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Abstract

We use a case study of a pension plan wishing to hedge the longevity risk in its
pension liabilities at a future date. The plan has the choice of using either a cus-
tomised hedge or an index hedge, with the degree of hedge effectiveness being closely
related to the correlation between the value of the hedge and the value of the pen-
sion liability. The key contribution of this paper is to show how correlation and,
therefore, hedge effectiveness can be broken down into contributions from a number
of distinct types of risk factor. Our decomposition of the correlation indicates that
population basis risk has a significant influence on the correlation. But recalibration
risk as well as the length of the recalibration window are also important, as is cohort
effect uncertainty. Having accounted for recalibration risk, parameter uncertainty
and Poisson risk have only a marginal impact on hedge effectiveness.

Our case study shows that longevity risk can be substantially hedged using index
hedges as an alternative to customised longevity hedges and that, as a consequence,
index longevity hedges – in conjunction with the other components of an ALM
strategy – can provide an effective and lower cost alternative to both a full buy-out
of pension liabilities or even to a strategy using customised longevity hedges.

Keywords: hedge effectiveness, correlation, mark-to-model, valuation model, sim-
ulation, value hedging, longevity risk, stochastic mortality, population basis risk,
recalibration risk.

1 Introduction

Hedging the longevity risk in pension plans – the risk that, in aggregate, plan mem-
bers live longer than anticipated – is becoming increasingly important. As more
defined benefit pension plans close to future accrual and pension liabilities accord-
ingly become crystallised, plan sponsors face the choice of selling their legacy pension
liabilities or retaining them on their books and managing them.

The UK was the first country in the world to witness the development of both a
buy-out market for pension liabilities and a longevity swap market to help sponsors
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hedge longevity risk as part of an asset-liability management (ALM) strategy.

With a buy-out, an insurance company, in exchange for a buy-out fee, takes over
the plan liabilities and assets and takes on the responsibility for making the pension
payments until the last plan member dies. A buy-out is known as an insurance
indemnification solution, since all risks in the pension plan – the key ones being
interest-rate, inflation-rate and longevity risk – are fully transferred from the sponsor
to the insurer. The cost of a buy-out is high since the insurer has to post substantial
regulatory capital to ensure that the pension payments will be made with a high
degree of probability, as well as to ensure, ex ante, that the purchase price offers
an adequate expected return relative to the risks being transferred. In addition
to transferring all the pension assets, the sponsor might also need to make a cash
payment to the insurer if the plan is in deficit, in order to fund the buy-out. Further,
the sponsor foregoes the opportunity to manage the pension assets efficiently itself
and so reduce the ultimate cost of the liability.

In contrast, a sponsor might decide to retain the pension plan and implement an
ALM strategy, which broadly replicates the same economic effect as a buyout. This
brings certain cost advantages. First, the sponsor saves making the buyout risk
premium which would otherwise be paid to the insurer as compensation for taking
on the risks associated with the pension plan. Second, the cost of each compo-
nent of the ALM strategy can be separately negotiated and implemented, providing
greater transparency, minimal upfront hedging costs (since the principal hedging
instruments are interest-rate, inflation-rate and longevity swaps) and flexibility in
the timing and structure of implementation. However, the key disadvantage of such
an ALM strategy – which has been dubbed a “do-it-yourself” (DIY) buy-out – is
that the risks are not perfectly hedged. This is due to the idiosyncracies of each
pension plan’s membership and benefit structure. Swaps can hedge a significant
proportion of the relevant risks in a given pension plan, but inevitably there will
be some residual basis risk which cannot be hedged cost-effectively using capital
market instruments.

This paper deals with the hedging of longevity risk, and so we will focus our remarks
on this issue specifically. An ALM strategy might include the use of longevity swaps.
However, there are different types of longevity swap and, accordingly, different levels
of basis risk. A customised longevity swap takes into account the particular charac-
teristics of each pension plan’s demographics and benefit structure and is designed
to maximise hedge effectiveness. An important alternative to this is an index swap
that is linked to a relevant longevity index, rather than to the longevity experience
of the pension plan members. As an example, the index might be related to the
national population of the country in which the pension plan is domiciled. Since the
composition of a pension plan’s membership will differ from that of the index, the
hedge will inevitably involve greater basis risk (and hence lower effectiveness) than
a customised swap. As a standardised product, an index swap has the advantage of
being cheaper, less complex, and much easier to unwind. However, it only attempts
to reduce longevity risk, rather than eliminate it completely.

2



Plan sponsors therefore face two key trade-offs. One is between the high costs
and complete indemnification of a buy-out versus the lower costs and basis risk
associated with a DIY-buyout/ALM strategy. The other, within the context of
ALM, is between the higher costs and minimal basis risk of a customised longevity
swap versus the lower costs and greater liquidity but higher basis risk associated
with an index swap.

1.1 Analysis and evaluation of longevity hedges

In this paper, we examine we examine the trade-off between customised and index
longevity hedges. Coughlan et al. (2011) proposed a clear framework for “(i) de-
veloping an informed understanding of the basis risk, (ii) appropriately calibrating
the hedging instrument and (iii) evaluating hedge effectiveness”. In this paper, we
follow closely Coughlan et al. (2011) both in terms of the framework and the first
of their case studies. However, the key difference, and the main contribution, in the
present work is that whereas Coughlan et al. used a largely model-free bootstrap-
ping approach to the evaluation of hedge effectiveness in their case study, we use a
model-based simulation approach in our study. As will be demonstrated later, this
allows us to break down basis risk and the evaluation of hedge effectiveness into a
number of components by switching on and off a number of key risk factors.

Our case study involves the use of England & Wales male mortality (the LifeMetrics
index) to hedge liabilities linked to Continuous Mortality Investigation (CMI) male
assured lives mortality. The case study considers a value hedge (as opposed to a
cashflow hedge) set up at time 0 of a pension plan liability’s exposure to longevity
risk at a single future valuation date, T .2 The hedging instrument that we use will
be a “cash-settled” deferred longevity swap, (defined later). Decomposing the corre-
lation between the hedging instrument and the liability values is broadly equivalent
to decomposing the effectiveness of the hedge.

There are three key categories of factor that contribute to an assessment of hedge
effectiveness or the correlation between a hedging instrument and the liability being
hedged:

1. Factors related to population differences, including:

2A value hedge seeks to hedge the present value of a sequence of future pension cash flows at a
single future date, T . This contrasts with a cashflow hedge which consists of an asset strategy which
delivers a sequence of cashflows that is as close as possible to the sequence of pension plan liability
cashflows. Value hedging is fundamentally different from cashflow hedging. An effective value
hedge can be achieved using a variety of hedging instruments, each of which can be quite different
in style from the liability value being hedged. In contrast, a cashflow hedge generally requires a
hedging instrument that is very similar in structure to the liability cashflows. Nevertheless, the
ideas that we present here can be easily adapted for other choices of hedging instrument. Value
hedging is important in a number of circumstances, including: situations where meeting shorter-
term solvency requirements is more onerous than meeting cashflows in the long term (e.g. Nielsen,
2010); mergers and acquisitions where pension plan value is significant relative to the operating
business; hedging longevity risk associated with deferred pensions and annuities.
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• Population basis risk: this arises as a result of using a hedging instru-
ment linked to a different reference population from that of the hedging
population.

• Mismatched cohorts especially at younger ages: typically, the hedger of
population 2 will wish to hedge the longevity risk for an existing group
of plan members with accrued pension rights: that is, there will be some
historical data for that cohort. However, the hedger might choose to link
their hedging instrument to a cohort born in a different year (resulting
in an age mismatch). In theory, this reference cohort might be one for
which there will be no data until after time 0. In this case, the value of the
hedging instrument at T has the cohort effect as an additional source of
uncertainty that will have a deterimental impact on hedge effectiveness.3

2. Factors related to the model used for simulation, including:

• The choice of model to be fitted to historical mortality data and how the
parameters and latent state variables of this model will be calibrated.
This model will be used to simulate future mortality scenarios which will
then, one by one, be fed into the valuation model discussed below.4

• Parameter uncertainty: arises because the true values of the parame-
ters of the simulation model used to generate future mortality scenarios
and quantify longevity risk are unknown – this covers both the process
parameters (i.e., parameters governing the dynamics of the underlying
stochastic processes) and the latent state variables of the model (i.e., the
underlying age, period and cohort effects).

