 − 3X2λ3X7 − 3X3X6λ3 − λ3X 3
3

− X 4
3 + 4

3X 2
2 X8 − λ1X3 + 2X2X10 = 0,

On weight grounds this cannot belong to the set of KRs.

Where does this extra relation come from? Does it have any deeper
significance?
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Groebner basis for the Kummer variety, (3,4) case

We can use the same agorithm as before, building up a list of KRs
together with the corresponding Groebner basis. But now we have two
choices. The first is to use K12 as a starting point, then add known KRs
starting with K14. We find we need seven relations in total,
K12, K14, K15, K16a, K16b, K17, K18.

Another approach: A tentative matrix theory (BEL00) gives
prominence to KR’s involving only 3-index ℘ of the form ℘igg℘jgg. This
theory does not result in any equations involving ℘11 (X10). If we
restrict ourselves to this subset, which excludes K12, we can form a
consistent variety from the six KRs: K14, K17, K18, K20, K21, K22. Some
of these KRs are quintic.

It has not been possible so far to characterise the radical ideal involved
in these two cases. Is it possible to say something about the number of
generators required from general theory?
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Visualisation of the (3,4) Kummer variety

We have seen that we have two “different” varieties arising from the
(3,4) curve, in seven and six variables respectively. We can procede as
in the (2,7) case to eliminate variables using resultants to give a single
expression. The perhaps surprizing result is that we end up with the
same single expression in four variables in both cases. Of course to
achieve this, one of the variables which is eliminated must be
X10 = ℘11.

The resulting expression has 1,506 terms if all the λi are nonzero. The
case of the more general (3,4) curve (still with a branch point at infinity)
also goes through with some very long computations - the resulting
expression in four variables has 56,653 terms.

Questions: What should we be looking for? Is there anything known
in the literature about this variety? Can we get a full matrix theory for
(3,4)?
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Genus 4

In genus 4 we again have a hyperelliptic curve y2 = x9 + . . . and a
trigonal curve, the simplest of which is y3 = x5 + . . . . Most but not all
of the PDEs are known, enough to begin to look at the Kummer
problem. Unfortunately the computations rapidly become unmageable,
using much time (weeks) or too much memory (>8GB) so not much
progress has been made so far. We have established that there are
two independent polynomial relations in the (3,5) case which cannor
be written as KRs.
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Movie of (3,4) Kummer variety

firstframe
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