• Poisson risk:5 otherwise known as small-population risk or sampling vari-
ation; the risk that the mortality experience of a small group of people will
differ from the underlying true mortality rate; the financial consequences
can be magnified if there is significant variation between individuals in
pension entitlements.6

3. Factors related to the model used for valuation at the future valuation date,
T :

• The choice of model to be used to value liabilities at time T . This model
is likely to be different from the simulation model.7

3This means that, in practice, linkage to a future cohort would be suboptimal and not to be
recommended.

4There is model risk associated with the simulation model, since we do not know the true model
generating future mortality rates: we disregard this risk in this study.

5So-called because deaths in the pension plan are assumed to follow a Poisson distribution; see,
e.g., Dahl et al. (2008) and Li and Hardy (2009), and see, e.g., Li et al. (2009) for alternative
assumptions.

6We do not consider this so-called ‘big cheese’ risk explicitly in the present paper.
7There is also model risk in respect of the valuation model; again we disregard this risk in this

study.
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• Recalibration risk: the uncertainty in both future liability values and
hedging-instrument values associated with the calibration and recalibra-
tion of the parameters of the valuation model used to project mortality
beyond the measurement date. The valuation model contains a num-
ber of process parameters that are assumed to be remain constant over
time. However, the model will normally be calibrated using the latest
available data. Thus, the calibration will be dependent on the specific
scenario under consideration, and will be based solely on observed deaths
and exposures rather than assuming knowledge of the underlying latent
state variables. The extent to which valuation model parameters vary
from one simulation sccenario to the next results in additional random-
ness in liability and hedging-instrument values at T . Recalibration risk
is, therefore, heavily dependent on the scenarios generated by the sim-
ulation model and includes the influence of both parameter uncertainty
and Poisson risk.

• Recalibration window: the length of the lookback window over which the
valuation model is estimated and subsequently recalibrated; this reflects
a tradeoff between using more years of data to get a better estimate of
the volatility in the data and using fewer years of data to get a better
estimate of the current trend in mortality improvements; it has a direct
influence on recalibration risk.

4. Factors related to the structure of the hedge, such as:

• Choice of hedging instrument.

• Choice of maturity date, reference population and reference age(s).

• Sub-optimal or inaccurate hedge ratio.

• Robustness of the hedge ratio: the challenge is to devise strategies that
can maximise hedge effectiveness and to find solutions that are robust
relative to, for example, errors in the specification of the model and pa-
rameters, etc.

• Index versus customised hedges.

• Static versus dynamic hedges.8

• Multi-instrument9 versus single-instrument hedges.

The above list is quite extensive and it would not be feasible to examine all pos-
sible factors in a single study. Nevertheless, ours is the first study to carry out a
forensic analysis of what we anticipate being the most important risk factors in a
longevity hedging context, namely population basis risk, cohort effect uncertainty,

8In this paper, we only consider static hedges (i.e. “set and forget”). However, especially if
there was a liquid market in appropriate hedging instruments, the hedge ratios could be modified
from time to time between commencement and the target valuation date.

9For example, the use of two or more deferred longevity swaps with different reference ages.
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recalibration risk, the impact of the length of the recalibration window, parameter
uncertainty, and Poisson risk.

Previous studies which have examined a smaller subset of risk factors include: Dahl
et al. (2008, 2009), Plat (2009), and Coughlan et al. (2011). Earlier studies which
have examined different hedging instruments, such as longevity swaps, deferred
longevity swaps and other longevity-linked bond and derivative structures, include
Blake and Burrows (2001), Blake et al. (2006), Coughlan et al. (2007), Loeys et al.
(2007), Cairns et al. (2008), Coughlan (2009), Wills and Sherris (2010), and Blake
et al. (2010). Previous studies which have looked at the value-hedging paradigm
include Coughlan et al. (2011) – in terms of effective risk reduction when future
cashflows are highly unpredictable – and Nielsen (2010) and Olivieri and Pitacco
(2009) in the context of Solvency II.

We find in this paper that recalibration risk has an important role to play in the
assessment of hedge effectiveness. This is because we have a limited amount of
historical data, leading to parameter uncertainty in both process parameters and
the underlying state variables. This paper is the first to consider recalibration risk
in the longevity literature. However, the concept is familiar elsewhere in the finance
literature. The key issue is that model parameters that are assumed to remain
constant are, in fact, recalibrated on a regular basis: partly because of parameter
uncertainty and partly because the “true” model generating prices is different from
the model being calibrated against these prices (e.g. the Black-Scholes model). The
result is a sequence of calibrations that is inconsistent with the constant-parameter
assumption. The fact that, for example, equity volatility is known to vary over time
(as well as over strike prices and maturity dates) rather than remain constant, results
in derivatives desks having to hedge against changes in volatility (vega hedging).

A related, but different, form of calibration risk concerns the method use to calibrate
a complex model to a given set of market data (see, for example, Detlefsen and
Härdle, 2007). The nearest equivalent in the mortality modelling context would,
perhaps, be the choice between the Poisson model for death counts and some other
distribution (e.g. the normal distribution assumed by Lee and Carter, 1992).

We also find that the major determinants of correlation, and therefore hedge ef-
fectiveness, are population basis risk and the length of the recalibration window.
Lesser, but still important factors are: parameter uncertainty (other than recalibra-
tion risk) and the reference age for the hedging instrument (especially if the reference
age is at the lower end of the age range analysed).

1.2 Structure of the paper

The remainder of the paper is organised as follows. Section 2 sets out a case study
of a pension plan that is considering hedging the longevity risk it faces using either a
customised or index longevity hedge. Section 3 outlines the five steps in constructing
and evaluating the hedge using the very general framework of Coughlan et al. (2011)
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and discusses the role of correlation (between the values of the hedging instrument
and the liability) in determining the level of hedge effectiveness. Section 4 describes
the data and stochastic mortality model that we will use. Section 5 discusses how
the model is used for both (i) simulating future mortality rates and (ii) valuing both
the liability (a type of deferred annuity) and the hedging instrument. Although the
choice of simulation model is independent of the choice of valuation model and is
borne out in industry practice, we use the same model for convenience. Section 6
is the key numerical section that focuses on the correlation between the value of
the pension liability in our case study and the values of both customised and index-
based hedging instruments and quantifies how the different risk factors influence
these correlations. Finally, Section 7 concludes.

2 A case study: A customised versus index hedge

Our discussion is centred on a stylised case study involving a UK pension plan
consisting of male members only, which pays no spouses’ or dependants’ benefits.
We evaluate hedging instruments that hedge the longevity risk associated with the
value of the pension liability. The pension plan members will be assumed to have
underlying mortality rates that are the same as the CMI male assured lives dataset
and the pension liability will be calculated with reference to current and projected
CMI mortality. This choice is because the CMI population has a very different
mortality profile from the national population (see for example, Coughlan et al.,
2011), thereby allowing us to easily incorporate the population basis risk into the
discussion. In order to hedge the longevity risk in the pension plan, we will consider
both a hedging instrument linked to CMI male mortality (in the case of a customised
hedge) and one linked to England & Wales (EW) male mortality (in the case of an
index hedge). Data are available for both populations up to the end of 2005 (time
t = 0).

Now define ak(T, x) as the value at T of a pension (or, equivalently, a life annuity)
of £1 per annum payable annually in arrears from the time of retirement until death
to a male aged x at time T in population k:

k = 1 England & Wales, males
k = 2 CMI assured lives, males.

The objective is to hedge the longevity risk in the value of a pension liability L(T ) =
a2(T, x), where T = 10 years (i.e., the end of 2015) and x = 65. We assume that the
pension is already in payment: i.e. the members have already reached the age of
retirement. Interest rates will be assumed to be constant and equal to r per annum.
Hence, the liability at time T is equal to

ak(T, x) =
∞∑

s=1

(1 + r)−spfwd
k (T, s, x) (1)
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where the forward (prospective) survival probability, pfwd
k (T, s, x), represents the

best estimate at T , that an individual aged x at time T in population k will survive
for a further s years.

In our case study, the chosen hedging instrument will be a “cash-settled” deferred
longevity swap that exchanges, at time T , the present value of a series of fixed
cashflows for the present value of a set of floating cashflows occurring after time
T . The floating cashflows will be equal to the proportions of a cohort aged y in
population k at time T that are still alive at times T + 1, T + 2, . . ., while the fixed
cashflows of K(T + s) for s = 1, 2, . . . are fixed at time 0. Thus, the value at time
T of the floating leg of the swap will be ak(T, y) (i.e., the same as the value of an
annuity) and we will denote the value at T of the fixed leg by âfxd

k (T, y).

3 Constructing and evaluating a hedge

3.1 The hedge effectiveness framework

Following the proven framework of Coughlan et al. (2004, 2011), there are five steps
in constructing and evaluating a hedge – whether customised or index. These steps
have been slightly recast in applying them to our case study and are outlined in
Tables 1 to 3.

Step 1 in Table 1 involves a clear definition of the hedging objectives. This includes
defining the position to be hedged and the hedge horizon, T . In our case study, the
metric, or quantity at risk, to be hedged is the value of the liability, a2(10, 65), over
a horizon of 10 years. This step also involves a clear definition of the risk to be
hedged and whether to mitigate it entirely (indemnification) or whether to mitigate
it partially (leaving some degree or other of residual basis risk).

In step 2, we choose the hedging instrument, or instruments, that we will use to
reduce the liability risk. In the present case, it will be a deferred longevity swap,
with a choice of reference population, k,10 maturity dates, T , and reference starting
ages, y. The hedge will be a static value hedge.11

Step 3 is the crucial step of defining the method for hedge effectiveness assessment.
This is important because an inappropriate choice can easily lead to misleading
hedge effectiveness results. This step involves not only the risk metric used to assess
hedge effectiveness but also the method in which it is applied. For our case study,
we choose the variance in the value of the pension liability as the risk measure (the
same as, for example, Li and Hardy, 2009). Hedge effectiveness then provides us
with a proportionate assessment of how much the variance of the liabilty will fall as
a result of hedging.

10k = 1 for an index swap and k = 2 for a customised swap.
11Dynamic hedging is not feasible except at potentially significant cost. Additionally, with our

particular choice of liability and hedging instrument, dynamic hedging does not, in fact, result in
a significantly better hedge.
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Step Case study details

Step 1: Objectives
Risk to be hedged Liability value, L(T ) = a2(T, x)
Horizon T = 10
Full or partial risk mitigation? Partial risk reduction

Step 2: Hedging instrument
Choice of instrument Deferred longevity swap, value at T :

H(T ) = ak(T, x)− âfxd
k (T, x)

(no collateral or margin calls)
Hedged position: static or dynamic? Static: P (h) = L(T ) + h×H(T )

Step 3: Method for assessment of hedge effectiveness
Risk metric V ar (P (h))
Basis for hedge effectiveness 1− V ar (P (h)) /V ar (L(T ))
Scenario generator Two-population Age-Period-Cohort

stochastic simulation model
Valuation model 2× One-population APC models

with consistent projections

Step 4: Hedge effectiveness calculation
Simulate future mortality rates up to T See Table 2
Evaluate position at T See Table 3
Calibrate hedge ratio h∗ = −ρLH × SD(L(T ))/SD(H(T ))
Evaluate hedge effectiveness (h∗ minimises V ar(P (h)))

Step 5: Detailed analysis and interpretation of results

Table 1: Five steps in constructing and evaluating a hedge (adapted from Coughlan
et al., 2011).

We take a prospective approach to hedge effectiveness assessment using forward
looking simulation of future mortality rates (see Coughlan et al., 2004, for a discus-
sion of this and other choices). The risk measure is derived from a large number of
independent scenarios for mortality rates between time t = 0 and time T that are
generated using a stochastic simulation model.12

There are two key stages in Step 4: simulation and valuation. First, there is a
simulation stage that takes us from the present time t = 0 to time T (see Table
2). This requires a two-population stochastic mortality model13 to be calibrated to
historical data up to time t = 0 that can then be used to simulate future mortality
rates for both populations to time T . Second, for each stochastic scenario up to
time T , we need to be able to value the liability and hedging instrument at time T .
Valuation of these requires us to project, at T , the future liability cash flows beyond
time T (see Table 3). We, therefore, extend each sample path of mortality rates up

12There are other methods of generating these scenarios, for example, Coughlan et al. (2011)
used bootstrapping of historical data.

13This jointly models two related populations by recognising the interdependence between them.
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Population k = 1 Population k = 2

1 Past mortality rates Past mortality rates
for index population for pension plan
(up to time “t = 0”) (up to time “t = 0”)

2 Fit two-population model

3 Simulation of two-population
underlying mortality rates for t = 1, . . . , T

4 Index population: Add Pension plan: Add
Poisson risk to death counts Poisson risk to death counts

5 Future scenarios for index Future scenarios for pension plan
mortality experience, t = 1, . . . , T mortality experience, t = 1, . . . , T

Table 2: Five stages of simulation

Population k = 1 Population k = 2

Historical data + simulation results

1A Past mortality rates Past mortality rates
for index for pension plan

1B + Future mortality scenarios + Future mortality scenarios
for index for pension plan

Valuation model

2 Scenario + Model ⇒ calibration for Scenario + Model ⇒ calibration for
hedging instrument valuation pension plan liability valuation

3 Consistent valuation model mortality projections

4 For each scenario: For each scenario:
Index hedging instrument valuation Pension plan liability valuation

5 Calculate hedge effectiveness

Table 3: Five stages of evaluation
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to time T into a two-dimensional mortality table that projects beyond time T . The
final year of the simulated scenario at time T gives us the base, one-dimensional
mortality table, and the pattern of mortality improvements up to time T are used
to turn this base mortality table into a two-dimensional set of projected mortality
and survival rates that can be used to calculate annuity values at T . We are then
in a position to evaluate hedge effectiveness.

In other words, the outcome from the simulation and valuation procedures is a
bivariate distribution for the liability and hedging instrument values at T . This, in
combination with our chosen measure of hedge effectiveness, allows us to calculate
the optimal hedge ratio, h∗.

Step 5 analyses the results of steps 1 to 4. This includes testing the robustness of our
solutions to the assumptions used in the calculations, as well as assessing whether
the results make intuitive sense.

3.2 Correlation and hedge effectiveness

Ultimately, our aim is to measure the effectiveness of any hedging strategy that we
might choose to adopt. Here we focus on a simple value-hedging setting where we
consider a static (set-and-forget) hedge using a single hedging instrument.

Suppose that we have a future random liability with value L = L(T ) at time T .
Alongside this, we have a hedging instrument that has value H = H(T ) at time T .
Our hedged portfolio consists of the liability plus h units (the hedge ratio) of H and
its value at T is P (h) = L + h.H.

If we use variance as our measure of risk, hedge effectiveness is defined as R2(h) =
1− V ar[P (h)]/V ar[L]: that is, it measures the proportionate reduction in risk due
to the hedge. The optimal hedge ratio per unit of liability, L, then becomes

h∗ = −ρ
SD(L)

SD(H)
= −Cov(L,H)

V ar(H)
,

where ρ = Cor(L,H) (see, for example, Coughlan et al., 2004, for a general discus-
sion of the optimal hedge ratio in a hedge effectiveness context). We then have

R2(h∗) = ρ2 and R2(h) = ρ2

(
1− (h− h∗)2

h∗2

)
. (2)

We can conclude from (2) that, in this simple situation with a static hedge and a
single hedging instrument, it is sufficient for us to analyse the correlation between
L and H. When comparing hedging instruments, the one that has the highest
(absolute) correlation will deliver the highest optimal hedge effectiveness, provided
the optimal hedge ratio is employed.
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4 Data and model

We will use EW and CMI data covering ages 50 to 89 and calendar years 1961 to
2005 (with 2005 treated as t = 0). The full range of these data is used to fit the two-
population stochastic mortality model specified below. This model plus parameter
estimates – with some, but not all, experiments incorporating parameter uncertainty
– is then used to simulate mortality rates at ages 50 to 89 for the years 2006 to 2015.
The choice of age range means that the CMI cohort aged 65 in 2015 – the cohort
that we refer to in our liability L(T ) = a2(T, 65) – was aged 55 in 2005. Thus, our
initial dataset up to 2005 already provides us with an estimate of the cohort effect
that will be used in the evaluation of a2(T, 65).

For valuation purposes, actuaries will be deemed to have data available from 1961
up to the end of 2015. However, a projection model intended to project beyond time
T will only be calibrated using data from the most recent 20 years (1995 to 2015)
in order to capture the most recent trend in mortality rates. The assumption of a
20-year lookback window is consistent with market practice (not all practitioners,
of course, will use exactly 20 years), whereby the desire to use more years of data to
get a better estimate of the volatility needs to be balanced by the desire to use fewer
years in order to capture better the most recent trend in mortality improvements
(see the discussion in Dowd et al., 2010b).14

We will use the two-population Age-Period-Cohort (APC) model for mk(t, x), the
population-k death rate, discussed in Cairns et al. (2011b).15 Specifically, we assume
that

log mk(t, x) = β(k)(x) +
1

na

κ(k)(t) +
1

na

γ(k)(t− x) (3)

where: t is the calendar year; x is the age last birthday; na is the number of individual
ages covered by the dataset;16 β(1)(x) and β(2)(x) are the population 1 and 2 age
effects, respectively; κ(1)(t) and κ(2)(t) are the corresponding period effects; γ(1)(c)
and γ(2)(c) are the corresponding cohort effects; and c = t − x = cohort year of
birth.

This model is one of the simplest that incorporates both random period and cohort
effects. Our reasons for including a cohort effect are twofold. First, cohort effects
have been found to be significant in a number of countries (e.g. England & Wales,
France, Germany, Japan and Italy; see Cairns et al., 2011a). Second, when we
consider possible hedges of longevity risk, we build on the observations of Cairns et
al. (2011b) to demonstrate that the presence of a significant cohort effect can have
a material impact on correlation and, implicitly, hedge effectiveness in a way that

14However, even if our use of the APC model for valuation is correct, the use of a 20-year window,
W , should itself be considered to be a source of Knightian uncertainty: W is not just uncertain,
but the degree of uncertainty is not quantifiable. Dealing with W as a source of uncertainty is left
for further work.

15Alternative multi-population models have been proposed by Li and Lee (2005), Dahl et al.
(2008, 2009), Jarner and Kryger (2011), Plat (2009) and Dowd et al. (2011a).

16For example, our dataset covers ages 50 to 89, so na = 40.
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would not be evident if a model with no stochastic cohort effect were used.

The stochastic elements in our model (i.e., the period and cohort effects) are struc-
tured in a way that assumes that one population is large and the other population
is a small (sub-)population. Thus (see Cairns et al., 2011b, for further discussion),

• Large population 1

– κ(1)(t) is modelled as a random walk with drift µ1.

– γ(1)(c) is modelled as an AR(2) process mean-reverting to a linear trend.
(This has the ARIMA(1,1,0) model as a special limiting case.)

• The smaller population 2 is modelled indirectly using the spreads in the period
and cohort effects:

– The spread between period effects, S2(t) = κ(1)(t) − κ(2)(t), is modelled
as an AR(1) process with, potentially, a non-zero mean-reversion level.
Random innovations in the AR(1) process are correlated with the κ(1)(t)
innovations.

– The spread between cohort effects, S3(c) = γ(1)(c) − γ(2)(c), is modelled
as an AR(2) process with, potentially, a non-zero mean-reversion level.
Random innovations in the AR(2) process are correlated with the γ(1)(c)
innovations.

• Random innovations in the bivariate period-effect processes are assumed to be
independent of random innovations in the bivariate cohort-effect processes.

The equations for this model are presented in Appendix A, and for a fuller discussion
of the model, see Cairns et al. (2011b). A key element of the model fitting process
in Cairns et al. (2011b) is the use of Bayesian methods.17 The approach starts by
combining the statistical likelihood functions for the death counts and the time series
of underlying period and cohort effects: especially important where one or both of
the populations are relatively small. Additionally, Bayesian methods produce a full
posterior distribution both for process parameters (µ1, µ2, ψ, C(2), ν1, δ1, ν2, φ11,
φ12, φ21, φ22, C(3)) and for historical values of the age, period and cohort effects.18

The posterior distribution can then be used in a natural way to analyse the impact
of parameter uncertainty on the results of our present analysis.

17For further discussion of mortality model fitting using Bayesian methods, see Czado et al.
(2005), Pedroza (2006), Kogure et al. (2009), Reichmuth and Sarferaz (2008), and Kogure and
Kurachi (2010).

18It has been demonstrated elsewhere (Cairns et al., 2006) that the inclusion of parameter
uncertainty in process parameters can have a significant impact on forecast levels of uncertainty
in future mortality rates.
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5 Simulation and valuation

5.1 Simulation

Simulation involves the following stages:

• First, in the case where we assume the parameters are unknown, we draw at
random from the posterior distribution for the process parameters and for the
historical age, period and cohort effects.

• Next, we use simulation to extend the historical sequences of period and cohort
effects by T years using the time series model discussed in Section 4. This
then allows us to calculate the underlying death rates, mk(t, x), for years t =
1, . . . , T using equation (3).

• Finally, in experiments where we wish to take individual Poisson risk into
account, we need to specify exposures and simulate death counts. Thus, we
need to define what the exposures, Ek(t, x), are for t = 1, . . . , T , and then to
simulate numbers of deaths using the Poisson assumption:19 that is,

Dk(t, x) ∼ Poisson (Ek(t, x).mk(t, x)) .

The output from the simulation step is, therefore, a set of deaths and exposures,
rather than direct observation of the underlying death rates.

In the analysis that follows, we consider two cases that concern the specification of
the exposures for the years 2006 to 2015:

• Case 1 (standard “Poisson risk” case). We set the exposures for 2006 to 2015
to be equal to their 2005 levels: that is, Ek(t, x) = Ek(0, x) for k = 1, 2,
t = 1, . . . , 10 and for all x.

• Case 2 (the large population or “no Poisson Risk” case). We set Ek(t, x) =
100× Ek(0, x) for k = 1, 2, t = 1, . . . , 10 and for all x.20

In both cases, exposures mostly decline with age from their 2005 values. However,
we have not adjusted values to reflect cohorts of varying sizes, nor have we attempted

19For a discussion of the Poisson assumption in a stochastic mortality context, see Brouhns et
al. (2002). More recently, Li et al. (2009) put the case for a more-widely dispersed distribution
than the Poisson. In a dynamic hedging context, the impact of Poisson risk has been considered
previously by Dahl et al. (2008).

20The use of 100× is somewhat arbitrary, but is intended to be large enough that Poisson risk
is very much less significant in the measurement of crude death rates. This makes the future CMI
population much larger than the EW population, but even the latter has a small degree of Poisson
risk. An alternative to the present version of Case 2, that we have not tried, would be to set
the observed number of deaths to be equal to its expected number, while leaving the exposures
unchanged from Case 1.
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to model reductions in the CMI exposures for reasons other than death, such as,
policy maturities.

In case 2, the large population size should ensure that the observed death rates,
Dk(t, x)/Ek(t, x), are very close to the underlying death rates, mk(t, x), for t =
1, . . . , 10, and this should allow us to identify with precision the values of the under-
lying period and cohort effects in both a full or partial recalibration of the model.
Case 1, in contrast, introduces greater noise in the death counts, resulting in less
precision in those period and cohort effects that are estimated in 2015.

On average, the CMI male population has exposures that are about 10% of the size
of the EW exposures. It follows that, at least under case 1, the Poisson risk will
have a more noticeable impact on the CMI results.

5.2 Valuation

A theoretical value for ak(T, x) (compare with equation (1)) might be

ak(T, x) =
∞∑

s=1

P (T, T + s)pfwd
k (T, s, x)

where

pfwd
k (T, s, x) = E

[
Sk(T + s, x− T )

Sk(T, x− T )

∣∣∣∣MT

]
,

P (T, T + s) is the price at time T of the zero-coupon bond that pays 1 at time
T + s (which, here, we assume to be equal to (1 + r)−s) and Mt is the information
provided about the development of mortality rates up to the end of year t.

For computational reasons, we will assume that the survival probabilities pfwd
k (T, s, x)

can be approximated using a deterministic projection of mortality rates beyond time
T rather than by taking the mean over the distribution of Sk(T + s, x − T ). The
approximation used here is similar in spirit to those of Nielsen (2010), who exam-
ines Solvency II mortality stress tests, and Coughlan et al. (2011), who examine
longevity hedging.21 Note that the stochastic term Sk(T + s, x − T )/Sk(T, x − T )
equals exp [−∑s

u=1 mk(T + u, x + u− 1)]. We use, as a deterministic approximation
to mk(T + s, x),

m̂k(T + s, x) = exp
[
β(k)(x) + n−1

a

(
κ(k)(T ) + µks

)
+ n−1

a γ(k)(T + s− x)
]

(4)

where β(k)(x), κ(k)(T ) and γ(k)(T + s − x) are estimates of age, period and cohort
effects that can be made using data up to time T , and µk is a population-k-specific
drift in the period effect. In more general terms, valuation using deterministic
projections is standard practice in the pensions industry, and it is this practice that
we seek to emulate.

21Alternative methods for approximating the expected survival probabilities have been proposed
by Denuit et al. (2010) and Dowd et al. (2010a, 2011b). The method used here delivers accurate
results using a simpler-to-implement algorithm.
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Assigning appropriate values to µ1 and µ2 in equation (4) is central to our analysis.
We choose to equate µ1 to the estimated drift in the random walk, κ(1)(t), made at
time T , implying that m̂1(T +s, x) is the median of the distribution of m1(T +s, x).
The AR(1) model for the spread between κ(1)(t) and κ(2)(t) means that the median
trajectory for κ(2)(t) is, in contrast, non-linear. However, in the long run, under the
stochastic two-population model, the median trajectory of κ(2)(t) is asymptotically
linear with gradient µ1. Thus, with the linear approximation used in equation (4),
an appropriate value to attach to µ2 is also the drift of the random walk, κ(1)(t), to
ensure consistency between forecasts of the two populations’ mortality rates: that
is, µ1 = µ2.

22

Using equation (4) as an approximation, along with µ1 = µ2 as discussed above, we
can approximate pfwd

k (T, s, x) by

p̂fwd
k (T, s, x) = exp

[
−

s∑
u=1

m̂k(T + s, x + s− 1)

]
.

Finally, with a constant interest assumption, we have

ak(T, x) ≈ âk(T, x) =
∞∑

s=1

(1 + r)−sp̂fwd
k (T, s, x). (5)

5.3 Calibration of the valuation model

Evaluation of equation (5) requires knowledge of: β(k)(x), β(k)(x + 1), . . .; κ(k)(T );
µ1; and the single cohort effect, γ(k)(T − x + 1). The questions, therefore, arise as
to how and when we estimate these various inputs. We consider three cases: full
parameter certainty; partial parameter certainty; full parameter uncertainty.

In all three cases, we will calibrate the model using the single-population version
of the APC model given in equation (3) above. This model is fitted separately to
each of the EW and CMI datasets, without making any assumptions about the time
series properties of the age, period or cohort effects (that is, as in Cairns et al.,
2009).

In the full parameters-certain (PC) case, we proceed in the following steps:

• PC1: Fit the one-population model to each of the EW and CMI datasets
running from 1981 to 2005: this is referred to as the initial calibration and is
required for PC4.

• PC2: Fit a random walk model to the fitted period effect (EW) for 1981 to
2005. This gives us the estimated random-walk drift, µI

1.

22A more sophisticated approach would allow for the initial drift of κ(2)(t) to differ from µ1, but
then revert to µ1 in the long run. Thus, in the expression for m̂k(T + s, x), we might replace µ2s
by µ1s + (µ2 − µ1)(1 − φs)/(1 − φ) where φ > 0 is the AR(1) parameter in the spread between
κ(1)(t) and κ(2)(t).
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• PC3: Simulations from 2005 to 2015 are carried out using the PC version of
the two-population model (see Cairns et al., 2011b, for details).

• PC4: For each stochastic scenario taking us from 2005 to 2015: refit the
one-population model to each population, subject to the constraint that age,
period and cohort effects already estimated in the initial calibration remain
unchanged. This means that we estimate only the 10 most recent period and
cohort effects.

• PC5: For each scenario, annuity valuation at T = 10 requires projection of the
period effects only, and so we use κ(k)(T ) resulting from the time-T calibration,
and the random-walk drift, µI

1, that was already estimated at time 0.

In the partial-parameters-certain (PPC) case, we proceed as follows:

• PPC1 to PPC4: Same as PC1 to PC4.

• PPC4A: Recalibrate the random-walk parameter values for the single-population
period effect, κ(k)(t), using the W most recent values: in particular, we re-
calibrate the drift parameter,

µ1 =
(
κ(1)(T )− κ(1)(T −W )

)
/W.

This is in contrast with the PC case, where µ1 is left equal to its initial cali-
bration, µI

1.

• PPC5: For each scenario, annuity valuation at T = 10 requires projection
of the period effects only, and so we use κ(k)(T ) resulting from the time-T
calibration, and the recalibrated random-walk drift, µ1.

In the full parameters-uncertain (PU) case, we proceed as follows:

• PU1/2: Not required.

• PU3: Simulations from 2005 to 2015 are carried out using the the PU version
of the two-population model (see Cairns et al., 2011b, for details).

• PU4: For each stochastic scenario taking us from 2005 to 2015, use the
historical-plus-simulated deaths and exposures to carry out a full recalibra-
tion (in contrast with partial recalibration in PC4 and PPC4) of the single-
population APC models to the EW and CMI populations using actual deaths
and exposures over a window of W + 1 years (i.e., calendar years T −W to
T ).

• PU4A: Recalibrate the random-walk parameter values for the single-population
period effect, κ(k)(t), using the W most recent values: in particular, we re-
calibrate the drift parameter,

µ1 =
(
κ(1)(T )− κ(1)(T −W )

)
/W.
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Annuity price input variable Case
PC PPC PU

κ(k)(T ) Y Y Y
µ1 N Y Y
γ(k)(T − x + 1) higher ages, x N N y
γ(k)(T − x + 1) lower ages, x Y Y Y
β(k)(y), y = x, x + 1, . . . N N y

Table 4: Input factors as a source of risk in the calculation of the annuity price,
ak(T, x). N: no, the variable is fixed at time t = 0 (end 2005). Y: yes, variable is
not known until time T , and is a significant source of risk. y: the variable can be
estimated at t = 0, but is also subject to estimation uncertainty, and is subject to
modest amounts of re-calibration risk at T .

• PU5: For each scenario, annuity valuation at T = 10 requires projection of the
period effects only, and so we use κ(k)(T ) resulting from the time-T calibration,
and the recalibrated random-walk drift, µ1.

5.4 The recalibration window, W + 1

In the PPC and PU cases, µ1 uses a recalibration window of W years up to time T
to estimate µ1. In this paper, we will assume in most of our numerical experiments
that W + 1 = 20 years. However, we will later discuss the sensitivity of the results
to the choice of W .

5.5 Sources of uncertainty in ak(T, x)

At the beginning of this section, we identified the various inputs required for the
calculation of ak(T, x). We now consider which of these inputs causes uncertainty
in ak(T, x) (see, also, Table 4):

• κ(k)(T ) constitutes the principal source of randomness in ak(T, x). It is the
only source of uncertainty in the full PC case for all but the lowest ages at
time T (i.e., ages at time T with cohort effects that had not been estimated
at time 0).

• In some cases, the value of γ(k)(T +1−x) used in the calculation of ak(T, x) is
uncertain. Specifically, this is the case for younger ages, x, starting with the
cohort aged x0 + T at the end of year T (where x0 = 50 is the youngest age
in our data) down to the cohort aged x0 at the end of year T . None of these
cohorts was included in the dataset available at time 0 (i.e. 2005), and so the
relevant value of γ(k)(T + 1 − x) is uncertain and not measurable until some
years later. See Appendix C, for further discussion.
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• In the full PC case, there are no further sources of uncertainty. At time T ,
only the T most recent period and cohort effects are estimated; parameters
already estimated at time 0 are left as they are; and the value of µ1 is left
unchanged from its initial calibration at time 0.

• In the PPC case, the estimated age, period and cohort effects are treated as
known and not subject to parameter estimation uncertainty. In contrast with
the full PC case, however, the random walk drift, µ1, is recalibrated at time
T , based on estimates of the period effect κ(1)(t) up to time T , and this means
that µ1 in the calculation of the ak(T, x) is uncertain.

• In the PU case, individual sample paths take account of parameter uncertainty
in the 2005 calibration and the model is fully recalibrated at time T . Thus,
besides the process risk inherent in the period up to time T and cohort effects
for younger ages, full recalibration at T plus PU at t = 0 means that the
β(k)(x) and γ(k)(c) inputs to ak(T, x) are also uncertain.

6 Decomposing hedge effectiveness in customised

and index longevity hedges

Basis risk and, therefore, hedge effectiveness are influenced by the risk factors out-
lined in section 1.1 above. We will now examine what we believe to be the most
important risk factors that impact on the hedge effectiveness of longevity hedges,
namely population basis risk, cohort effect uncertainty, recalibration risk, recalibra-
tion window, parameter uncertainty, and Poisson risk. We do this using the example
of a pension plan that is considering employing either a customised or index value
hedge as part of an asset-liability management exercise.

6.1 Correlation results for individual risk factors

We now take a detailed look at how the correlation between the liability and the
hedging instrument values changes in response to the inclusion or exclusion of the
various factors listed in the previous section. To recap: our liability value is L(T ) =
a2(T, x), where T = 10 (2015) and x = 65, and our hedging instrument value is
H(T ) = ak(T, y)− âfxd

k (T, y) where, again, T = 10, but y can range from 50 to 89,
and the reference population might be either k = 1 (index-based hedge) or k = 2
(customised hedge).

In Figures 1 to 7, we investigate the impact on the correlation between liability
and hedge values of: population basis risk (i.e., using an index hedge rather than
a customised hedge); the inclusion of cohort effect uncertainty; the inclusion of
recalibration risk in 2015; the length of the calibration window; the inclusion of
parameter uncertainty in the 2005 calibration; and the inclusion of Poisson risk. In
all of the figures, we plot Cor(L(T ), H(T )) as a function of the hedging instrument
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reference age, y. In all, Figures 1 to 7 cover 13 experiments (A to M) that are
outlined in Table 5.23 We are primarily interested in the effectiveness of index
hedges, although, in most cases, we also plot the equivalent correlation curve for a
customised hedge allowing us to compare the impact of the various risk factors on
each type of hedge.

H(T ) Population
Reference Basis Parameter Recalibration Recalibration Poisson

Experiment Population Risk Estimation Risk Window Risk
A CMI N PC N 20 N
B CMI N PPC Y 20 N
C CMI N PU Y 20 N
D CMI N PU Y 20 Y
E EW Y PC N 20 N
F EW Y PC N 20 Y
G EW Y PPC Y 20 N
H EW Y PPC Y 20 Y
I EW Y PU Y 20 N
J EW Y PU Y 20 Y
K EW Y PU Y 20 Y
L EW Y PU Y 35 Y
M EW Y PPC Y 35 N

Table 5: Key risk factors influencing the correlation between liability and hedge
values for experiments A to M. The cohort effect, as a source of risk at younger
ages, is present in all experiments. All experiments involve life annuities apart from
experiment K which uses a temporary annuity that ceases at age 90.

To help with the interpretation of the results, it is useful to consider a linear approx-
imation of the annuity price. First, note that ak(T, x) = f(β(k)[x], κ(k)(T ), γ(k)(T −
x + 1), µ1), where β(k)[x] is the column vector of age effects from age x upwards,
(β(k)(x), . . . , β(k)(ω))′, ω is the maximum age, and f(·) is the annuity function gov-
erned by the deterministic projection of the period effects. The linearisation is then
simply:

ak(T, y) ≈ f(β̂(k)[x], κ̂(k)(T ), γ̂(k)(T − x + 1), µ̂1)

+b′1(y)
(
β(k)[x]− β̂(k)[x]

)
+ b2(y)

(
κ(k)(T )− κ̂(k)(T )

)

+b3(y)
(
γ(k)(T − x + 1)− γ̂(k)(T − x + 1)

)
+ b4(y)

(
µ1 − µ̂1

)
. (6)

This linearisation turns out to be a very accurate approximation to f(·), even with
full PU and uncertainty in all of the β(k)[x], κ(k)(T ), γ(k)(T − x + 1), and µ1.

Turning now to the experiments listed in Table 5:

• Benchmark customised hedge: To provide a reference point, we start with
a benchmark customised hedge (Figure 1). We take the simplest case, namely

23Experiments F and H are listed here for completeness, but are not discussed below as they do
not reveal anything in addition to the points already being made.
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full parameter certainty (PC) without Poisson risk. The correlation curve (A)
has two distinct parts to it. At ages 61 and above, the correlation is both very
flat and very close to 1. In the PC case, L(T ) and H(T ) have κ(2)(T ) as their
single source of randomness, so the correlations are almost 1 (‘almost’ because
there are still some slight non-linearities).24

• Cohort effect uncertainty:25 Also in Figure 1, we note that the correla-
tions drop away below age 61. This is because a2(T, y) also depends on the
cohort effect γ(2)(c) for year of birth, c = T − y +1. If the hedging instrument
reference age, y, is less than 61, then the relevant value of γ(2)(c) is not known
until after 2005 and therefore provides an additional source of randomness in
H(T ). As we move from age 61 to younger ages (i.e., later years of birth),
uncertainty in γ(2)(c) grows and, therefore, makes an increasing contribution
to the overall risk in H(T ). Since this additional risk is not correlated with
κ(2)(T ), the correlation between H(T ) and L(T ) falls in line with the propor-
tional contribution of γ(2)(c) to the uncertainty in H(T ).

• Population basis risk: In Figure 2, we introduce population basis risk by
switching to the use of hedging instruments linked to the EW males population.
We see that the broad impact of this switch is to pull down the correlation
curve at all ages. Experiment E (dot-dashed line) gives correlations in the
full PC case. As with curve A, curve E is fairly flat above age 61, reflecting
the near-linear dependence of L(T ) and H(T ) on their single sources of risk,
κ(2)(T ) and κ(1)(T ), respectively. This dependence is confirmed by the fact
that Cor(L(T ), H(T )) ≈ Cor(κ(1)(T ), κ(2)(T )) above age 61.

• Recalibration risk: Figure 3 shows the impact of model recalibration risk
in the PPC case for both the customised (A to B) and index (E to G) hedges.
First, consider customised hedges. This introduces a fresh source of risk, µ1,
into the calculation of annuity values. In experiment B (solid curve), above age
61, there are two distinct sources of risk (κ(2)(T ) and µ1, which, as previously
discussed, is a linear function of κ(1)(T )). Over the 61+ age range, correlations
are still high, but, as y increases above age 65, correlations drift down gradually
(curve B). For y close to age 65, L(T ) and H(T ) are exposed to the κ(2)(T )
and µ1 risks in approximately the same proportions (i.e., the ratio of b2(y) to
b4(y) in equation (6)). However, as the reference age, y, increases, the relative
impact of κ(2)(T ) and µ1 on a2(T, y) changes (i.e. b2(y) to b4(y)), causing
correlations to drop a little (solid line (B), right-hand end).

Below age 61, in experiment B, there are three sources of risk: κ(2)(T ), µ1 and
γ(2)(T − y + 1). The curve drops away as we reduce y for similar reasons as

24In this experiment, only κ(2)(T ) is uncertain in the linearised equation (6), so the correlations
between a2(T, x) and a2(T, y) in the linearised version for x 6= y must be exactly equal to 1.

25Note that the caption to Figure 1 refers to knowable cohort effects. These refer to cohorts for
which we do have data, but we choose to ignore these data because we have too few observations
to be able to make reliable estimates of the cohort effect. See Cairns et al. (2009) for further
discussion.
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in experiment A. However, it is obvious that correlations for these lower ages
are much higher in experiment B compared with A. In experiment B, L(T )
and H(T ) have, in absolute terms, significantly more risk than A, through
additional uncertainty in µ1. However, in relative terms, L(T ) and H(T )
have a much stronger dependence on common sources of risk (κ(2)(T ) and
µ1) in experiment B than in experiment A and this results in a much higher
correlation.

Now consider the impact of recalibration risk on an index hedge. As a source
of risk, µ1 is common to both L(T ) and H(T ) over all reference ages. The
inclusion of recalibration risk significantly increases the uncertainty in L(T )
and H(T ), but this is a perfectly correlated additional risk.26 Thus, the impact
of including PPC model recalibration risk is to increase the correlations and
so raise curve E (dot-dashed line) significantly to curve G (solid line).

Finally, in Figure 3, we compare experiments E (PC) and G (PPC) below
age 61. In the PPC case (G), at lower ages, the additional risk in the cohort
effect (Figure 8) is just as large in absolute terms as the full PC case (E),
but, in relative terms, it contributes much less, because of the inclusion of the
additional risk linked to µ1 that is common to both L(T ) and H(T ). As a
result, the decline in correlations below age 61 is less in the PPC case (G).

• Recalibration window: In Figure 4, we focus on the sensitivity of results
to the choice of recalibration window. In experiment G, we use a 20-year
window and, in experiment M, we use a 35-year window. Recall that µ1 =
(κ(1)(T ) − κ(1)(T −W ))/W , so W + 1 = 35 rather than W + 1 = 20 reduces
uncertainty in µ1. Comparing experiments G and M, both L(T ) and H(T ) are
less risky under M, because µ1 is less risky. However, the correlation between
L(T ) and H(T ) is also now lower because of their greater dependence, in
relative terms, on the imperfectly correlated κ(2)(T ) and κ(1)(T ).

• Parameter uncertainty: Figure 5 adds in the impact of parameter uncer-
tainty (PU) (experiments C and I, dashed lines). Introducing PU creates
additional uncertainty in the process parameters (e.g., µ1) and also in the
latent state variables (the age, period and cohort effects). This additional un-
certainty can be thought of as noise on top of the main signal and the noise
added to the different components of L(T ) and H(T ) will be largely uncorre-
lated.27 This creates additional risk that is mostly non-hedgeable (with the
exception of age 65, where L(T ) and H(T ) refer to the same cohort) and so
leads to lower correlations and lower hedge effectiveness.

26Referring to equation (6), L(T ) is approximately a linear combination of κ(2)(T ) and µ1, while
H(T ) is a linear combination of κ(1)(T ) and µ1. In the PPC case, µ1 is a risk that is common to
both L(T ) and H(T ) and so raises the correlation between the two relative to the PC case, where
µ1 is fixed.

27For example, the noise added to κ(1)(T ) and κ(2)(T ) will have a low correlation, and, for
c0 6= c1, the noise added to γ(2)(c0) and γ(2)(c1) will also have a low correlation.
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Figure 5 also shows the impact of moving from the PPC (curve G) to the
PU case (curve I, dashed line) on the effectiveness of an index hedge. The
impact is relatively small, with a magnitude that is similar at most ages to
the customised hedge (experiments B and C). However, in contrast with the
shift from B to C, we find here that there is no advantage to using a hedging
instrument that is linked to exactly the same birth cohort as the liability
being hedged: this reflects a lack of correlation in the PU setting between our
estimates of the cohort effects in the two populations, γ(2)(T − x + 1) and
γ(1)(T − x + 1) for x = 65.

• Poisson risk: In Figure 6, we look at the impact of adding in Poisson risk
(experiments D and J, dotted lines). In general, this should add to the uncer-
tainty in both L(T ) and H(T ).28 The impact on correlation of Poisson risk (C
to D) is broadly similar in magnitude to the impact of PU (B to C). However,
the impact does seem to vary with age. The reasons for these variations are
not clear, suggesting that the impact of Poisson risk on the various inputs to
a2(T, y) is complex. In contrast (experiments I and J), if we use an index-
based hedge, then the gap between the Poisson and no-Poisson correlation
plots seems to be reasonably uniform across all ages.

• Term of the annuity: In Figure 7, we make two further comparisons. As
our baseline, we conduct experiment J which includes all risk factors. We
investigate how sensitive the correlations are to the term of the annuity that
underpins our calculations. Experiment J involves the use of a life annuity. In
contrast, in experiment K, both L(T ) and H(T ) involve temporary annuities
that cease at age 90. We can see that this lowers the correlations relative to
curve I. This is explained by the fact that the recalibrated µ1 has relatively
little influence over short-dated cashflows and much greater influence over
long-dated cashflows. By shifting to temporary annuities, we have therefore
reduced the influence of µ1 on L(T ) and H(T ), with a resulting lowering in
the correlations.

A similar shift would occur if we switched from a life annuity starting at age
65 to, say, a life annuity starting at age 75, since, on average, the annuity will
be payable for less time.

• Recalibration window revisited: In Figure 7, which shows the results of
experiment L, we repeat the shift from a recalibration window of 20 to one
of 35 years, this time in a full PU setting with Poisson risk (compare with
Figure 4.) The difference between J and L can be seen to be similar to (but
slightly larger than) the shift from G to M. Thus, the impact of a change in the
recalibration window can be seen to be not especially sensitive to the inclusion
or otherwise of the less important risk factors (full PU and Poisson risk).

28Specifically, Poisson risk will perturb the input values in f(β(k)[x], κ(k)(T ), γ(k)(T −x+1), µ1)
in equation (6), and the fact that the noise is independent from (t, x) cell to cell means that these
perturbations are likely to increase total risk.
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Figure 1: Correlation between the liability, L(T ), and hedging instrument, H(T ),
values as a function of the hedging instrument reference age. Experiment A (Table
5) assumes a customised hedge (CMI reference population), full parameter certainty
(PC) and no Poisson risk. Knowable cohort effects are discussed in Appendix C.
The black dot identifies the liability reference age of 65.
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Figure 2: Correlation between the liability, L(T ), and hedging instrument, H(T ),
values as a function of the hedging instrument reference age. Experiments A, E
(Table 5). A, E: full PC without Poisson risk. A: customised hedge. E: index
hedge.
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Figure 3: Correlation between the liability, L(T ), and hedging instrument, H(T ),
values as a function of the hedging instrument reference age. Experiments A, B,
E, G (Table 5). A, B: customised hedges. E, G: index hedges. A, E: full PC. B,
G: PPC with recalibration risk, 20-year recalibration window. All: without Poisson
risk.
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Figure 4: Correlation between the liability, L(T ), and hedging instrument, H(T ),
values as a function of the hedging instrument reference age. Experiments G, M
(Table 5). G, M: index hedges, PPC. G: 20-year recalibration window. M: 35-year
recalibration window.

25



55 60 65 70 75 80 85

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

B
B

C

G

I

B: PPC, customised hedge

C: PU, customised hedge

G: PPC, index hedge

I: PU, index hedge

Hedging Instrument Reference Age, y

C
or

re
la

tio
n

Figure 5: Correlation between the liability, L(T ), and hedging instrument, H(T ),
values as a function of the hedging instrument reference age. Experiments B, C,
G, I (Table 5). All: without Poisson risk; 20-year recalibration window. B, C:
customised hedges. G, I: index hedges. B, G: PPC. C, I: full PU.
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Figure 6: Correlation between the liability, L(T ), and hedging instrument, H(T ),
values as a function of the hedging instrument reference age. Experiments C, D, I,
J (Table 5). All: full PU; 20-year recalibration window. C, D: customised hedges.
I, J: index hedges. C, I: no Poisson risk. D, J: with Poisson risk.
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Figure 7: Correlation between the liability, L(T ), and hedging instrument, H(T ),
values as a function of the hedging instrument reference age. Experiments J, K, L
(Table 5). All: full PU with Poisson risk. J, K: 20-year recalibration window. L:
35-year recalibration window. J, L: life annuity. K: temporary annuity ceasing at
age 90.
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6.2 Analysis

Our discussion above of the individual plots focused on the incremental impact of
the different risk factors. Here we look at the bigger picture and assess the overall
impact and significance of each, beginning with the most important.

• Population basis risk is clearly a very significant factor. However, its negative
impact on correlation and hedge effectiveness is not, perhaps, as large as might
seem at first glance.

• Recalibration risk is also a factor of potential significance, although its precise
impact depends on the type of hedge. For index hedges, it results in substan-
tially increased correlations and hence hedge effectiveness;29 for customised
hedges, it has a very modest, negative impact.

Further, as demonstrated in Figure 7, the impact of recalibration risk will be
more substantial30 if both the liability and hedging instrument values (in an
index hedge) depend more heavily on more distant longevity-linked cashflows.
In relative terms, these cashflows are much more sensitive to changes in the
random-walk drift µ1.

• The impact of recalibration risk on correlations was found to be quite sensitive
to the length of the calibration window (e.g. 20 years or 35 years): a longer
calibration window lowers correlation and hedge effectiveness.

• Cohort effect uncertainty can cause correlations to be pulled down if the liabil-
ity and hedging instrument refer to different cohorts either by year of birth or
by reference population. The impact is modest if both of the relevant cohort
effects had been estimated at time 0 (2005), and is a result of uncertainty in
the estimates of those state variables. The impact is much more significant
if one or other of the relevant cohort effects could not be estimated in 2005,
thereby introducing additional uncertainty in the calculation of the annuity
price at T .

• Where we have already taken account of recalibration risk, the inclusion of
other forms of parameter uncertainty (PU) and Poisson risk only have a mod-
est impact on correlation and hedge effectiveness. However, if the underlying
populations were much smaller than those considered here, then PU and Pois-
son risk are likely to have a bigger impact.

29Where allowance for recalibration risk does increase correlations and hedge effectiveness, this
helps to explain why the negative impact of population basis risk is smaller than anticipated.

30That is, the increase in correlation when moving from ignoring recalibration risk to including
recalibration risk (as in the change from curve E to curve G in Figure 3) will be bigger.
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7 Conclusions

This paper builds on the framework proposed by Coughlan et al. (2011) by analysing
hedge effectiveness (with correlation as a proxy) using stochastic simulation (instead
of historical bootstrapping). It is the first study to bring together, in a single stochas-
tic modelling framework, the key risk factors influencing the effectiveness of longevity
hedges, namely population basis risk, cohort effect uncertainty, recalibration risk,
recalibration window, parameter uncertainty and Poisson risk.

To investigate longevity hedge effectiveness, we used a case study of a pension plan
that wishes to hedge the value of its liability in 10 years’ time to a male member
who is currently aged 55. The liability is therefore equivalent to a deferred annuity.
The plan had the choice of using either a customised hedge or an index hedge. We
assumed, for the sake of illustration, that the mortality experience of the pension
plan and the customised hedge was the same as the Continuous Mortality Investi-
gation’s male assured lives, while the mortality experience of the index hedge was
the same as that for the England & Wales male population. For such hedges, we
showed that correlation is a good measure of hedge effectiveness.

We found that population basis risk and uncertain future cohort effects are signif-
icant determinants of hedge effectiveness. However, we also showed that this was
just the starting point. We discovered that correlation and hedge effectiveness are
also affected to a significant extent by the inclusion of recalibration risk and the
assumed length of the recalibration window. Beyond that, further sources of pa-
rameter uncertainty and Poisson risk have a more modest, although still noticeable,
impact. However, we argue that the latter two sources of risk would have a greater
impact if one or both of the populations were much smaller than those considered
here.

The strong conclusion is that an analysis that ignores parameter uncertainty (includ-
ing recalibration risk) might significantly underestimate the level of longevity risk,
but, more importantly, might also underestimate the degree of hedge effectiveness
of an index-based longevity hedge. So an unsophisticated and incomplete analysis
of the problem might either lead to a decision not to hedge (because the level of risk
is deemed not to be sufficiently high) or lead to a customised hedge being chosen
in place of a cheaper index hedge (because the effectiveness of the latter has been
underestimated).

Our case study shows that longevity basis risk can be substantially hedged using
index hedges as an alternative to customised longevity hedges. As a consequence,
therefore, index longevity hedges – in conjunction with the other components of an
ALM strategy – can provide an effective as well as a low cost alternative to a full
buy-out of pension liabilities or even a strategy that involves the use of customised
longevity hedges.

Apart from the hedging instrument reference population and reference age and the
distinction between index and customised hedges, we have not investigated the im-
pact on hedge effectiveness of the structure of the hedge. To do this, we would need
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to investigate such factors as the type of hedging instrument (namely, alternatives
to a deferred longevity swap), the optimality and robustness of the hedge ratio,
value versus cashflow hedges, static versus dynamic hedges, and the use of multiple
hedging instruments, etc. Also omitted is an analysis of the impact of model risk:
a substantial topic in its own right. Finally, we have not analysed the sensitivity
of longevity hedge ratios to changes in the underlying assumptions. We leave these
issues for future work.
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A Two-population mortality model: Stochastic

model details

Define

R2(t) = κ(1)(t), S2(t) = κ(1)(t)−κ(2)(t), R3(c) = γ(1)(c), and S3(c) = γ(1)(c)−γ(2)(c).

Then

R2(t + 1) = R2(t) + µ1 + C211Z21(t + 1)

S2(t + 1) = µ2 + ψ(S2(t)− µ2) + C221Z21(t + 1) + C222Z22(t + 1)

R̃3(c) = R3(c)− ν1 − δ1(c− c̄)

S̃3(c) = S3(c)− ν2

R̃3(c + 1) = (φ11 + φ12)R̃3(c)− φ11φ12R̃3(c− 1) + C311Z31(c + 1) (7)

S̃3(c + 1) = (φ21 + φ22)S̃3(c)− φ21φ22S̃3(c− 1) + C321Z31(c + 1)

+C322Z32(c + 1). (8)

The details of these equations are as follows:

• Z21(t+1), Z22(t+1), Z31(c+1), Z32(c+1) are i.i.d. standard normal random
variables.

• µ1 is the drift in the random walk R2(t).

• µ2 and ψ are the mean-reversion level and the AR(1) parameter respectively
of the period-effect spread, S2(t). For the process to be stationary (mean
reverting), we require −1 < ψ < 1.

• Define C(2) =

(
C211 0
C221 C222

)
, and V (2) = C(2)C(2)′. V (2) is the 1-year-ahead

conditional covariance matrix of (R2(t), S2(t))
′.

• c̄ is defined as (c0 + c1 + 2)/2, where (c0, c1) is the complete range of years of
birth cohorts covered in the dataset.

• ν1 + δ1(c− c̄) is the linear trend, to which R3(c) is reverting.

• ν2 is the mean-reversion level of the cohort-effect spread, S3(c).

• R̃3(c) and S̃3(c) are AR(2) processes that are mean reverting to 0.

• Define C(3) =

(
C311 0
C321 C322

)
and V (3) = C(3)C(3)′. V (3) is the 1-year-ahead

conditional covariance matrix of (R3(t), S3(t))
′ (and of (R̃3(t), S̃3(t))

′).

• φ11, φ12, φ21 and φ22 are the AR(2) parameters for the processes R̃3(c) and
S̃3(c). For the processes to be stationary, we require each of φ11, φ12, φ21 and
φ22 to lie between −1 and +1.
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B Why might the inclusion of parameter uncer-

tainty strengthen correlations?

We present here a simple example. Suppose that L is our risky liability and H is
the payoff on a hedging instrument.

• L = µ + εL, where the error εL has zero mean, and variance σ2
L, and µ is the

mean of L.

• H = µ + εH , where the error εH has zero mean, and variance σ2
H , and µ is the

mean of H.

• εL and εH are known to be independent.

• In the parameters-certain case, the correlation between L and H is zero.

• Now suppose that µ is subject to some estimation error, and that µ has mean
µ̂ and variance σ2

µ.

• When we include parameter uncertainty in our forecasts, we see that the cor-
relation between L and H is now positive.

C Uncertainty in cohort effects

As remarked in the main text, for older cohorts, the value of the cohort effect,
γ(k)(T − x − 1), to be used in the calculation of the annuity price ak(T, x), can
already be estimated in 2005. This is illustrated in Figure 8.

The black dots and circles represent the data available in 2005. Individual cohorts
follow diagonals moving in a north-easterly direction. This plot shows data for ages
50 to 89 from 1981 to 2005 and covers cohorts born in 1892 to 1955. In Figure 8,
these are labelled on the right hand side as having a known or knowable cohort effect
in 2005.

At the end of 2015, we seek to calculate annuity values for various cohorts. Cohorts
born after 1955 fall in the lower right corner of Figure 8, and are characterised by
the fact that the annuity value in 2015 will include a simulated value for the cohort
effect, since this was not known in 2005.

In the software developed for a previous paper (Cairns et al., 2009), we chose to
exclude cohorts with four or fewer observations (or cells) to avoid overfitting. The
four most recent cohorts (1952 to 1955), therefore, have knowable cohort effects
in 2005, but we choose to ignore the very limited data that we have available in
2005 and leave estimation of their values until 2015. As a consequence, in the
full parameters certain (PC) and partial parameters certain (PPC) cases, the cohort
effects for the 1952 to 1955 cohorts (identified by the “knowABLE” diagonal band of
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Figure 8: Timing of the estimation of the period and cohort effects in the parameters
certain (PC) case. Black dots and circles: period effect estimated in 2005. Diagonal
black and green dots: cohort effect estimated in 2005. Diagonal orange and red
dots: cohort effect estimated only in 2015. Diagonal red circles: cohort effect not
estimated even in 2015. Vertical green, orange and red dots and circles: period
effect estimated in 2015. Black and red circles (lower right): cohort effects that
are knowable in 2005 and 2015 respectively, but are not estimated due to limited
quantity of data.

dots in Figure 8) are also not known until 2015 and therefore add to the uncertainty
in the calculation of the annuity price. However, this uncertainty turns out to be
negligible in the large-population version of the model.
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